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ABSTRACT 

Attention deficit hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder of 

childhood. It is primarily characterised by high levels of activity, inattention, and impulsivity, and has 

strong negative impacts on academic functioning. Children with ADHD show a reduction in volume, 

and hypoactivity, in a range of brain regions. The underlying mechanisms behind these phenotypes 

are unknown, however, variants in several genes with known roles in neurodevelopment are 

associated with ADHD. In this review we discuss how these ADHD associated genes contribute to 

neurodevelopment, and how variants in these genes could give rise to the neurological phenotypes 

seen in ADHD. 
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INTRODUCTION 

Attention deficit hyperactivity disorder (ADHD) is a common neuropsychiatric disorder of childhood, 

affecting 5% of school-aged children worldwide (Polanczyk et al., 2007), and persisting into 

adulthood in 30-50% of cases (Faraone and Biederman, 2005; Polanczyk et al., 2007). The disorder, 

characterised by high levels of inattention, uncontrollable hyperactivity, and impulsivity, is classified 

into three clinical subtypes: predominantly inattentive, predominantly hyperactive, and combined 

(American Psychiatric Association, 2013). ADHD is reported more often in males than females, with 

population and clinical studies showing male:female ratios of 4:1 and 9:1 respectively (Biederman et 

al., 2002; Cuffe et al., 2005). The disorder has been shown to have negative impacts on family 

relations and academic functioning (Mannuzza et al., 1993), and is associated with a greater 

likelihood of risk taking behaviours and drug use (Konstenius et al., 2015). 

The aetiology of ADHD remains poorly understood, although both environmental and genetic factors 

are known to contribute to the onset of the disorder. Environmental factors such as prenatal exposure 

to alcohol, cigarettes, and illicit drugs have all been associated with an increased risk of ADHD 

(Banerjee et al., 2007; Langley et al., 2005; Sagiv et al., 2013). Low birth weight and adverse life 

experiences have also demonstrated associations (Banerjee et al., 2007; Heinonen et al., 2010). 

Despite this, only a small portion of the aetiology of ADHD can be explained by environmental 

factors. Family and twin studies provide estimates of heritability at around 76% (Faraone et al., 2005). 

Furthermore, concordance rates in monozygotic (MZ) twins are consistently higher than those in 

dizygotic (DZ) twins (~80% and ~40%, respectively; Levy et al., 1997). There is, therefore, a 

significant genetic contribution to ADHD risk. 

Research into the genetic basis of ADHD initially focussed on candidate genes identified from animal 

models or knowledge of drug targets. In particular, genes involved in catecholamine (dopamine, 

noradrenaline) and serotonin transmission have been thought to be important to the aetiology of 

ADHD, and several of these have demonstrated replicable evidence of association (Faraone and 

Biederman, 2002; Gizer et al., 2009). More recently, hypothesis free genome wide association studies 

(GWAS) have been used to identify single nucleotide polymorphisms (SNPs), and copy number 

variations (CNVs) associated with the disorder. These approaches scan the genomes of cases and 

control individuals for thousands of SNPs to determine if any SNPs or CNVs (as identified by 

consecutive sets of SNPs) are associated with the disorder. For the detection of associated SNPs, this 

approach has, until recently, mostly been unsuccessful (Akutagava-Martins et al., 2016), with only 

one quantitative trait loci GWAS, examining six traits derived from ADHD clinical and symptom 

measures, identifying two significant associations (Lasky-Su et al., 2008). However, in what is the 

biggest ADHD GWAS to date, (Demontis et al., 2017) utilised 20,183 ADHD cases and 35,191 

controls to identify 12 hits significant at the GWAS level (p ≤ 5 x 10
-8

). With regards to CNVs, there 

has been success in identifying significant associations between ADHD and several genes mapped to 

these CNVs (Hawi et al., 2015). There are several limitations with this however, noting in particular 

low penetrance of variants, minimal overlap with previously reported ADHD common variants, and 

an inconsistency of individual variants being carried by different ADHD patients (Hawi et al., 2015). 

Despite this, the evidence from candidate gene, GWA-SNP and GWA-CNV studies has suggested 

many genetic associations with ADHD. A database of ADHD genetic associations and the study 

which identified them is available at (Zhang et al., 2012). 

ADHD often co-exists alongside other psychiatric disorders such as oppositional defiant disorder, 

conduct disorder, anxiety disorder, depression, tic disorder, bipolar disorder, Tourette’s syndrome, 

and substance use disorder (in adult cases) (Jensen and Steinhausen, 2015; Kessler et al., 2006; 



Steinhausen et al., 2006), suggesting a common aetiology. In addition, ADHD has been shown to 

share a significant genetic component with other neurodevelopmental cognitive disorders including 

schizophrenia, autism spectrum disorder (ASD), and X-linked intellectual disability (Cristino et al., 

2013). Therefore, genes associated with these conditions may also play a role in ADHD.  

