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Abstract

Current experimental methods to identify the functions of a large number

of the candidates of long non-coding RNAs (lncRNAs) are limited in their

throughput. Therefore, it is essential to know which tools are effective for un-

derstanding lncRNAs so that reasonable speed and accuracy can be achieved.

In this paper, we review the currently available bioinformatics tools and

databases that are useful for finding non-coding RNAs and analyzing their

structures, conservation, interactions, co-expressions and localization.

Keywords: lncRNA, expression, mapping, conservation, secondary

structure

1. Introduction

Recent high throughput sequencing technologies have enabled us to ob-

tain a number of candidates of long non-coding RNAs (lncRNAs). However,
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because the current experimental identification methods are still limited in

their throughput, fast bioinformatics tools to identify and characterize lncR-

NAs with reasonable accuracy are required.

Because non-coding RNA is an exclusive category of RNAs that do not

code for functional polypeptides, the first task for bioinformatics is to iden-

tify lncRNAs by screening long transcripts that do not seem to code for

proteins. The objective of lncRNA research, however, is not only to find

long non-coding RNAs but also to identify their functions. There are vari-

ous bioinformatics tools for predicting the structures and functions of RNA

sequences, including several tools that incorporate other experimental data

in the analysis, but it is not obvious which tools are most useful for any

particular objective.

It is known that structures, especially secondary structures, are important

determinants of the functions of non-coding RNAs. It is also observed that

genomic elements sharing similar functions are conserved between species.

Therefore, secondary structures and their conservation are examined using

bioinformatics tools to try to determine their functional categories. The

predictions of secondary structures, however, are not always accurate. Nev-

ertheless, although it is not always easy to extract concrete structural motifs

related to functions, functional domains still may have structural features.

Important clues for the functions of lncRNAs, including when, where

and with what they are used, can be extracted from experimental data.

Spatiotemporal expression patterns (in tissues, subcellular compartments,

and differentiation/developmental stages) by RNA-seq or microarray indi-

cate when and where functions are activated. Co-expression analysis with
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protein coding genes is useful for predicting with what, but a more direct

way is to detect the interactions with proteins and other RNAs. Interactions

with proteins may indicate the type of the function; furthermore, complemen-

tary bases in two RNA molecules often form base-pairs, giving high sequence

specificity for the target RNAs of the functional RNAs. RNA–RNA inter-

actions can be screened by searching reverse complementary subsequences,

but precise analysis of structures both within and between RNA molecules

is necessary for accurate prediction.

In this paper, we review available bioinformatics tools for research into

lncRNAs, including their discovery, analyses and predictions of the sec-

ondary structures, conservation, interactions with other RNAs and proteins,

co-expression with protein-coding genes, tissue-specificities, and subcellular

localizations. We also consider useful databases.

2. Finding long non-coding RNAs

There are two steps in the identification of lncRNAs. In the first step,

the transcribed units of the lncRNAs are identified. The fragments of the

transcribed RNA sequences, observed by using next-generation sequencing

(NGS) technologies or tiling microarrays, are mapped to the reference genome

and summarized to obtain the transcribed units of the RNAs. The second

step classifies the transcribed units as coding or non-coding: the sequences of

transcribed units are evaluated on the basis of codon statistics and similarity

to known protein sequences.

Before NGS technologies became available, however, it was common to

predict candidates of (functional) non-coding RNAs on the basis of their
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sequences and to experimentally verify their expression. For this prediction,

conserved features (including secondary structures) of candidate sequences

are considered. These analyses are still important for characterization of the

functions of lncRNAs.

2.1. Identifying transcribed units of lncRNAs

Recent progress in NGS technology has enabled high throughput analysis

of transcription in various types of cells. The obtained sequences are partial

segments of the full-length transcripts. Those reads are mapped to a reference

genome by using tools such as Tophat [1], LAST [2], and STAR [3]. The

transcribed units of RNAs are determined from the mapped reads by using

tools such as Cufflinks [4] and Scripture [5].

2.2. Evaluating coding potential of the transcripts

The approaches for discriminating between non-coding and coding se-

quences resemble the methods for gene discovery in genomic sequences. They

are based on either similarity to known coding sequences or the statistics of

codon frequencies specific to each organism. Similarity to known coding se-

quences is detected by using tools for homology search, typically BLASTX [6].

