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Abstract

Traditional design of a seismic resistant system for a building structure has often relied on structural damage as the intended
response of the structure to limit the increase in lateral force and to dissipate energy. The goal of this traditional design approach
was life-safety, i.e. to prevent building collapse. Following this approach, a major seismic event can cause significant damage to
the structure. This in turn requires extensive repair, or if the damage is severe enough, for the structure to be demolished. More
recently, an alternative design approach has emerged that is intended to provide structures that remain damage free and self-
center (i.e. exhibit no residual drift) after the earthquake. This paper describes this alternative approach, and discusses
opportunities for improved sustainability through damage-resistant seismic design and renewable materials.
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1. Introduction

Traditional design of a seismic resistant system for a building structure has often relied on structural damage (e.g.
yielding of steel, non-linear compression response of concrete, etc.) as the intended response of the structure to limit
the increase in lateral force and to dissipate energy. The goal of this traditional design approach was life-safety, i.e.
to prevent building collapse. Following this approach, a major seismic event can cause significant damage to the
structure. Two inherent limitations of this approach are: (1) the required nonlinearity or softening of the lateral force
resisting system is caused by damage; and (2) residual lateral drift after a major seismic event. This in turn requires
extensive repair, or if the damage is severe enough, for the structure to be demolished. The need for extensive repair
or demolition is inconsistent with sustainable design and construction practices.
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To address the limitations of traditional approaches to seismic design, over the past twenty years a considerable
amount of research has been devoted to developing self-centering, seismic-resistant building systems that offer
recoverable energy-dissipation mechanisms and damage-free softening of lateral load response. As an example of
the previous work in this field, Table 1 presents a collection of relevant studies performed by researchers at Lehigh
University. Included in the table is the type of lateral force resisting system studied, as well as a list of publications
that provide the details of each study. The common element in each of these systems is the use of post-tensioning to
allow gap opening at specified locations in the lateral force resisting system under the action of seismic loading in a
manner that leads to softening of the structural system. Thus softening is obtained by overcoming the prestressing
force, and not through damage.

These post-tensioned seismic-resistant building systems are a distinct departure from the conventional ductile
design approach, in which the structural system survives seismic excitation through controlled damage. By utilizing
damage-free mechanisms to achieve the desired building response characteristics (e.g. geometric softening of lateral
load response through gap opening at beam-column and/or wall-foundation joints; and energy dissipation through
relative movement along frictional interfaces or viscoelastic deformations), these systems are not only resistant to
structural collapse (enforcing the life safety performance objective), but they also have the potential to significantly
improve sustainability and to lessen the economic impact of a seismic event by reducing infrastructure damage.

Table 1. Lehigh University research on post-tensioned seismic-resistant building systems.

Lateral Force

Resisting System Publications

Post-tensioned concrete rocking Kurama et al. 1999a, 1999b, 2002; Perez et al. 2004a, 2004b, 2007, 2013; ACI, 2009; Keller and
walls Sause, 2010; Rivera et al. 2013

Post-tensioned concrete moment- g op i o al. 1999, 2000; Keller et al. 2010

frames
Post-tensioned steel moment- Garlock et al. 2005, 2007, 2008; Ricles et al. 2000, 2001, 2002; Peng et al. 2000; Rojas et al. 2005a,
frames 2005b; Seo et al. 2005, 2009; Iyama et al. 2008; Lin et al. 2009a, 2009b

Post-tensioned steel

. Roke et al. 2006, 2009a, 2009b; Sause et al. 2006a, 2006b, 2006¢, 2009a; 2009b, 2010
rocking frames

2. Illustration of a post-tensioned lateral force resisting systems — concrete walls

Fig. 1 illustrates in general how damage-resistant post-tensioned seismic systems work. The example shown in
the figure is for a concrete wall, but similar responses are obtained from the other structural systems as well. Fig. 1
shows a schematic of a conventional cast-in-place reinforced concrete wall, an unbonded post-tensioned concrete
wall, and an unbonded post-tensioned hybrid concrete wall. Also shown is the expected base shear-lateral drift of
each wall. The conventional reinforced concrete structural wall (Fig. 1(a)) is a cast-in-place concrete wall, without
post-tensioning, and with detailing to provide stable hysteretic behavior. Mild bonded steel reinforcement in the wall
extends across the wall-foundation interface and is anchored in the foundation. Under the action of lateral load, the
wall softens due to yielding of steel reinforcement and nonlinear stress-strain response of concrete (i.e. damage).
Upon reversal of lateral load F, the wall will not necessarily return to zero drift position. Instead, upon removal of
the lateral force, the wall can exhibit a residual drift.

Fig. 1(b) shows an unbonded post-tensioned wall (similar to the precast walls with post-tensioning for self-
centering studied by Kurama et al. and Perez et al.). These walls exhibit self-centering behavior but they do not have
any mild steel reinforcement crossing the horizontal joint between the wall and the foundation. Therefore, these
walls undergo large drift without dissipating any excitation energy as illustrated in Fig. 1(b).

An unbonded post-tensioned hybrid concrete wall, illustrated in Fig. 1(c), includes unbonded post-tensioning, and
also bonded longitudinal web reinforcement for energy dissipation. The lateral load-deflection response of the hybrid
wall is a combination of the energy dissipation as in traditional structural walls, and self-centering as in unbonded
post-tensioned precast concrete walls. In an event of seismic excitation, use of unbonded post-tensioning provides
the wall with self-centering capacity and the mild steel reinforcement is designed to dissipate energy.
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Fig. 1. (a) conventional cast-in-place wall; (b) unbonded post-tensioned wall; (c) unbonded post-tensioned hybrid wall.