ADHD is associated with macroanatomical changes in multiple brain regions, resulting from 

disrupted neurodevelopmental mechanisms. In the largest imaging meta-analysis to date, Hoogman et 

al., (2017) demonstrated significantly smaller volumes in ADHD cases for the accumbens, caudate, 

putamen, amygdala, hippocampus, as well as reduced intracranial volume as a whole, adding to 

previously identified changes. While these studies identify regions affected in ADHD (Table 1, Fig.1), 

how these changes manifest has not yet been elucidated. In addition to changes in volume, cortical 

thickening in the prefrontal areas is delayed in ADHD, taking around 2.5-5 years longer than matched 

controls to achieve normal cortical thickness (Almeida et al., 2010; Montes et al., 2013; Shaw et al., 

2007). Alongside the morphological changes in these structures, functions associated with these 

regions are disrupted. Studies have demonstrated hypoactivation during response inhibition tasks in 

frontal and parietal regions, as well as the thalamus, basal ganglia, and cingulate cortex (Dickstein et 

al., 2006; Hart et al., 2013). Furthermore, in attention demanding tasks, decreased activity in frontal 

regions, as well as the basal ganglia, thalamus (pulvinar), and the parietal and temporal lobes was 

identified (Dickstein et al., 2006; Hart et al., 2013). In addition to decreased activity in attention 

demanding tasks and response inhibition, both directly related to the ADHD phenotype, an array of 

other functions is disrupted in ADHD. These include reduced activity in the striatum in reward 

anticipation tasks (Scheres et al., 2007), and in the cerebellum in cognitive tasks, motor timing, and in 

the resting state (Suskauer et al., 2007; Tian et al., 2006; Vloet et al., 2010). Overall, consistently 

decreased brain volumes and hypoactivation of regions known for their roles in inhibition and 

attention are consistent with the behavioural ADHD phenotype. Given the neurodevelopmental 

phenotype, we might expect a developmental role for ADHD associated genes, and genes known to be 

involved in neurodevelopment may provide candidates for ADHD. 

The changes observed in the brains of ADHD cases result from impaired development during 

pregnancy and/or early postnatal life. The formation of a functioning brain occurs in a conserved 

sequence. Initially, pools of neural progenitors distributed across multiple neurogenic zones 

proliferate and give rise to the different classes of neurons. The newly formed neurons migrate across 

the developing brain and, upon reaching their final destination, establish a network of connections. 

These include short-range connections with neighbouring neurons in the same region and long-range 

projections to other regions, for example between thalamic nuclei and the neocortex, which 

encompasses the motor and sensory cortices and areas responsible for higher-order cognitive 

functions. This initial pattern of connectivity is later refined through activity-driven pruning, selecting 

for the strongest synaptic contacts, and reducing the number of neurons. Here we discuss the role of 

ADHD associated genes (Table 2) in each of these phases of neurodevelopment.  

 

  



Table 1. Changes in brain volumes seen in ADHD 

Region Function Volume change Reference 

Accumbens Reward processing Reduced (Hoogman et al., 2017) 

Amygdala Memory, emotional 

regulation 

Reduced (Hoogman et al., 2017) 

Anterior cingulate cortex Executive functioning Reduced (Pliszka et al., 2006) 

Caudate Learning and motor 

control 

Reduced (Hoogman et al., 2017) 

Cerebellum Motor coordination, 

inhibition, executive 

functioning 

Reduced (Valera et al., 2007) 

Cortex  Sensory processing and 

cognition 

Reduced Thickness (Narr et al., 2009) 

Hippocampus Short to long term 

memory transfer, 

emotion regulation 

Reduced (Hoogman et al., 2017) 

Occipital lobe Visual processing Reduced (Durston et al., 2004) 

Parietal lobe Visuo-spatial, selective 

attention 

Conflicting evidence: both 

reduced and increased 

volumes reported 

(Castellanos et al., 

2002; Sowell et al., 

2003) 

Prefrontal cortex DLPFC: attention, 

working memory  

VLPFC: inhibition 

OFC: social behaviour, 

balance of inhibition 

and disinhibition, 

emotional regulation 

 

Reduced (Mostofsky et al., 

2002) (Sowell et al., 

2003) 

Putamen Learning Reduced (Hoogman et al., 2017) 

Temporal lobe Visual and auditory 

association, memory, 

emotional regulation 

Conflicting evidence: both 

reduced and increased 

volumes reported 

(Castellanos et al., 

2002; Sowell et al., 

2003) 

Thalamus (pulvinar) Attention Reduced (Ivanov et al., 2010) 

Abbreviations: DLPFC, dorsolateral prefrontal cortex; VLPFC, ventrolateral prefrontal cortex; OFC, 

orbitofrontal cortex.  

 

 

 



 

Fig.1. Brain regions affected in ADHD. 3D rendering of an adult male brain obtained from the Big 

Brain project (Amunts et al., 2013) and rendered using Drishti (Limaye 2012). A anterior, D dorsal, L 

lateral. 

 

 

 

 

Table 2. ADHD associated genes that play a role in neurodevelopment. 

Gene Study type Reference Neurodevelopmental process 

BDNF Candidate Gene (Hawi et al., 2017; Kent 

et al., 2005) 

Synaptogenesis, Selective cell 

death, Glia and Microglia 



CDH13 GWAS-SNP (Lasky-Su et al., 2008) Neurogenesis, Connectivity, 

Synaptogenesis 

CHRNA7 GWAS-CNV (Williams et al., 2012) Synaptogenesis, Glia and Microglia 

DRD5 Candidate Gene (Daly et al., 1999; Gizer 

et al., 2009) 

Glia and Microglia 

FOXP2 GWAS-SNP (Demontis et al., 2017) Neurogenesis, Migration, 

Synaptogenesis 

GIT1 Candidate Gene (Won et al., 2011) Glia and Microglia 

GRM1 GWAS-CNV (Elia et al., 2012) Neurogenesis, Synaptic Plasticity, 

Selective cell death 

GRM5 GWAS-CNV (Elia et al., 2012) Neurogenesis, Synaptogenesis, 

Selective cell death 

GRM7 GWAS-CNV (Elia et al., 2012) Neurogenesis, Synaptic Plasticity, 

Selective cell death 

5-HT1B Candidate Gene (Gizer et al., 2009; Hawi 

et al., 2002) 

