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Abstract
MicroRNAs (miRNAs) are pervasively expressed and 

regulate most biological functions. They function by 
modulating transcriptional and translational programs 
and therefore they orchestrate both physiological and 
pathological processes, such as development, cell 
differentiation, proliferation, apoptosis and tumor growth. 
miRNAs work as small guide molecules in RNA silencing, 
by negatively regulating the expression of several genes 
both at mRNA and protein level, by degrading their mRNA 
target and/or by silencing translation. One of the most 
recent advances in the field is the comprehension of 
their role in oncogenesis. The number of miRNA genes 
is increasing and an alteration in the level of miRNAs is 
involved in the initiation, progression and metastases 
formation of several tumors. Some tumor types show a 
distinct miRNA signature that distinguishes them from 
normal tissues and from other cancer types. Genetic 
and biochemical evidence supports the essential role of 
miRNAs in tumor development. Although the abnormal 
expression of miRNAs in cancer cells is a widely accepted 
phenomenon, the cause of this dysregulation is still 
unknown. Here, we discuss the biogenesis of miRNAs, 
focusing on the mechanisms by which they regulate 
protein synthesis. In addition we debate on their role in 
cancer, highlighting their potential to become therapeutic 
targets.
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Core tip: MicroRNAs (miRNAs) are short non-coding 
RNAs (19-25 bp in length) which negatively regulate gene 
expression at the mRNA and protein level. By binding 
coding transcripts, miRNAs cause degradation or trans-
lation inhibition of their target genes and affect a multi-
tude of biological processes, such as proliferation and 
tumor growth. In this review we critically analyze the 
mechanism of action of miRNAs and their potential role 
in cancer, opening a window on future perspectives for 
their use as novel therapeutic targets.
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INTRODUCTION
Recent advances in transcriptome analysis and high-
throughput technologies highlighted an impressive com-
plexity in the RNA world. The most studied RNA regions 
are protein-coding genes, mRNAs, accounting for around 
1.5% of the human genome[1]. The importance of coding 
mRNAs is undisputable as they have been for years the 
building brick of experimental biology, culminating in the 
systematic deletion of coding genes in several species. 
Not less important are retrotransposons, specific genetic 
elements which are known to regulate gene expression[2,3]. 
Since RNA was identified as the crux of genetic regulation, 
the idea that it carries fundamental information has been 
extended to novel classes of RNA. More recently, the non-
protein coding portion of the genome gained attention 
due to its unexpected role in regulating development and 
disease[4]. Nowadays, most scientists agree in stating 
that transcription of the human genome is pervasive, 
therefore raising questions on the function of many un-
characterized RNAs. 

The discovery of non-coding RNAs (ncRNAs) has 
changed the way we look at the human genome and 
led the scientific world to characterize the different 
types of ncRNAs transcribed in human cells. Although 
there is not a clear delineation of ncRNA classes, they 
are usually classified, according to their nucleotides 
length, in three main groups: Short ncRNAs, mid-size 
ncRNAs and long ncRNAs[5]. Among short ncRNAs we 
can distinguish between microRNAs (miRNA) and piwi-
interacting RNAs (piRNAs), respectively 19-25 base 
pairs (bp) and 26-31 bp long. miRNAs are involved in 
the regulation of gene expression at the translational 
and stability level[6-8], while piRNAs are involved in DNA 
methylation and transposon repression[9-11]. Small 
nucleolar RNAs (60-300 bp) are part of mid-size RNAs 
and act as guides for rRNA modifications[12], Promoter 
Associated RNAs (22-200 bp) belong to the same group 
but their function is obscure[13]. Last but not least, long 
non-coding RNAs (lncRNAs) comprise all ncRNAs longer 
than 200 nucleotides and include the largest portion of 
the non-coding transcriptome[4]. lncRNAs are involved 
in several biological and pathological processes, such as 
genomic imprinting, telomere regulation, X-chromosome 
inactivation, development, stem cell pluripotency, 
immune regulation, cancer progression and in metastatic 
potential[14,15]. In particular, a subset of lncRNAs, the 
T-UCR, themselves target specific miRNAs. The binding 
between these lncRNAs and miRNAs prevents target 
transcription degradation determining an intricate co-
regulation between lncRNAs and miRNAs[16-18] and strictly 
linking these two different types of ncRNAs. It should 

be however stressed out that the definition of ncRNA 
relies mainly on bioinformatic tools that are likely to be 
challenged in the next future. In particular, open reading 
frames (ORF) shorter than 100 nucleotides and/or lacking 
a strong ATG consensus sequence for translational start 
are considered noncoding. In view of the emergence of 
alternative translational start sites[19], we may discover 
that at least some ncRNAs are indeed “coding” for small 
peptides.