Research has shown that the lateral load response of properly designed and detailed post-tensioned rocking walls
can be characterized by four distinct limit states, which are illustrated in Fig. 2. If tensile strain demands at the base
of the wall under lateral loading are below the pre-compression strain due to post-tensioning and gravity loading,
and are within the linear elastic region for the component materials, the lateral load response is similar to that of a
conventional wall. As tensile strain demands exceed the pre-compression strain, the wall begins to lift off of the
foundation because the wall panel-to-foundation joint is ineffective in tension, i.e. only the unbonded post-tensioning
steel is effective in resisting tensile force across the wall-foundation interface. This is referred to as the
decompression limit. As the gap along the wall-foundation interface propagates under increased lateral load demand,
the lateral load response begins to appreciably soften due to second-order geometric effects (referred to as the

35



36

Stephen Pessiki / Procedia Engineering 171 (2017) 33 — 39

effective linear limit). This softening elongates the periods of vibration for the structure, which tends to lower
inertial force demands in the system for typical ground motions due to a reduction in transmissibility. From this
point, the rocking wall continues to support additional loading until tensile strain demands in the post-tensioning
steel reach yield. Following yielding, strain-hardening in the post-tensioning steel supports lateral loading at a
greatly diminished stiffness. Failure of a well-designed wall, which resists buckling modes of failure, is marked by
excessive damage in the compression toe of the wall or global instability.

o

Yielding of post-tensioning

reinforcement Failure
A

Effective linear limit (gap softening)

Decompression (gap opening) I I

4

Fig. 2. Idealized monotonic lateral load response for post-tensioned walls.
3. Sustainable construction through damage-resistant seismic design and renewable materials

Until recently, much of the research on self-centering, seismic-resistant building systems (particularly in the
U.S.) has been devoted to steel and concrete construction, whose industries have historically dominated the
commercial and multi-family residential sectors. However, greater emphasis on sustainable construction practices,
which has been motived by diminishing natural resources, rising construction costs, and concerns over the
environmental impact of material harvesting and processing practices, has rejuvenated interest in renewable and
readily available materials for building construction.

Seismic-resistant post-tensioned lateral force resisting systems that were developed for steel and concrete
buildings are now being investigated for timber structures, as illustrated in Table 2, which presents a collection of
recent studies on post-tensioned timber construction. In New Zealand, this technology has already made its way into
practice with the construction of at least two post-tensioned timber buildings in 2011-2012 (Dekker et al. 2012;
Holden et al. 2012).

Additional opportunities exist in other renewable materials as well. In Indonesia, for example, researchers are
investigating laminated timber composites for structural applications that utilize abundant and fast growing native
plant species, e.g. Paraserianthes falcataria and Hevea brasiliensis Muell (Awaludin et al. 2011, 2012a, 2012b,
2013a, 2013b). These species have been rarely used for structural applications due to their relatively low strength
and stiffness, as compared to structural grade timber. However, their use in laminated veneer lumber (LVL), in
which a built-up section is assembled by binding thin plies of the material with adhesive, is seen as a potential
solution to diminishing timber resources. Made in a factory under controlled conditions, LVL has superior material
uniformity compared to the base product and has been shown to provide a stronger, straighter section that is less
susceptible to warping, twisting, bowing, or shrinking.

An important limitation to the widespread implementation of seismic-resistant post-tensioned construction is that
the use of hydraulic rams for post-tensioning are not readily / economically available in all regions of the world,
necessitating practical solutions that employ indigenous materials and adaptable construction practices. For
example, design concepts such as hand-tensioned, spring-loaded rocking frames (currently being studied at Lehigh
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University) may offer a cost-effective and practical alternative in developing regions where the full spectrum of
construction technologies is not readily available, although more data is needed to validate these systems.

Table 2. Recent developments in seismic-resistant post-tensioned timber construction.

Research Area Reference(s)

Experimental tests of laminated veneer lumber hybrid moment-frame beam-column, wall-foundation, ~ Palermo et al. 2005, 2006a,

and column-foundation assemblies 2006b, 2006¢

Newcombe et al. 2008; Smith et
al. 2008a, 2008b

Smith et al. 2011a

Design/modeling of seismic-resistant post-tensioned timber buildings

Experimental tests of post-tensioned timber moment-frame beam-column assemblies with
supplemental passive damping

Experimental study regarding the demountability, relocation, and re-use of post-tensioned timber
buildings

Construction of the Carterton Events Centre Auditorium in Carterton, New Zealand using post-
tensioned laminated veneer lumber rocking walls

Construction of the NMIT Arts and Media Building in Nelson, New Zealand using post-tensioned
laminated veneer lumber rocking walls

Experimental tests of post-tensioned laminated veneer lumber rocking walls coupled with plywood
sheets

Smith et al. 2011b
Dekker et al. 2012
Holden et al. 2012

Igbal et al. 2012

van Beerschoten

Experimental tests of post-tensioned timber frames for multi-story seismic-resistant buildings ctal. 2012

4. Summary

Traditional approaches to seismic design of seismic resistant systems for building structures, while satisfying the
objective of life-safety, often result in buildings that require extensive repair or that must be demolished after a
significant seismic event. More recently, an alternative design approach has emerged that is intended to provide
structures that remain damage free and self-center after an earthquake, requiring less (if any) repair after the seismic
event. This alternative design approach is well-developed for steel and concrete building systems, and has more
recently been studied for timber systems as well. Opportunities remain for continued evolution of improved
sustainability through more widespread implementation of self-centering damage-resistant seismic design,
implemented with an awareness of continued development of renewable materials, and also with a recognition of
local construction methods.
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