Synaptic Plasticity 

LPHN3/ADRGL3 Candidate Gene (Arcos-Burgos et al., 

2010; Ribases et al., 

2011) 

Connectivity, Synaptogenesis 

MEF2C GWAS-SNP (Demontis et al., 2017) Neurogenesis, Synaptogenesis 

NOS1 Candidate Gene (Reif et al., 2009) Neurogenesis, Synaptic Plasticity, 

Selective cell death, Glia and 

Microglia 

PARK2 GWAS-CNV (Jarick et al., 2014) Neurogenesis, Selective cell death 

PCDH7 GWAS-SNP (Demontis et al., 2017) Connectivity 

PTPRF GWAS-SNP (Demontis et al., 2017) Synaptogenesis, Selective Cell 

Death 

SEMA6D GWAS-SNP (Demontis et al., 2017) Connectivity 

SLC6A2 GWAS-SNP (Lasky-Su et al., 2008) Glia and Microglia 

SLC6A3 Candidate Gene (Cook et al., 1995; Gizer 

et al., 2009) 

Synaptic Activity, Synaptic 

Plasticity 

SLC6A4 Candidate Gene (Gizer et al., 2009; 

Manor et al., 2001) 

Neurogenesis, Migration, Synaptic 

Plasticity, Selective Cell Death 

SLC9A9 Candidate Gene, 

GWAS-SNP 

(de Silva et al., 2003; 

Lasky-Su et al., 2008) 

Synaptic Activity 

SNAP25 Candidate Gene (Brophy et al., 2002; 

Gizer et al., 2009) 

Synaptic Activity, Selective Cell 

Death 

SORCS3 GWAS-SNP (Demontis et al., 2017) Synaptic Plasticity 

ST3GAL3 GWAS-SNP (Demontis et al., 2017) Synaptogenesis, Glia and Microglia 

  



NEUROGENESIS 

Neural progenitors in the developing brain undergo different modes of proliferation; symmetrical 

division to generate two progenitor cells and amplify the progenitor pool, or asymmetrical division; 

giving rise to a single progenitor cell and a neuron. In the later phases of development, progenitors 

undergo terminal symmetrical division, generating two neurons and depleting the neurogenic pool. 

Brain formation depends on a suitable balance between the different division modes to maintain 

sufficient progenitors whilst generating the appropriate number of neurons. This equilibrium is 

mediated through cell-cell interactions, for example, the Notch-Delta pathway, which promotes 

proliferation and inhibits differentiation (Egger et al., 2010). Alteration of this proliferation-

differentiation balance has dramatic consequences for brain development and has been implicated in 

neurodevelopmental cognitive disorders including ASD (Kaushik and Zarbalis, 2016).  

The numerous brain structures affected in ADHD, as revealed by MRI studies, (Table 1 and Fig. 1) 

have distinct developmental origins with the neurons populating them arising from separate 

neurogenic niches, each with a characteristic pattern of gene expression. Amongst the most studied of 

the brain structures affected in ADHD (see Table 1) is the neocortex, comprised of a heterogeneous 

population of locally born glutamatergic excitatory neurons, emerging from the neurogenic zones 

lining the lateral ventricles, and GABA (gamma aminobutyric acid)-ergic inhibitory interneurons, 

arising from the subcortical ganglionic eminences and preoptic area. The mechanisms regulating the 

development of the thalamus, caudate, putamen, and striatum are not as well defined as that of the 

neocortex but, the neurons populating these regions emerge from neurogenic zones lining the 3
rd

 

ventricle (Marin et al., 2000). 

Several signalling molecules, such as glutamate, participate in neurogenesis. Given glutamate’s role 

as a positive regulator of neurogenesis (reviewed in Schlett, 2006), it is unsurprising that members of 

the metabotropic glutamate receptor (GRM, mGluR) family also play roles in this process. GRM-1, -5, 

-7, and -8, demonstrated association with ADHD in a GWA-CNV study (duplications: GRM1, 

deletions: GRM-5, -7 and -8; Elia et al., 2012). GRM1 and GRM5 can both induce neurogenesis 

(Baskys et al., 2005; Zhao et al., 2011), and activation of GRM5 in neural progenitor cells (NPCs) 

increases expression of cyclinD1, known to induce neural proliferation (Sundberg et al., 2006). 

Knockdown of GRM7 in mouse NPCs increases proliferation by relieving inhibition of cyclic AMP 

response element-binding protein (CREB) phosphorylation and Yes-associated protein (Yap) 

expression, thereby increasing expression of cyclinD1 (Xia et al., 2015). This data provides the 

connection between ADHD-associated glutamate receptor signalling and the control of cell 

proliferation. 