The relevance of the non-coding transcriptome in 
the comprehension of human diseases is highlighted by 
the impressive number of ncRNAs that are abnormally 
expressed in cancer, in neurological and heart diseases 
or in immune disorders. In this context, short RNAs 
have attracted the attention of most researchers. Here, 
we focus on miRNA and on their role in translation 
regulation and cancer. In particular we zoom in the known 
mechanisms of miRNA-regulated translation, after a brief 
elucidation of their discovery and biogenesis. Finally, we 
account for the aberrant expression of miRNAs in cancer 
and for their therapeutical potential as new drugs.

miRNA: DISCOVERY AND BIOGENESIS 
A brief history
miRNAs are endogenous, non-coding single stranded 
RNAs of approximately 19-25 nucleotides in length, 
found both in animals and plants and involved in post 
transcriptional regulation[7,20]. Two decades ago the 
existence of miRNAs was obscure and the scientific 
community was focused largely on protein-coding genes. 

However in 1993 the discovery of the first small 
ncRNA lin-4, in C. elegans, has totally changed the 
scientists’ point of view[21]. At the time of the first dis-
coveries, two main questions were raised: (1) what 
is the role of lin-4; and (2) what is its mechanism of 
action? Genetic studies showed that lin-4 is one of the 
most relevant genes involved in the control of temporal 
development of larval stages[22,23]. Almost simultaneously, 
Lee and collaborators discovered that null mutations of 
the lin-14 gene were able to cause an opposite phenotype 
to null lin-4 mutations, suggesting that lin-4 could regulate 
lin-14[23,24]. How was this regulation taking place? Several 
groups unequivocally demonstrated that the introduction 
of mutations in the putative ORF of the lin-4 gene, did not 
affect its function, concluding that lin-4 did not encode for a 
protein. Mature lin-4 was found to be present in two small 
transcripts with different lengths, 22 and 61 nucleotides[24]. 
Furthermore, mutations in the 3’UTR of lin-14 mRNA 
and gene fusion experiments showed that lin-14 was 
downregulated posttranscriptionally by lin-4, delineating 
the 3’UTR of lin-14 as necessary for the regulation of LIN-4 
protein levels[25,26]. These data led to a unified conclusion: 
lin-4 transcripts were complementary to the 3’UTR of the 
lin-14 gene and regulated its expression by annealing to its 
3’UTR. With a similar approach, seven years later another 
miRNA was discovered, let-7, which was able to regulate 
lin-41 expression by binding to its 3’UTR[27,28]. Further, the 
sequence of let-7 was found conserved among species, 
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from flies to humans. A new era in transcriptomics was 
now open for study by the entire scientific world!

miRNA biogenesis and function
miRNA biogenesis occurs in two main steps that take 
place in the nucleus and in the cytoplasm. miRNA genes 
are transcribed by RNA polymerase Ⅱ and processed 
through both a canonical and a non-canonical biogenesis 
pathway. During canonical biogenesis primary miRNAs 
(pri-miRNAs) are processed into the nucleus by the RNase 
Ⅲ Drosha generating an approximately 70 nucleotide-
long precursor miRNA (pre-miRNA) product. In the non-
canonical pathway pre-miRNAs are instead generated 
by the mRNA splicing machinery, avoiding Drosha dig-
estion[29]. The subsequent steps are identical in both 
the canonical and non-canonical pathways. Pre-miRNAs 
are recognized by the Ran-GTP dependent transporter 
Exportin 5, which mediates their translocation to the 
cytoplasm. Here, Dicer, an other RNase type Ⅲ enzyme, 
cleaves the pre-miRNA hairpins and the mature miRNAs 
generated by this mechanism are loaded into miRISC 
(miRNA associated RNA induced silencing complex), where, 
with the help of Argonaute proteins, they act as post-
transcriptional regulators[30]. It is clear that, due to its 
complexity, the system of miRNA biogenesis requires 
a tight control. Transcriptional regulation remains the 
preferential process of miRNA expression control[31]. 
Knockout of Drosha causes the entire ablation of canonical 
miRNA production, suggesting its essential role in miRNA 
biogenesis[32]. DGCR8 is able to stabilize the Drosha 
complex by binding to Drosha itself. Drosha reduces 
DGCR8 expression[33,34]. It has also been shown that 
high levels of DGCR8 compromise Drosha activity[35]. 
Thus, complex networks may regulate Drosha complex 
activity. Dicer-deleted cells, instead, show some detectable 
canonical miRNAs, even if at reduced levels. What is more, 
Dicer is destabilized by low expression of TRBP. These 
data reveal the important, but not essential contribution of 
Dicer in the miRNA biogenesis pathway[32,36,37]. 