It should be noted that the existence of even a short functional segment

of peptides (motifs) supports the identification of the transcript as coding.

For novel lncRNAs, however, we cannot always expect conservation between

species. The simplest way that does not rely on phylogenetic conservation is

to check whether there is a long open reading frame (ORF) where no stop

codon appears. However, it is necessary to evaluate any candidate segments
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more carefully because there are short ORFs that encode functional peptides

[7].

Among the tools for evaluating coding potential, CPC(Cording-Potential

Calculator) [8] and PORTRAIT [9] use pairwise comparisons for the evalu-

ation of coding potential; in contrast, PhyloCSF [10] and RNAcode [11]

use multiple alignments to determine phylogenetically conserved features.

It is also possible to evaluate coding potential by using statistical features

of the sequences of the transcripts, without using homology information from

alignment to other sequences. Length of the ORF and codon usage bias are

commonly used features. In its logistic regression, CPAT [8] uses ORF

length, ORF coverage in the transcripts, Fickett TESTCODE score [12], and

hexamer frequencies (reflecting codon usage bias and di-amino frequencies).

Igor Ulitsky reviews this important topic, including bioinformatics tools

and experimental approaches, in detail in another article in this issue.

2.3. Conservation of sequences and structures

There are several tools for finding structurally conserved RNAs from mul-

tiple genome sequences, but simple multiple-alignment tools based on stan-

dard dynamic programming (DP) misalign most structured RNA sequences.

More sophisticated tools include RNAz [13] and QRNA [14], which predict

structurally conserved stable RNA secondary structures in multiple sequence

alignments, both in non-coding RNAs and in cis-acting regulatory elements

of mRNAs. EvoFold [15] also finds functional RNA structures in multiple se-

quence alignments by using a sophisticated probabilistic model (phylo-SCFG)

for the substitution process in stem-pairing and unpaired regions. However,

calculating multiple structural alignments of RNA sequences is computa-
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tionally expensive when conservation of secondary structures is considered.

O(L6) computational time is required, even for two sequences of length L

[16], but there are a few fast tools that are described in Section 5.2, where

consensus-based structure prediction using multiple structural alignments is

also discussed.

3. Expression profiles of lncRNAs derived from RNA-seq data

Spatiotemporal expression patterns (tissues, subcellular compartments,

and differentiation/developmental stages) of lncRNAs are fundamental in-

formation for understanding the biological functions of the lncRNAs in cells.

There have been several RNA-seq studies obtaining the expression profiles

of coding/non-coding genes across various tissues in many species [17, 18,

19, 20, 21, 22, 23, 24, 25]. But extracting expression patterns from RNA-seq

data requires large-scale computational resources for quality filtering, reads

mapping, and quantifying expressions.

Expression Atlas [26] processed various RNA-seq data using their orig-

inal computational pipeline and have provided expression profiles of various

tissues and cell lines derived from 16 species. Expression profiles of lncR-

NAs are provided for three of these species (human, mouse, and rat) in their

database (Table 1). In particular, for humans, Expression Atlas provides

expression profiles of lncRNAs derived from not only 32 normal tissues [17]

but also 675 cancer cell lines [20]. Expression profiles of protein-coding genes

derived from several tissues of other vertebrates—such as opossum, rhesus

monkey, olive baboon, chicken, cattle, pufferfish, frog, and lizards—barley,

and rice are also available in Expression Atlas, but expression profiles of
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their lncRNAs are not available because of the lack of annotations. Recently,

The GTEx consortium has provided an extensive collection of RNA-seq

data derived from 43 human tissues (including 11 brain subregions) for 53,934

genes in which the expression profiles of lncRNAs were included. [27, 28]

3.1. Tissue-specificity

Tissue-specificity of lncRNA expressions are also important features for

characterizing lncRNAs. Recent analysis of RNA-seq data derived from 24

human tissues [29] revealed that the majority of lincRNAs (approx. 80%)

exhibit tissue-specific expression patterns, whereas such expression patterns

are observed in a much smaller fraction of protein-coding genes (approx.