In addition to the neurotransmitter glutamate influencing proliferation, serotonin, and nitrous oxide 

(NO) may also play a role. NO is a non-synaptic signalling molecule that inhibits dopamine, 

noradrenaline, and serotonin reuptake by inhibiting transporter function (Asano et al., 1997; Kaye et 

al., 1997; Lonart and Johnson, 1995, 1994; Pogun et al., 1994). Nitrous oxide synthase 1 (NOS1) is 

responsible for producing NO (Nathan, 1992) and has demonstrated association with ADHD in a 

candidate gene study (Reif et al., 2009). Application of NO to developing Xenopus embryos decreases 

neuronal proliferation in the optic tectum, and, conversely, loss of NO increases proliferation 

(Peunova et al., 2001), which is also seen in Nos1 knockout mice (Packer et al., 2003). In addition, 

inhibition of NOS1 increases proliferation in neurogenic regions of the adult mouse brain, such as the 

subventricular zone and the dentate gyrus, (Matarredona et al., 2004; Zhu et al., 2006). Of particular 

interest is the interaction between NOS1 and the serotonin transporter (SLC6A4, 5-HTT, SERT; 

Chanrion et al., 2007). SLC6A4 is associated with ADHD (Gizer et al., 2009; Manor et al., 2001), and 



regulates the uptake of serotonin from the synaptic cleft into the pre-synaptic neuron (Lesch and 

Waider, 2012). The physical interaction between NOS1 and SLC6A4 reduces SLC6A4’s cell-surface 

localisation in HEK293 cells and decreases serotonin uptake in these cells (Chanrion et al., 2007). In 

addition, application of serotonin to NOS1 and SLC6A4 expressing cells increases NO production 

(Chanrion et al., 2007). This could then result in decreased neural proliferation, consistent with 

decreased brain volume. 

Members of the cadherin family are known to play important roles in axon outgrowth, guidance, 

synaptogenesis, and synapse maintenance (Redies et al., 2012). CDH13 showed association with 

ADHD in a quantitative trait GWAS (Lasky-Su et al., 2008), and its expression is consistent with a 

role in neurodevelopment; peaking at postnatal day 7 in the developing mouse brain, before steadily 

decreasing into adulthood (Rivero et al., 2015). From GWAS studies it is not possible to determine if 

an increase or decrease of CDH13 function is associated with ADHD, but neuroblastoma cells 

expressing CDH13 lose their mitogenic proliferative response when treated with epidermal growth 

factor, suggesting that CDH13 acts as a negative regulator of proliferation (Takeuchi et al., 2000). In 

addition, CDH13 is suppressed by DNA methyltransferase 3b (DNMT3b), and release of this 

suppression, due to DNMT3b loss in PC12 cells, prevents nerve growth factor induced neuronal 

differentiation (Bai et al., 2006), suggesting that CDH13 negatively regulates both proliferation and 

differentiation. 

The E3 ubiquitin ligase parkin (PARK2) is another example of an ADHD associated gene that 

influences both neural proliferation and differentiation. A GWA-CNV study demonstrated an 

enrichment of PARK2 CNVs (deletions and duplications) in ADHD (Jarick et al., 2014). E3 ubiquitin 

ligases are important for the ubiquitination of proteins destined for the 26S proteasome (Goldberg, 

2003), and PARK2 has demonstrated roles in mitophagy, cell survival, and vesicle trafficking (Imai et 

al., 2002; Kawahara et al., 2008; Staropoli et al., 2003). Park et al., (2017) demonstrated that PARK2 

is directly involved in the ubiquitination of p21, a negative regulator of cell-cycle progression. 

Knockout of Park2 results in accumulation of p21 in neural stem cells, blocking differentiation. The 

exact role of PARK2 in the aetiology of ADHD is not yet known, however, in vitro evidence suggests 

that PARK2 is important for forming dopaminergic neurons (Shaltouki et al., 2015). Given the well-

established role for the dopamine system (Kirley, 2002) and reduction in volume of dopaminergic-

rich brain regions in ADHD (Schneider et al., 2006), the requirement for PARK2 in dopamine 

neurogenesis strongly supports its association with the disorder.  

Two transcription factors, Myocyte Enhancer Factor 2C (MEF2C), and Forkhead box transcription 

factor P2 (FOXP2) also have roles in neural differentiation and have recently been associated with 

ADHD via GWAS (Demontis et al., 2017). CNVs encompassing MEF2C have also been associated 

with ASD (Yingjun et al., 2017), and conditional brain specific Mef2c knockout mice are hyperactive 

(Adachi et al., 2016). Expression of Mef2c in murine embryonic stem cells induces differentiation into 

neuronal progenitors in vitro, (Z. Li et al., 2008) and conditional brain specific Mef2c null mice show 

impaired neural differentiation, without deficits in proliferation or survival (H. Li et al., 2008). 

Knockout of Foxp2 in mice leads to severe motor impairment and premature death (Shu et al., 2005), 

while knockdown of FOXP2 in mice embryonic stem cells leads to decreased neurogenesis, and 

expression of human FOXP2 promotes neurogenesis (Tsui et al., 2013). Whilst MEF2C 

haploinsufficiency and knockout of Foxp2 result in severe mental retardation (Rocha et al., 2016; 

Zweier and Rauch, 2011) and premature death (Shu et al., 2005) respectively, it is possible that the 

subtle changes in the function or expression of these genes as a result of ADHD gene variants would 

result in decreased differentiation, and hence contribute to the decreased brain volume seen in ADHD. 



 

 

MIGRATION 

Following the initial proliferative phase, newborn neurons exit the neurogenic zone to populate the 

developing brain. They are guided along "molecular corridors" consisting of unique combinations of 

migration cues. The migrating neuron's ability to sense the appropriate cue, and therefore follow the 

correct path to its predestined location, is determined by the set of receptors it expresses at its surface, 

which is in turn specified by its lineage. Neural progenitors are characterised by the differential 

expression of morphogens and transcription factors, which regulate the genes expressed by their 

neuronal progeny, determining their functional and molecular identities and, ultimately, their fate. 