miRNA biogenesis is characterized by a physical 
separation between Drosha (nucleus) and Dicer (cyto-
plasm). Nervertheless, several mature miRNAs are 
located in the nucleus, like miR-29[38,39], or in the mitho-
condria, such as miR-1 and miR-181[40-42], or in small 
vesicles, suggesting non-canonical roles for miRNAs. 
Particularly, several studies reveal that miRNAs are 
transported into the nucleus, where they regulate the 
maturation of other miRNAs, by targeting their primary 
transcript, or control their own expression. Here, they can 
also bind long ncRNAs and thus regulate their expression 
and maturation[43]. In conclusion, it would be important 
for miRNA characterization to explore potential roles in 
non-canonical functions.

The function of miRNAs was first defined 20 years 
ago. A mature miRNA loaded into the RISC, is capable 
to bind and regulate the expression of target mRNA via 
base-pairing. In particular, miRNAs bind the 3’UTR of 
target mRNAs through a sequence of 2-8 nucleotides 

in their 5’end, termed seed region (Figure 1A). The 
partial or perfect complementarity between miRNAs and 
target mRNAs causes repression of translation or mRNA 
degradation, respectively[44] (Figure 1B). Owing to the 
short base pairing between a miRNA and the 3’UTR of 
its target mRNA, the interaction is dynamic: One miRNA 
can bind sequentially to hundreds of target mRNAs and 
a single mRNA can be targeted by several miRNAs[20]. 
miRNAs are able to select and interact with their targets 
based on Ⅰ) their expression levels or Ⅱ) expression 
levels of their mRNA targets. Since the expression and 
function of some miRNAs are species- and/or tissue-
specific, the co-localization of a miRNA with its mRNA 
target is clearly necessary for its functionality[45]. Moreover, 
tissue-specific miRNAs can localize both in intragenic and 
intergenic regions, and consequently they could be under 
the control of host gene promoters or, alternatively, they 
could hold their own promoter. Hence, for the intragenic 
miRNAs, expression could also be dependent on the 
transcription of host genes[46], suggesting the latter to be 
able to influence miRNA function. 

Summarizing, by selecting their targets in a dose-
dependent manner, miRNAs could control the balance of 
specific cellular processes.

Recent reports have suggested that in addition to the 
classical binding of miRNAs to the 3’UTR of mRNAs, they 
are able to bind also the 5’UTR region and ORF[47,48]. Sites 
located in coding regions and in 5’UTRs appear to be less 
robust than those in 3’UTR and, surprisingly, determine 
translational activation, and not repression, of miRNA-
targeted mRNAs. This situation has been described upon 
growth arrest conditions[49,50] (Figure 1C). However, these 
models are not universally accepted because ribosomes 
that scan the 5’UTR and the ORF are expected to remove 
annealed miRNAs.

Nowadays, the miRNA landscape is very tangled as 
the number of miRNA genes is exponentially growing[51], 
rendering it much more difficult to clearly define their 
function. miRNA genes have been clustered into diffe-
rent groups, known as miRNA families, based on the 
sequence of mature miRNAs or on the structure of pre-
miRNAs. This clusterization is really relevant for studying 
miRNA functions, since miRNA genes belonging to the 
same family co-localize and take place in the same 
specific mechanism, e.g., immune system regulation, 
development or cancer[52]. Moreover, the increasing 
number of novel miRNAs reveals that some of them are 
evolutionarily conserved whilst others are species- and/or 
tissues-specific. The expression levels of both the newly 
discovered and the long-known miRNAs are different 
from tissue to tissue, unraveling a differential tissue- and 
cell specific-functional impact of miRNAs[53]. 

miRNAs AND TRANSLATION 
REGULATION
mRNA translation is a cellular process finely regulated 
during growth and development, and its control is 
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essential to maintain physiological processes in the cell. 
Translational control plays the major role in regulation 
of gene expression[54] and miRNAs take part in the 
regulation of mRNA translation.