20%). Washietl et al. [30] analyzed the evolutionary dynamics of lncRNA

expression patterns and tissue-specificity in nine tissues across six mammals,

and showed that the tissue-specificity of mammalian lncRNAs is highly con-

served. This tissue-specificity of lncRNA expression patterns is informative

for identifying their tissue-specific functions.

For investigating the tissue-specificity of expression patterns of coding or

non-coding genes from microarray or RNA-seq data, several measures based

on Shannon entropy have been proposed [29, 31, 32, 33]. Those measures,

however, do not directly specify a small number of tissues with high expres-

sion levels because the Shannon entropy of each gene gives the degree of

distortion from the ubiquitous expression pattern over all tissues. ROKU

[31] is a useful tool for detecting actual tissues with high or low expression

levels as outliers, and simultaneously evaluating overall tissue-specificity by

calculating the entropy.

7



ACCEPTED MANUSCRIPT

3.2. Subcellular Localization

Subcellular localization of lncRNAs is another important factor control-

ling macromolecular interactions, such as lncRNA–RNA, lncRNA–chromatin

(DNA) and lncRNA–protein interactions, in a cell. As resources for inves-

tigations of the subcellular localization of human lncRNAs, the ENCODE

project has provided the RNA-seq data obtained from each of two subcel-

lular compartments (nucleus and cytosol) in 15 human cell lines [21]. In

addition, RNA-seq data obtained from three subnuclear components (nucle-

oplasm, nucleolus and chromatin) in the K562 cell line were also provided.

Their analysis of several human cell lines revealed that more lncRNAs are

found in the nucleus than in the cytosol. Expression Atlas has also

processed these RNA-seq data to provide the expression profiles of all hu-

man genes, including lncRNA genes (Table 1). In addition, these ENCODE

RNA-seq data are also available in the UCSC genome browser, which pro-

vides convenient access [34, 35]. These datasets offer basic information for

accurate predictions of macromolecular interactions involving lncRNAs.

4. Macromolecular interactions involving lncRNAs

Identification of interaction targets (RNAs or proteins) of lncRNAs is a

popular approach to determining their functions. Several high-throughput

experimental methods, such as RIA-seq [36], RAP-RNA [37], PAR-CLIP [38]

and HITS-CLIP [39], have been proposed for investigating RNA–RNA or

RNA–protein interactions. In these methods, antisense-probing or antibody-

based immunoprecipitation are the key procedures for purifying a bait RNA

or protein of interest. However, these necessary steps narrow down the scale
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of the investigation from all-to-all to one-to-all. Thus, applying these meth-

ods to each of a large number of lncRNAs for comprehensive identification

of the all-to-all interactome is labor-intensive. This limitation demands the

development of computational prediction or screening of lncRNA–RNA and

lncRNA–protein interactions.

4.1. Prediction methods for lncRNA–RNA interactions

Computational predictions of RNA–RNA interactions are based on the in-

teraction energy that is estimated from the inter-molecular and intra-molecular

base-pairing interactions of two RNA molecules. IntaRNA [40] is a tool

for predicting RNA–RNA interactions using only the primary sequences of

two RNAs. For each input pair of RNAs, IntaRNA provides an interaction

energy estimated by subtracting unfolding energies (based on intra-molecular

base-pairs within each of the two RNAs) from a hybridization energy (based

on inter-molecular base-pairs between the two RNAs). An improvement of

predictions of RNA–RNA interactions over those of IntaRNA was achieved

by CopraRNA [41], which incorporates a comparative genomics approach

using at least three genomic sequences of distinct species. However, these

methods have not been applied to the prediction of lncRNA–RNA interac-

tions, because these methods focus on the prediction of bacterial small RNA

(sRNA)–mRNA interactions.

Recently, the authors developed a computational pipeline including var-

ious computational sequence analysis tools (Raccess [42], TanTan [43],

LAST [2, 44], IntaRNA [40], and RactIP [45]) for predicting human

lncRNA–RNA interactions [46], and implemented this pipeline on the K com-

puter, which is one of the fastest super-computers in the world. The database
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of all the predicted human lncRNA–RNA interactions contains the lncRNA–

mRNA and lncRNA–lncRNA interactions for 23,898 lncRNAs and 20,185

mRNAs (available at http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl).