Therefore, neurons originating from the same pool of progenitors migrate together, forming large 

migratory streams across the developing brain. These neurons migrate according to two distinct 

modes, radial or tangential to the surface of the brain, often switching from one to the other. For 

example, the glutamatergic excitatory neurons populating the cortex are born locally and migrate 

radially in the developing cortical plate, along the glial fibres (Fig. 2). Their GABAergic inhibitory 

counterparts are born ectopically, in the subcortical ganglionic eminences and the preoptic area, and 

migrate first tangentially along the ventral surface of the brain and switch to a radial migratory mode 

upon entering the cortical plate, at the level of the marginal zone or the intermediate zone (reviewed 

in Marín and Rubenstein, 2003). The neurons of the caudate, putamen, and striatum originate from the 

neurogenic zones lining the 3
rd

 ventricle and migrate laterally to cluster into discrete nuclei. Cell 

adhesion molecules, including the cadherin family, are critically involved in this process, segregating 

subpopulations of cells based on their expression. Disruptions to migratory pathways can lead to 

abnormal brain development, either by delaying the migration of neurons to their final positions, or 

mislocalisation of neuronal subsets.  

The association between variants in neurotransmitter receptors, including glutamate and GABA 

receptors, and ADHD (Chang et al., 2014; Lasky-Su et al., 2008; Yuan et al., 2017) is particularly 

interesting as neurotransmitters have been demonstrated to modulate neuronal migration (reviewed in 

Heng et al., 2007). For example, activation of the glutamate receptors stimulates the migration of 

glutamatergic excitatory cortical neurons during development, promoting radial migration from the 

neurogenic zones to the appropriate cortical layer. Similarly, activation of GABA receptors expressed 

by inhibitory interneurons is able to modulate both their tangential and radial migration. Therefore, 

variants affecting GABA and glutamate receptors in ADHD might not only affect neuronal 

communication but also disrupt the migration of excitatory and inhibitory neurons during 

development. 

In addition to glutamate, the neurotransmitter serotonin also has a role in neuronal migration. The 

migration of GABAergic interneurons is delayed, and more neurons are found, in the supragranular 

cortical layers in mice lacking the serotonin transporter gene, Slc6a4 (Riccio et al., 2009). Knockout 

mice have increased levels of extracellular serotonin, due to the inability of the serotonin transporter 

to appropriately reuptake serotonin from the extracellular space into the presynaptic neuron. This 

increase in extracellular serotonin would lead to elevated activity of the 5HT6 serotonin receptor, 

which decreases the rate of migration in radially migrating pyramidal neurons (Riccio et al., 2011) 

and in interneurons (Riccio et al., 2009). Altogether, this evidence suggests that serotonin acts to 

regulate the rate of neuronal migration to provide correct developmental timing and positioning.   



 

  



Interestingly, FOXP2 may play a role in radial neuron migration through the modification of neural 

progenitor morphology (Garcia-Calero et al., 2016). A gradient of Foxp2 expression in the developing 

mouse striatum, with low FOXP2 levels in the SVZ through to high levels in the mantle layer, 

promotes a change from multipolar (many neurites) to bipolar (two neurites) morphology (Garcia-

Calero et al., 2016). Ectopic expression of Foxp2 in the SVZ induces a change to bipolar morphology 

(Garcia-Calero et al., 2016), and impairs the radial migration of multipolar cells (Clovis et al., 2012; 

Garcia-Calero et al., 2016). Migration of radial glial cells is also disrupted in the knockout (Shu et al., 

2005). Variants affecting the level of function of FOXP2 could therefore disrupt neuronal morphology 

and subsequently migration in ADHD. 

Fig. 2. Neurogenesis in the human embryonic neocortex. Coronal section through a human 

embryonic brain at 12 weeks post conception illustrating newly born pyramidal neurons (blue), 

generated locally, migrating radially along glial processes, through preceding generations of neurons 

(red) and settling over them. Inhibitory interneurons (green) are born ectopically, in subcortical 

regions and migrate tangentially, forming a deep and a superficial stream to avoid the striatum (ST), 

which secretes repulsive signals. The interneurons later switch to a radial migratory mode to reach the 

appropriate cortical layer. ADHD associated genes (boxed) involved in neurotransmitter regulation, 

participate in the both radial and tangential neuronal migration. CP cortical plate; IZ intermediate 

zone; LGE lateral ganglionic eminence; LV lateral ventricle; MGE medial ganglionic eminence; MZ 

marginal zone; ST striatum; VZ/SVZ ventricular/subventricular zones. 

 

The evidence for a role of neurotransmitters in neurodevelopment prior to synaptogenesis is building. 

Considering that neurotransmitters, such as glutamate, can regulate the levels of intracellular Ca
2+ 

that 

are vital for the reorganisation of the cytoskeleton during migration (Doherty et al., 2000; Gordon-

Weeks, 2004), it is possible that neurotransmitters influence early stages of neuronal development. 

Further characterisation of the role of neurotransmitters in development could therefore greatly add to 

our knowledge of ADHD. 

 

CONNECTIVITY 

The guidance cues and adhesion molecules dispersed across the developing brain not only coordinate 

neuronal migration, they also direct the pathfinding of neuronal processes (neurites), and the 

formation of connections. The growth cone located at the tip of extending neurites is enriched in 

guidance cue receptors and adhesion molecules, which allow it to probe the environment. Interactions 

between the molecules at the surface of the navigating growth cone and their specific ligands in the 

extracellular matrix, or on neighbouring cells, triggers intracellular cascades resulting in cytoskeletal 

rearrangements. These morphological changes promote growth towards the source of the guidance 

cue (attraction) or away from it (repulsion; Fig. 3). Similar to migration, dysregulation of guidance 

cues can lead to abnormal distribution of neurons in the developing brain. Delayed establishment of 

neural connections would result in an underdeveloped brain, consistent with the developmental delay 

seen in individuals with ADHD. 