Since a miRNA binds the 3’UTR of a target mRNA, 
how can it inhibit its translation? To date it is very clear that 
miRNAs contribute to the regulation of protein synthesis 
in two ways, mRNA destabilization or translational 
repression. Unfortunately, to date, a general mechanism 
for the translational inhibition by miRNAs has not been 
widely accepted; we rely on several different models that 
will be critically presented[55]. mRNA translation is divided 
in four phases: Initiation, elongation, termination and 
recycling. Here we will review in detail how miRNAs can 
repress translation at the initiation, post-initiation and 
elongation steps (Figure 2).

Initiation of translation
Initiation is the rate-limiting step in translation of a given 
mRNA and leads to the formation of the ribosome-tRNA-
mRNA complex. The golden method to analyze the step 
at which the translation of a specific mRNA is blocked is 
measuring the localization of the same mRNA in a sucrose 
polysome gradient. The general assumption is that a 
translated mRNA associates with multiple ribosomes 
(polysomes) and co-sediments to the heavy part of the 
gradient. Several in vitro studies reveal that repressed 

mRNAs shift to the lighter region of the sedimentation 
gradient, indicating reduced ribosome loading of the 
repressed mRNAs[56]. The mechanistic effect of miRNAs at 
initiation is confirmed by studies in which Ago was found 
bound to the translational machinery. Briefly, mammalian 
Ago2 is able to bind the m7G-cap of mRNA directly, 
suggesting that Ago2 and the cap binding protein eIF4E 
compete for association with the cap structure[57]. In this 
model miRNAs prevent translation of capped but not 
Internal Ribosome Entry Site (IRES) containing mRNAs. 
The discovery of a specific Ago2 domain responsible 
for the interaction with the cap structure supports the 
above hypothesis. Mutation of two key amino acids in 
Ago2 disrupts cap-Ago2 binding, and abolishes also the 
association between Ago2 and GW182, the latter being 
an important factor in miRNA mediated repression[58,59]. 

In vitro studies suggest other mechanisms of miRNA 
repression at the initiation step. For some studies, the 
presence of the m7G-cap is necessary for translational 
inhibition. Other studies demonstrated that miRNA-me-
diated repression impairs also cap-independent, IRES-
initiated translation, and exclude eIF4E-cap recognition 
as a target for miRNA function[60,61]. This consideration is 
complicated by kinetic issues, as IRES-containing mRNAs 
are in general less efficiently translated, but also by the 
fact that some mRNAs have both a m7G-cap and an 
IRES. 

5′UTR miRISC
ORF60S

40SeIF4E

5′CAP

AAAAA 
3’UTR

Translation inhibition mRNA degradation

5′UTR
60S
40S

ORF

miRISC
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AAAAA 3'UTR

Translation activation
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Figure 1  Mechanisms of action of microRNAs. A: miRNAs bind the 3’UTR of a target gene by base pairing. The binding between the miRNA seed sequence 
(nucleotides 2-8 at the 5’end of the miRNA sequence) and the miRNA regulatory element (MRE) at the 3’UTR of a target gene determines the specific type of 
regulation; B: miRNAs act as inhibitors of translation when the binding at the 3’UTR of target genes is only partially complementary. Instead, when the binding 
complementarity is perfect, miRNAs induce mRNA degradation; C: miRNAs can also function in an unconventional manner: Under specific conditions, particularly 
during quiescence, they can activate translation by binding non canonical sites in the 5’UTR of target genes. ORF: Open reading frames.
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Studies performed on D. Melanogaster and mouse 
cells indicate that miRNAs impair the association of 
mRNAs to 40S or 80S ribosomes, probably disrupting the 
mRNA-40S complex[62]. In this study an excess of eIF4F 
ameliorates the miRNA mediated inhibition of a specific 
mRNA. Other in vitro studies confirmed that translational 
repression exists only in the presence of both the m7G 
cap and poly-A tail, indicating that polyadenylation itself 
may have a role in miRNA mediated repression[63-66]. 
Several hypotheses were proposed: (1) the CCR4-NOT 
deadenylation complex is sufficient to mediate silencing 
and could inhibit mRNA translation independently of 
its deadenylation activity[67,68]; (2) miRISC is able to 
inhibit 43S scanning by impairing eIF4F function[69,70], 
in particular NOT1 interaction with eIF4A2 could block 
eIF4A2 function and consequently 43S scanning; and 
(3) in contrast to hypothesis 2, a very recent study 
suggests that eIF4A activity and 43S ribosomal scanning 
are not required for miRNA silencing. In this context 
AGOs, GW182, CCR4-NOT and DDX6 complexes are 
able to repress and degrade mRNAs in a 43S scanning-
independent manner[65]. It is evident that conflicting 
reports may be due to difficulties in the analysis of the fast 
translation inhibition driven by miRNAs.