4.2. Prediction methods for lncRNA–protein interactions

Several computational methods have been developed for predicting RNA–

protein interactions [47, 48, 49, 50, 51]. In these methods, machine learning

approaches, such as Fisher’s linear discriminant analysis (LDA), support vec-

tor machine (SVM), and random forest (RF), were used to discriminate the

interacting RNA–protein pairs from non-interacting pairs. In terms of input

data, these methods are categorized into three groups: sequence-based meth-

ods, sequence and structure-based methods, and experimental-data-based

methods.

RPI-seq [47], catRAPID [48], and lncPRO [49] are sequence-based

methods that require only the primary sequences of the RNA and the protein

for the input data. Among these three methods, catRAPID and lncPRO

use physicochemical properties of amino acids and nucleotides, and predict

the secondary structures of proteins and RNAs as the features of interacting

or non-interacting RNA–protein pairs. These two methods focus on the

prediction of lncRNA–protein interactions, and were benchmarked by using

a few experimentally validated lncRNA–protein interactions, including HO-

TAIR and XIST lncRNA. The third method, RPI-Pred [50], is a tool for

predicting RNA–protein interactions using not only primary sequences but

also the three dimensional structures of an RNA and a protein for the input

data. In this method, structural motifs of proteins (called Protein Blocks)

and RNA secondary structures were extracted from their three dimensional
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structures, and were used as the features for discriminating interacting RNA–

protein pairs from non-interacting pairs. However, using this method for

predicting lncRNA–protein interactions would be difficult because the struc-

tural information is currently available for only a few lncRNAs.

Pancaldi and Bahler developed a prediction method that uses various

experimental data, such as protein localization, RNA half-life, ribosome-

profiling, and PARS analysis, for predicting mRNA–protein interactions in

yeast [51]. However, applying this method to the prediction of lncRNA–

protein interactions is not easy because experimental data is available for

only a few lncRNAs.

In all of these prediction methods, pair-input data comprising several

features of the RNA and the protein are required for the machine learn-

ing algorithms. To evaluate their prediction performances by using cross-

validation methods, the contents of entire datasets were randomly divided

into training sets and test sets for benchmarking. However, Park and Mar-

cotte indicated that the reported prediction performances are significantly

dependent on inappropriate cross-validations [52]; better prediction perfor-

mances were achieved only when the test set shared the same components

(RNAs or proteins) as the training set. In conclusion, predicting lncRNA–

protein interactions by using bioinformatics tools is still a challenge.

5. Tools for analyzing structures of lncRNAs

It is known that not only the primary sequences of functional non-coding

RNAs but also their structures are closely related to their functions. While

the relations between structure and function have been well-studied for short
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non-coding RNAs (e.g., [53]), a few studies have suggested that secondary

structures are also important for the functions of lncRNAs [54, 55, 56]. In

this section, tools for the prediction of lncRNA structures (cf. Figure 1)

are reviewed. Secondary structures, consensus secondary structures, tertiary

structures and joint secondary structures are mainly considered.

5.1. RNA secondary structure of single RNA sequence

RNA secondary structures are an abstract form of RNA structure; they

are represented by sets of interacting base pairs. In this subsection, we

review the tools for RNA secondary structure predictions that are applicable

to lncRNAs.

5.1.1. In-silico RNA structure predictions

In-silicoRNA secondary structure predictions are based on the free energy

of the structures, which are computed by using experimentally determined

energy parameters. There are too many tools for predicting RNA sec-

ondary structures from a single RNA sequence to list here, but they include

CentroidFold [57, 58], Mfold [59], RNAfold [60], and RNAstruc-

ture [61, 62]. The time complexities of the methods used by those tools

are equal to O(L3), where L is the length of RNA sequence. Therefore, it

might be difficult to apply them to lncRNAs longer than several thousands

of bases. Rfold [63] reduces this difficulty by limiting the maximal span

of base pairs to w, which leads to an O(w2L) computational time. Because

O(w2L) is linear with respect to the sequence length L, Rfold is applicable

to lncRNAs, such as Xist and NEAT1. Secondary structure predictions of

lncRNAs, however, may also lack accuracy. RNA secondary structure predic-
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tions achieve reliable accuracy for RNAs with lengths less than 1000, but the

accuracy is often unsatisfactory for longer RNAs. Accuracy is improved with

the aid of the homologous sequences of the subject lncRNAs because the lo-

cal secondary structures are often evolutionarily conserved [30]. Centroid-

Homfold [64, 65] utilizes homologous sequences of the subject (lnc)RNA

and shows improved accuracy.