Short-range cues are membrane bound, acting as guide posts for branching axons. Upon contact with 

these molecules, growth cones will either continue to extend in the same direction or will be repelled. 

Two members of the cadherin family, CDH13 and protocadherin 7 (PCDH7, also known as neural 

fold protocadherin, NFPC), act as short-range guidance cues. CDH13 is a negative regulator of 

neuronal axon projections that acts on spinal motor neurons (Fredette et al., 1996; Fredette and 



Ranscht, 1994), and infragranular (cortical layers 5&6) neurons of the cortex (Hayano et al., 2014). 

CDH13 knockdown in infragranular neurons, which send contralateral projections through the corpus 

callosum and ipsilateral projections through the intermediate zone, results in abnormal projections to 

the subcortical plate (Hayano et al., 2014). In addition, ectopic expression of CDH13 in the 

supragranular (layers 2&3) neurons results in some neurons projecting into the internal capsule, rather 

than the corpus callosum as expected, and delays extension (Hayano et al., 2014). Therefore alteration 

of Cdh13 expression has dramatic consequences for cortical axonal pathfinding.  

PCDH7 was recently identified as a significant GWAS hit (Demontis et al., 2017), and is known to be 

expressed in the developing rat brain (Kim et al., 2007). Leung et al., (2013) demonstrated that 

knockdown of Pcdh7 in developing Xenopus embryos leads to stalled axonal projection in the optic 

tract, showing that Pcdh7 acts as a positive cue for axonal guidance. While it is not yet fully 

understood whether CDH13 acts as a short or long range cue, or both (Ciatto et al., 2010); (Denzel et 

al., 2010; Hug et al., 2004), both CDH13 and PCDH7 show evidence of homophilic binding (Ciatto et 

al., 2010; Leung et al., 2013), suggesting that both of these genes can act as short range guidance cues. 

Overall, CDH13 and PCDH7 have important roles in axonal guidance, most likely through roles in 

cell-cell adhesion and short range signalling, and variants in these genes could lead to disruptions in 

neuronal localisation, and, as a result, brain structure. 

Long range guidance cues are secreted in the neural environment and diffuse to form a gradient to 

guide growth cones expressing the corresponding receptors. One such guidance cue is formed by the 

cleavage of the extracellular domain from fibronectin and leucine-rich transmembrane protein-3 

(FLRT3), which then acts as a chemo-repellent when bound to the uncoordinated-5B (UNC5B) 

membrane bound protein (Yamagishi et al., 2011). FLRT3 can also form a trans-membrane 

connection with Adhesion G protein coupled receptor L3 (ADGRL3), previously known as latrophilin 

3 (LPHN3) (O’Sullivan et al., 2012). Interestingly, studies examining the structure of ADGRL3-

FLRT3 binding have demonstrated that FLRT3 can bind to UNC5B and ADGRL3 proteins 

simultaneously (Lu et al., 2015; Ranaivoson et al., 2015). ADRGL3 demonstrates association with 

ADHD (Arcos-Burgos et al., 2010; Ribases et al., 2011), and is a member of a family of secretin G 

protein coupled receptors (Matsushita et al., 1999) that localise to the presynaptic terminal (Grishin, 

1998). Increased locomotor activity is seen in Adrgl3 mutant mice (Orsini et al., 2016; Wallis et al., 

2012), Drosophila melanogaster (van der Voet et al., 2016), and zebrafish (Lange et al., 2012), with 

the fish phenotype rescued by the most common ADHD medication, methylphenidate (Ritalin). It is 

important to note that the combination of receptors present on individual axons affects the response to 

the guidance cues in the environment, therefore it is difficult to ascertain what the effect of this 

trimeric complex is on axonal guidance. However, variants in ADGRL3 could potentially modulate 

growth cone extension and neural connectivity through modulation of the trimeric 

ADGRL3/FLRT3/UNC5B complex.  

Semaphorin 6D (SEMA6D), recently associated with ADHD via GWAS (Demontis et al., 2017), is a 

chemo-repellent during axonal pathfinding (Qu et al., 2002), acting as both a short range 

transmembrane cue and, when the extracellular domain is cleaved, a long range cue (Toyofuku et al., 

2004a, 2004b). Sema6d mutant mice show abnormal proprioceptive axon positioning in the spinal 

cord (Leslie et al., 2011) and recombinant secreted SEMA6D inhibits axon extension and induces 

growth cone collapse (Qu et al., 2002). In addition, SEMA6D repels retinal ganglion cell axons at the 

optic chiasm, thereby promoting the crossing of contralateral fibres, however, when SEMA6D is 

coupled with PLXNA1 and Ng-CAM-related cell adhesion molecule (Nr-CAM), this becomes a 

growth promotion effect (Kuwajima et al., 2012). SEMA6D is an example of how complex even 



singular guidance cues can be, and how disruptions to such a gene could result in a wide array of 

neuronal localisation abnormalities. 

Considering that axonal branching and extension occurs from early life through to adulthood, an 

inability to efficiently guide projecting neurites to their targets could potentially delay the 

establishment of effective neuronal connections. Over time, it is possible that these detrimental effects 

could become less profound as neuronal pathways are established, consistent with the decline in 

ADHD symptoms with age. 