In addition, in the intertwined scenario of mRNA 
translational inhibition and mRNA degradation driven by 
miRNAs, the recurrent question is which step precedes 
the other. Recent studies performed in human cells, 
zebrafish, and D. Melanogaster, show that miRNAs reduce 
translation just before mRNA deadenylation and decay. 
Kinetic analysis monitoring in parallel the level of mRNAs, 
proteins and poly-A tail lengths coupled with ribosome 
profiling data, revealed that protein levels are affected 
prior to mRNA stability and poly-A tail lenght[63,64,71]. A 
recent work presents another interesting hypothesis: 
miRNAs destabilize mRNAs when they are in a ribosome 
free state, but at the same time mRNAs targeted by 
miRNAs are fully polysome associated. The authors 
demonstrate that while mRNAs are associated with 

polysomes, the decapping mechanism occurs proceeding 
in a 5’ to 3’ direction following the last translating ribo-
some[66]. According to this model miRNA mediated mRNA 
decay occurs cotranslationally, providing a solution to this 
complex mistery. 

Finally, it has been also suggested that miRNAs 
act at the level of active 80S complex formation, by 
affecting 60S joining. Eukaryotic Initiation Factor 6 
(eIF6) associates with the 60S ribosomal subunit and is 
able to coimmunoprecipitate with the Ago2-Dicer-TRBP 
complex. Studies in human cells and C. Elegans led to 
the conclusion that miRISC, when associated with eIF6, 
abolishes polysome formation, disrupting 80S ribosomes 
assembly[72]. However, these results were not confirmed 
in D. Melanogaster cells, where depletion of eIF6 had no 
effect in miRNA-mediated inhibition[73]. Furthermore all 
published data converge on the idea that eIF6 acts as an 
anti-association factor that, by binding the 60S ribosomal 
subunit, prevents the formation of active 80S[74,75]. 
This mechanism is regulated by post-translational mod-
ifications. Indeed eIF6 is activated downstream of the 
RACK1-PKCβⅡaxis[76,77] through phosphorylation on residue 
Ser235, an event which is found deregulated in several 
types of cancer[78-80].

Post-initiation and elongation of translation
At the end of the initiation step, the mRNA is positioned 
on the ribosome and amino acids are bound together 
to form a polypeptide chain, thus determining the inter-
mediate step of translation. Since 1999, by sedimen-
tation velocity ultracentrifugation in a sucrose gradient, 
it has been reported that some miRNAs fully associate 
with polysomes[81,82]. The copurification of miRNAs 
with polysomes, confirmed by many studies in the 
last years, not only proves that miRNAs are involved 
in translational repression, but suggests that miRNA 
targets are actively translated. Taken together, these data 
suggest that mRNAs could be silenced by miRNAs at 
the post initiation step. Some examples will clarify the 
situation. Most miRNAs are shown to be associated with 
polysomes and in particular let-7 is capable to cosediment 
with polyribosomes[82,83]. When translation is blocked, 
by either hypertonic stress or puromycin treatment, 
miRNAs are no longer associated with polysomes, 
differently from their mRNA targets. The latter in fact 
dissociate from polyribosomes only partially, suggesting 
a reduction of translational elongation or impairment 
of the post initiation step. The capability of miRNAs to 
repress translation could also depend on their strength 
in associating with polyribosomes, i.e., the amount of a 
specific miRNA in polysomes relative to its total quantity. 
Molotski and coworkers quantified the association of 
miRNAs with polysomes[83], and, in line with this study, we 
discovered that in a Mesothelioma cellular model, only 8% 
of the miRNAs analyzed is stable and enriched on polysomes 
(data not published), suggesting that the preference for a 
microRNA to bind polyribosomes might depend on: (1) the 
specific seed sequence of the microRNA; (2) the level of 

miRISC3’ 5’
miRNA

Repression of 
translation

Initiation Post-initiation Elongation 

Figure 2  Schematic representation of microRNAs role in translation. miRNAs 
can inhibit protein synthesis at three different stages of translation: Initiation, the 
rate limiting step, post initiation and elongation. For details refer to text.
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pairing energy between the miRNA and its target mRNA; 
and (3) the fact that target mRNAs are being translated 
or not. Overall what these data suggest is that the miRNA 
ability to repress translation could also depend on the 
rate of association with polysomes. However, how these 
small non-coding RNAs are capable to impair elongation 
or termination of translation is unclear. It has been also 
proposed that proteins synthesized from miRNA-targeted 
mRNAs are not able to accumulate because they are 
degraded by certain proteases employed by microRNA 
ribonucleoprotein complexes (miRNPs)[81], thus proposing 
another mechanism on how miRNAs might function.