The above tools predict RNA secondary structures without pseudoknots.

Predictions of RNA secondary structures with pseudoknots using the exact

algorithms entail large computational costs; but faster approximate tools,

such as IPKnot [66], are practically applicable to lncRNAs.

5.1.2. Probing-directed RNA structure predictions

Recently, several experimental methods for high-throughput RNA struc-

ture determination techniques have been proposed (Table 2). These tech-

niques, which rely on probing technology, measuring the strand flexibility of

an RNA sequence, include FragSeq [67], SHAPE-seq [68], DMS-seq [69, 70],

Mod-seq [71], MAP-seq [72], and PARS [73]. (See also [74] for an extensive

review for those methods.) Unfortunately, these experimental techniques

provide only partial information about the secondary structures. Specifically,

they give us only the preferences for single strandedness for each nucleotide.

The tools to construct RNA secondary structures from experimental data,

are classified as follows. (i) Sampling-based methods, such as SeqFold

[75], where RNA secondary structures are predicted from the set of subopti-

mal RNA structures given by a sampling procedure using, e.g., Sfold [76].

(ii) Energy-based approaches, where energy calculations are modified using

pseudo-energy [77, 78] or energy parameters are re-estimated [79] using the

13



ACCEPTED MANUSCRIPT

information from experimental data. (iii) An approach for modifying a base-

pairing probability matrix (BPPM) 1 under the constraints of experimental

probing data [80].

5.2. Consensus secondary structures of RNA sequences

Because RNA secondary structures related to a specific function are evolu-

tionarily conserved, detecting those conserved secondary structures is useful

step toward the functional analysis of lncRNAs. In predictions of conserved

secondary structures, co-variation of bases to maintain a base-pair (e.g., G-C

to A-U) is utilized. As shown in a study of the evolutionary dynamics of lncR-

NAs in six mammals [30], evolutionary information about lncRNAs is useful

for predicting structures of lncRNAs. Tools such as CentroidAlifold

[81] and RNAalifold [82] predict the evolutionarily conserved consensus

secondary structures from multiple alignments of RNA sequences [83]. Addi-

tionally, methods for probing-directed RNA secondary structure prediction

(Section 5.1.2) are also applicable to consensus secondary structure predic-

tions: PPfold 3.0 [84] incorporates SHAPE data in predicting common

secondary structures.

The input for these tools for consensus secondary structure prediction

are multiple alignments of RNA sequences, which can be provided by using

conventional alignment tools, such as ProbCons [85], or state-of-the-art

fast tools that consider secondary structures during the alignment process,

such asMAFFT [86], LocARNA [87], LARA [88], MXSCARNA [89] and

CentroidAlign [90]. O(L3) computations are still required for these tools,

1The BPPM provides probabilities for forming each base-pairs in a given RNA sequence.
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which might be too expensive for lncRNAs; however, a recent update of Cen-

troidAlign, which internally utilizes Rfold described in Section 5.1.1, has

enabled us to apply CentroidAlign to longer RNA sequences, including

lncRNAs [91].

Note that multiple alignment is also important in lncRNA gene discovery,

as described in Section 2.

5.3. Joint secondary structures between two RNA sequences

As described in Section 4, many lncRNAs interact with the other molecules

(DNA/chromatin, RNA and protein) in the cells, and predictions of com-

plexes involving lncRNAs are useful for functional analyses of the lncRNAs.

Predictions of joint secondary structures of two RNA sequences consist of

predictions of inter- and intra-molecular base-pairs. However, simultaneous

prediction of both inter- and intra-molecular base-pairs generally entails huge

computational costs. Nevertheless, several useful tools exist. RactIP [45]

rapidly predicts joint secondary structures (i.e., interactions between two

RNA sequences) including both inter- and intra-molecular base-pairs, while

IntaRNA [40] discards intra-molecular base-pairs in its prediction. Addi-

tionally, PETcofold [92] predicts the conserved joint secondary structures

of pairs of multiple alignments of RNA sequences.