 

 

 



Fig. 3. Axonal outgrowth is directed by short and long range guidance cues. Membrane bound 

FLRT3 and UNC5B are repulsive cues (red), forming a trimeric complex with ADGRL3. SEMA6D 

acts as a repulsive cue either as a short range transmembrane cue, or when the extracellular domain is 

cleaved, over long range. Cleaved FLRT3 could act as a long range repulsion cue. CDH13 and 

PCDH7 homophilic interactions are short range attractants (green). 

  



SYNAPTOGENESIS  

The significant volume reduction in multiple regions of ADHD brains is often attributed to loss of 

synaptic density rather than actual loss of neurons. The mechanisms controlling neuronal migration 

and pathfinding are also recruited during the establishment of synaptic contacts between axons and 

the dendrites of postsynaptic neurons, with local attractive cues determining the sites of synapse 

formation. The accumulation of guidance cues at a specific location along the dendrites suggests that 

synapses are pre-patterned. However, the underlying mechanisms remain unknown, although some 

studies in C. elegans suggest control by glial-like cells (reviewed in Shen and Cowan, 2010). In order 

for synaptic contacts to mature into a functional synapse, the transient contacts require stabilisation 

through cell-cell interactions mediated by surface proteins, for example ephrin type-B receptor 2 

(EPHB2, Kayser et al., 2008) and Cadherins 11 and 13 (Paradis et al., 2007). Surface proteins are also 

involved in recruiting the machinery necessary for the maturation of a functional synapse, including 

clustering neurotransmitter receptors (Takasu et al., 2002). A wide array of ADHD associated genes 

are involved in synaptogenesis, with a reduction in synaptic density potentially contributing to the 

reduced brain volumes seen in individuals with ADHD. 

In addition to their roles in axonal connectivity, intercellular signalling proteins CDH13 and 

ADRGL3 have a role in synapse formation. Knockdown of CDH13 leads to a reduction in 

GABAergic and glutamatergic synaptic density (Paradis et al., 2007). In addition, CDH13 expression 

overlaps with regions that show volume reductions in ADHD, such as the prefrontal cortex (Takeuchi 

et al., 2000). It is likely that these volume reductions are a consequence of decreased synaptic 

densities resulting from disruption of CDH13’s role in cell-cell signalling. Knockdown of ADRGL3 

in rodents decreases glutamatergic synaptic density in the hippocampus (O’Sullivan et al., 2012) and 

the cortex (O’Sullivan et al., 2014), and in zebrafish, loss of the ADRGL3 orthologue Lphn3.1 results 

in a decrease in dopaminergic neurons in the ventral diencephalon (Lange et al., 2012). Given the 

close relationship between axonal connectivity and synaptogenesis it would be beneficial to determine 

how variants in CDH13 and ADGRL3 affect both of these processes in the same model.  

Other ADHD associated genes have roles in synaptogenesis via modulation of glutamate transmission, 

including CHRNA7, GRM5, and BDNF. Duplications at the 15q13.3 locus, which includes CHRNA7, 

are enriched in ADHD (Williams et al., 2012) and individuals with a deletion encompassing CHRNA7 

and the first exon of OTUD7A demonstrate consistent neurological phenotypes such as mental 

retardation and global developmental delay (Shinawi et al., 2009). CHRNA7 codes for the α7 subunit 

of the neuronal nicotinic acetylcholine receptor (α7nAChR), and mice null for the CHRNA7 

orthologue have decreased cortical glutamatergic and GABAergic synapse development, with a 

decrease in synaptic N-methyl-D-aspartate receptor (Nmdar) expression, suggesting dysfunction in 

glutamate transmission (Lin et al., 2014a, 2014b). Disruption of glutamate transmission by knockout 

of the postsynaptic receptor Grm5, decreases dendritic spine density in younger mice (P21-23; 

Wijetunge et al., 2008), and increases densities in older mice (P45; Chen et al., 2012). Chen et al., 

(2012) suggest that this could be due to glutamate’s ability to induce de novo spine formation (Kwon 

and Sabatini, 2011), so it is possible that without correct postsynaptic modulation of glutamate 

signalling, an increased number of spines could form. At the least, the lower dendritic levels seen in 

younger mice is consistent with a developmental delay, and loss of α7nAChR and GRM5 disrupt 

synaptogenesis, likely through irregular glutamate signalling. Further examination, particularly into 

α7nAChR, is needed to elucidate the mechanism behind this phenotype. In addition, BDNF has been 

shown to stimulate both GABAergic synapse formation (Palizvan et al., 2004; Vicario-Abejón et al., 

1998), which is supported by a reduction in GABAergic synapse development in Bdnf knockout mice 

(Kohara et al., 2007), and formation of glutamatergic synapses (Alsina et al., 2001; Hu et al., 2005; 



Vicario-Abejón et al., 1998). However, in contrast to GABAergic neurons, glutamatergic synapses are 

not reduced in density in Bdnf knockout mice, but their maturation into functional synapses is 

impaired (Itami et al., 2003; Korte et al., 1995). The loss of inhibitory synapses would be consistent 

with the impulsive/loss of inhibitions phenotype seen in ADHD.  

Roles in synaptogenesis have also been suggested for the newly associated GWA genes, ST3GAL3, 

PTPRF, MEF2C, and FOXP2 (Demontis et al., 2017). ST3GAL3 plays a role in the sialylation of 

glycosphingolipids (also known as gangliosides), a subset of cell-surface glycans which play an 

important role in cell-cell and cell-environment signalling. Proteoglycans are particularly important in 

brain maturation as they enwrap neurons, forming a perineuronal net that stabilises mature synapses. 