miRNA “surprise” role: miRNA-dependent activation of 
translation
The dynamic interactions between miRNAs and mRNAs 
open new frontiers in the field of miRNome studies. 
Most miRNAs negatively regulate gene expression 
and led scientists to deeply characterize the binding 
mechanism of miRNAs seed sequence to mRNAs. It is 
clear that miRNAs bind 3’UTRs and repress translation 
of target mRNAs. The demonstration that miR-369 has 
the capacity to either activate or repress protein trans-
lation[84] raised the question on why and how miRNAs 
activate translation of their target mRNAs. When cells 
are grown in normal growth factor conditions, target 
mRNAs are translationally inhibited or decayed. Instead, 
in the absence of growth factors, i.e., in serum starved 
conditions, the same miRNAs are able to activate trans-
lation and increase the protein levels of their target 
mRNAs, as it happens with miR-369 and its target TNF 

alfa[84-86]. Nevertheless this is not true for all miRNAs. For 
example, when miR-16 targets TNF alfa in a different 3’
UTR region from that targeted by miR-369, it inhibits 
translation also in quiescent conditions[86,87]. This suggests 
that, when a cell exits the cell cycle, activation of translation 
depends on miRNAs seed sequences and on miRNA-mRNA 
base pairing. It has also been demonstrated that the 
repression or activation of translation requires the FXR1 
protein and Ago2, and that other miRNAs, among which 
let-7, respond to serum starvation upregulating trans-
lation of their target mRNAs[85,86]. 

New paradigms discovered more recently make the 
mechanism of miRNA regulation even more puzzling. 
In the recent years, non-canonical sites of binding have 
been reported. Such sites map to the 5’UTR and coding 
regions of mRNAs[88,89]. Several studies reported that 
miR-122 and miR-103a-3p have their target sites in 5’
UTR[90,91], and that some miRNAs are even able to target 
both 3’ and 5’UTRs. Moreover, under cellular stress miR-
10a activates translation by binding the 5’UTR of its 
target ribosomal protein coding mRNA[48]. All of these 
mechanisms, and probably several others yet unknown, 
render the landscape of miRNAs mode of action even 
more difficult to assess. In conclusion, it is essential to 
study the function of each miRNA singularly and in a 
specific cellular context in order to understand its precise 
function.

miRNAs AND CANCER
Cancer is a pathological condition in which gene ex-
pression is dramatically deregulated. miRNAs affect all 
steps of tumor progression including tumor growth, 
invasion, metastatic capability and angiogenesis. The 
relevance of miRNAs in cancer has been highlighted by 
alterations in their expression (Table 1) and consequently 
by the deregulation of the expression of their target 
mRNAs[92,93]. The first evidence of the involvement of 
miRNA in cancer derived from studies on chronic lym-
phocytic leukemia (CLL). Croce’s group discovered that 
two miRNAs, miR-15a and miR-16-1 derive from the same 
polycistronic RNA which is transcribed from a specific 
region of chromosome 13, frequently found deleted in 
CLL. Analyzing a set of CLL patients, they found that 
69% of them presented the deletion of miR-15-a and 
miR-16-1[44]. Moreover, they realized that a significant 
percentage of miRNA genes localizes in fragile sites and/
or in genome regions which often show chromosomal 
alterations, including amplifications or deletions. This 
last finding suggested that miRNAs are a new class of 
genes important in regulating cancer pathogenesis and 
development. These relevant and preliminary observations 
implemented the need for investigation with new advanced 
technologies. All known miRNAs are now mapped and the 
development of several new platforms is helpful to study 
the miRNome in both normal and pathological tissues and 
for the estabilishment of tumor classification, diagnosis 
and prognosis by miRNA profiling[94-96]. 