5.4. Tertiary structure predictions

Tertiary structure predictions of RNA sequences require much larger com-

putational resources than RNA secondary structure predictions. See e.g. [93]

for a review of tools for tertiary structure predictions. Unfortunately, it is

computationally infeasible to predict tertiary structures for entire lncRNA
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sequences, and more efficient tools are necessary for applications involving

lncRNAs.

5.5. Other tools or methods related to RNA secondary structures

5.5.1. Mutation analyses of RNA secondary structures for lncRNAs

Recent studies have suggested the importance of single nucleotide poly-

morphisms (SNPs) that alter RNA secondary structures, called “RiboSNitches”

[94], which might be the causes of diseases. Rchange [95] and other tools

[96] are promising in-silico tools for mutational analyses of lncRNAs. In

particular, Rchange simultaneously analyzes the mutational effect of SNPs

at every position in a lncRNA, which is difficult to do using experimental

methods.

5.5.2. Analysis of RNA structural motifs

In order to clarify the functions of lncRNAs with respect to secondary

structures, the discovery of secondary structural motifs that correlate with

functions is important. CapR [97] computes detailed structural profiles,

including not only the base-pairs but also loops, bulges, multi-loops and

external loops. CapR revealed that the binding site in ncRNAs, with which

RNA-binding proteins interact, have specific patterns of structural profile

depending on the binding protein. RNAcontext [98] and MEMERIS [99]

(an extension ofMEME that is used for the discovery of sequence motifs) find

short secondary structural motifs among several RNA sequences expected to

have similar functions.

Additionally, the local accessibility of lncRNA sequences, which can be

computed by Raccess [42], might be useful in predictions of targets of miR-
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NAs and molecules interacting with lncRNAs (cf. [100]).

5.6. Summary of this section

In this section, we briefly reviewed tools that will be useful for prediction

of the structure of lncRNAs. Due to space limitations, we did not give

detailed methods for each tool. A recent review by Eddy [101] is a good

source for probing directed RNA secondary structure predictions. Moreover,

two recently-published books on Methods in Molecular Biology [102, 103]

will be useful for further study of structures of lncRNAs.

6. LncRNA Databases

Emerging evidence of experimentally identified lncRNAs and their biolog-

ical properties, including genomic features, expression profiles, sequence con-

servation, macromolecular interactions, epigenomic modifications, and func-

tional annotations, needs to be organized into public databases as a resource

for lncRNA research. Currently, several databases specializing in lncRNAs

have been developed, and provide a variety of information, as described in

Table 3.

LNCipedia [104] and lncRNome [105] provide a large number (≥ 100, 000)

of human lncRNA entries including primary sequences and predicted sec-

ondary structures. In LNCipedia the protein-coding potentials of lncRNAs

are assessed using bioinformatic tools [9, 106, 10] and ribosome-profiling data

[107]. In addition, LNCipedia provides predicted lncRNA–miRNA interac-

tions [108], which are useful for finding competing endogenous RNAs (ceR-

NAs) [109]. The single nucleotide polymorphisms (SNPs) and the epigenomic

modifications of lncRNA genes are uniquely included in lncRNome.
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Expression profiles of lncRNAs derived from human tissues and cell lines

are included in lncRNAdb [110] and lncRNAtor [111]. lncRNAtor

provides three unique pieces of information regarding the expression data of

lncRNAs: expression levels of lncRNAs in cancer tissues derived from RNA-

seq data in The Cancer Genome Atlas (TCGA), co-expression analysis of

lncRNA and protein-coding genes, and gene ontology (GO) enrichment anal-

ysis for the co-expressed genes. lncRNAdb provides detailed descriptions of

the functions of 287 lncRNAs that were manually curated from recent liter-

ature and also provides a list of orthologous lncRNAs across several species

with links to the UCSC genome browser. For instance, NEAT1 lncRNA

orthologues are observed in five mammal (human, rat, dog, mouse, and cat-

tle) genomes. lncRNA–protein interactions obtained from various CLIP-seq

studies are provided by lncRNome and lncRNAtor.
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Highlights 

 

We review bioinformatics tools and databases that are useful for lncRNA research. 

We show purely computational tools as well as those utilizing experimental data.  

We review tools for analyzing 2D and 3D structures and the interactions. 

We review tools and databases of expression profiles for analyzing localization. 