Just like classical protein-coding genes, also miRNA 

Cancer type

OncomiRs
   miR17-92[108] B-cell lymphoma, small cell lung cancer, 

colon cancer, gastric cancer
   miR-21[107] Breast, colon and lung cancer, glioblastoma
   miR-106[133] Gastric cancer, colorectal cancer
   miR-10b[113] Breast cancer
   miR-191[134,135] Human colorectal and breast cancer
Tumor suppressor miRNAs
   let-7[105,106] Lung cancer, Burkitt lymphoma
   miR-15a, miR16-1[103,104] CLL, prostate cancer, mesothelioma
   miR-29[136] Lung cancer, breast cancer
   miR-34a[116] Prostate cancer, mesothelioma, HCC
   miR-126[114] Lung and breast cancer
Both O and TS
   miR-24[137,138] Breast cancer, glioma (O) 

Laryngeal carcinoma (TS)
   miR-125[122,123] Pancreatic and prostate cancer (O) 

Melanoma, osteosarcoma, ovarian 
cancer (TS)

   miR-155[120,121] Lymphoma, breast cancer (O) 
Melanoma, ovarian and gastric cancer (TS)

   miR-221/222[139] Glioblastoma, HCC, breast cancer (O) 
Tongue squamous cell carcinoma (TS)

Table 1  List of selected tumor suppressor microRNAs and 
oncomiRs in cancer

CLL: Chronic lymphocytic leukemia; HCC: Hepatocellular carcinoma; O: 
OncomiR; TS: Tumor suppressor miRNA.
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genes can be altered by promoter methylation, chro-
mosomal amplifications, deletions and transcriptional 
activation. Genetic alterations may involve the miRNA 
machinery[97] or alter the target binding site[98], the 
processing of miRNAs and their post-transcriptional 
editing[99]. In cancer, dysregulated miRNAs can act as 
oncogenic miRNAs (oncomiRs) or tumor suppressor 
miRNAs, based on their capability to repress the ex-
pression of tumor suppressor genes or oncogenes, 
respectively (Figure 3). The inhibition or stimulation 
of oncomiRs or tumor suppressor miRNAs modulates 
cancer cell proliferation, tumor growth, metastasis 
formation and cell survival[100]. Generally, oncomiRs, which 
modulate tumor suppressor proteins, are overexpressed 
in cancer, whilst tumor suppressor miRNAs, which target 
oncoproteins, are downregulated or deleted. Tumor 
suppressors miR-15a and miR-16-1, whose target is 
Bcl-2[101,102], are downregulated in several cancers, such 
as mesothelioma[103], CLL and prostate carcinoma[104], 
tumor suppressor let-7 targets RAS and Myc[105,106], while 
oncomiR miR-21 is overexpressed in breast cancer, colon 
cancer and glioblastoma and targets PTEN in non-small 
cell lung cancer[107]. Furthermore, the most studied miRNA 
cluster, miR17-92 is able to induce lymphomagenesis in 
a B-cell specific transgenic mice[108], and miR-19, miR-
20a and miR-92, which are part of this cluster, promote 
T cell ALL development in mouse models[109]. It has been 
established that knocking down the upregulated oncomiRs 
reduces cell proliferation and tumor growth both in vitro 
and in vivo tumor systems[110-112]. In addition to classical 
tumor suppressor or oncogene functions, miRNAs are also 
involved in cell migration and metastasis formation. In 
breast cancer miR-10b modulation increases cell invasion 
and migration by targeting HOXD10 and eliciting the 
expression of the pro-metastatic gene RHOC[113]. Other 
examples are miR-335 and miR-126, which act as nega-
tive regulators of metastasis and tumor invasion in lung 

and breast cancer[114,115]. miR-34a, instead, is lost in 
several tumors and is involved in the p53 pathway[116]. 
Moreover, miR-34a is able to inhibit migration and invasion 
downregulating MET expression in HCC cells[117]. 

Several miRNAs cannot be clearly and unequivocally 
categorized as tumor suppressors or oncomiRs given that 
the data in our hands are quite intricate and conflicting 
since they could act as tumor suppressors in one scenario 
or as oncomiRs in the other (Table 1). This is not surprising 
considering that the same miRNA may regulate from ten 
to hundreds of genes involved in completely different 
cellular pathways. If we consider miR-155, it works as 
an oncomiR in solid and hematological malignancies, 
such as lymphoma and breast cancer[118,119], but in 
melanoma, as well as in ovarian and gastric cancer, it 
shows a tumor suppressor role[120,121]. Another relevant 
example is represented by miR-125, which shows tumor 
suppressor properties in several cancers, like mela-
noma, osteosarcoma, ovarian and breast cancer, and 
tumor promoting functions in pancreatic and prostate 
cancers[122,123]. It is clear that the dual role of miRNAs 
could be due to the heterogeneity and variability of cancer, 
causing the same miRNA to carry out different effects in 
different tumors. 

miRNAs have also an important role in the clinic 
where they are useful in terms of diagnosis, prognosis 
and prediction of therapy response. In this context 
miRNAs expression can be used as a tool to predict 
tumorigenesis and overall survival, but also to classify 
malignant and non-malignant tissues. To date, the clinical 
importance of miRNAs has been demonstrated for several 
types of cancers and by using also biopsies or surgery 
specimens[124]. 

To avoid the invasiveness of surgery techniques, se-
veral studies focused their attention on analyzing miRNA 
expression levels in human fluids, such as plasma/serum, 
saliva and urine, speculating the idea that circulating 

OncomiR
   miR-21
   miR-10b
   miR-191

miRNA

Tumor suppressor gene 

Normal cell
Tumorigenesis

Malignant tumor

miRNA

Oncogene

Tumor suppressor miRNA
   miR-15a
   miR16-1
   miR-34a

Figure 3  Roles of microRNAs in cancer. miRNAs suppress the expression of their target genes. An oncogenic miRNA, termed oncomiR, can repress the translation 
of a tumor suppressor gene, stimulating tumorigenesis and leading to tumor formation. Conversely, a tumor suppressor miRNA is able to inhibit the expression of 
oncogenes, blocking the tumorigenesis process and consequently the development of cancer.
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miRNAs could be stable and therefore useful clinical 
biomarkers. To support this idea, to date, miRNA deregu-
lation in serum of cancer patients has been described for 
several types of tumors such as leukemia, lymphoma, 
gastric, lung, ovarian, prostate, pancreatic and breast 
cancer[125]. Most miRNAs found outside of cells, particularly 
in body fluids, are stable, and this is quite surprising since 
most RNA molecules in the extracellular environment are 
subjected to ribonucleases. These observations suggest 
that secreted miRNAs could be protected by degrada-
tion possibly by being packed in particular extracellular 
vesicles[126]. 

Among extracellular vesicles, exosomes turn out to 
be the most studied membrane bound vesicles released 
from cells into the extracellular space[127]. Exosomes play 
an important role in exchanging information between 
cancer cells, and such cell-to-cell communication is essential 
for tumor survival and progression and for metastases 
formation. Several studies identified exosomes as the 
key components of this process, and the idea that ex-
tracellular miRNA are among the mediators used by 
exosomes for this inter-cell communication makes this 
model even more attractive. In line with these data, 
several studies showed that exosomal miRNA expression 
is altered in cancer[128,129]. The function of exosomal 
miRNAs is poorly understood, but some reports showed 
that in this context they carry out their conventional role 
of negative regulators of gene expression. One example 
is miR-105 which, once released from breast cancer 
cell lines, reduces ZO-1 gene expression and promotes 
metastases formation in the lung and brain[130]. Recently, 
a novel and peculiar function of exosomal miR-21 and 
miR-29a was demonstrated: Such miRNAs are capable 
to activate immune cells, by acting as toll-like receptors 
ligands[131]. 

These observations and future progresses in the 
miRNA research field will be very helpful for the de-
velopment of new therapeutical strategies to fight 
cancer. Indeed, when a cancer is characterized by the 
overexpression of specific miRNAs, the use of anti-
miRs as drugs could help restoring the non-pathological 
condition. On the contrary, the same results could be 
obtained by the use of miRNA mimics in cancers in which 
specific miRNAs are downregulated. A similar approach 
was described by Kota et al[132]: The restoring of miR-26a 
in hepatocellular carcinoma is able to reduce cancer cell 
proliferation by triggering apoptosis. These data widely 
show that miRNAs have a precious potential to act as 
therapeutical targets.

CONCLUSION
In conclusions, the miRNA world is fascinating and 
mysterious. The number of miRNA genes that are being 
discovered is increasing and novel mechanisms of action 
might reveal possible new therapeutic strategies. The fact 
that miRNAs use non-canonical target sites to perform 
their function opens a puzzling scenario that could lead 

researchers to discover completely new miRNA functions 
and modes of action. Although great strides have been 
made in the recent years, the comprehension of the 
global miRNome and the establishment of functional 
therapeutic strategies in miRNA cancer research are yet 
far from being achieved. The discovery and development 
of miRNA inhibitors or miRNA mimics as novel drugs will 
offer new hopes in the fight against cancer.
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