Deficits in sialylation due to mutations in ST3GAL3 lead to intellectual disability and reduced 

cognitive function (Edvardson et al., 2013; Hu et al., 2011). St3gal3 null mice also show significantly 

increased motor activity, and decreased synaptic densities (Yoo et al., 2015). PTPRF, encodes the 

Leukocyte Antigen-Related Protein Tyrosine Phosphatase receptor (LAR-RPTP) and loss of 

excitatory synapses and dendritic spines is seen following overexpression of dominant-negative 

mutations or knockdown of LAR (Dunah et al., 2005). Presynaptic LAR expression has also been 

shown to induce clustering of excitatory postsynaptic proteins (Woo et al., 2009). This is potentially 

related to a role in axon guidance, as demonstrated for the Drosophila orthologue (Johnson and Van 

Vactor, 2003), however, experiments in Xenopus suggest LAR does not play the same role in 

vertebrates (Johnson et al., 2001). Lastly, MEF2C also negatively regulates excitatory synapse 

formation, with brain specific loss of Mef2c in mice leading to increased synapse and dendritic spine 

formation in the hippocampus (Adachi et al., 2016; Barbosa et al., 2008). In addition, overexpression 

of MEF2C-VP16, to create a transcriptional enhancer, decreases excitatory synapse formation 

(Barbosa et al., 2008). In the cortex, the opposite is seen, with conditional loss of Mef2c resulting in 

decreased excitatory synapses densities and increased inhibitory synapses densities (Harrington et al., 

2016), however, this is potentially due to cell-specific effects of Mef2c loss. Mef2c has also been 

shown to be repressed by FOXP2 through direct DNA binding, Foxp2 knockouts having decreased 

synaptic density as a result of the de-repression of Mef2c (Chen et al., 2016). FOXP2 also negatively 

regulates the sushi repeat-containing protein X-linked 2 (Srpx2) gene (Sia et al., 2013). Srpx2 

positively regulates excitatory synapse formation, and transfection of Foxp2 into rat cortical neurons 

decreases SRPX2 levels, and as such, decreases excitatory synapse densities (Sia et al., 2013). 

Together, this evidence supports the associations between these genes and an ADHD phenotype, and 

while a full loss of these genes is not seen in individuals with ADHD, a subtle phenotype caused by a 

gene variant could well be contributing to alterations in synaptic densities. 

 

SYNAPTIC ACTIVITY 

Other than a small fraction of electrical synapses, which directly transmit the nerve impulse to the 

post-synaptic neuron, synapses are predominantly chemical with the action potential carried along the 

axon triggering the release of neurotransmitters. Vesicles containing the neurotransmitter fuse with 

the membrane of the pre-synaptic element to release their contents into the synaptic cleft enabling 

neurotransmitter molecules to bind to receptors located at the surface of the post-synaptic element. 

Therefore, vesicular trafficking, fusion and recycling are critical for neurotransmission, and mutations 

affecting these processes have deleterious effects on brain function, and as a consequence disrupt 

development (Fig. 4). 

Synaptosomal associated protein 25 (SNAP25) is a member of the family of proteins that make up the 

soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) complex. This 



complex is involved in intracellular vesicular trafficking, facilitating neurotransmitter release, and is 

also important for the maintenance of cell membranes during cell fusion and division (Cupertino et al., 

2016). Variants in genes encoding components of the SNARE complex have been implicated in 

ADHD, ASD, schizophrenia, depression, and bipolar disorder, and defects in this complex disrupt 

neurodevelopment at multiple stages including axonal growth, synaptic plasticity, and neuronal 

survival (Cupertino et al., 2016). 

SNAP25 makes up two of the four helices that comprise the SNARE complex (Sutton et al., 1998), 

and variants in SNAP25 are associated with ADHD (Brophy et al., 2002; Gizer et al., 2009). Deletion 

of Snap25 is found in the Coloboma mouse, in which homozygotes die embryonically (Theiler et al., 

1979), and heterozygotes display hyperactive phenotypes and fail to meet neurodevelopmental 

milestones (Hess et al., 1992; Heyser et al., 1995). SNAP25A and SNAP25B, are the primary splice 

isoforms expressed during pre- and post-natal development, respectively (Bark et al., 1995). Adult 

mice expressing SNAP25A, but not SNAP25B, have decreased spatial learning, higher anxiety, and 

swollen hippocampal mossy fibres, with some areas showing almost complete loss of synaptophysin 

immunoreactivity, suggesting a loss of functional presynaptic elements (Johansson et al., 2008). This 

is most likely due to the disruption of the SNARE complex and hence failure of synaptic membrane 

maintenance. 

The solute carrier family 9 member A9 gene (SLC9A9) encodes a sodium/proton exchanger (NHE9), 

and has shown strong association with both ADHD (de Silva et al., 2003; Kondapalli et al., 2014; 

Lasky-Su et al., 2008) and ASD (Kondapalli et al., 2014). NHE9 is localised to late recycling 

endosome membranes, where it acts as a trans-membrane transporter for Na
+
 and H

+
 ions, controlling 

endosomal pH (Casey et al., 2010). Mutations in Slc9a9 have been found in the WKY/NCrl rat strain 

that primarily displays an inattentive phenotype (Zhang-James et al., 2011), as well as in ADHD cases 

displaying impulsivity and intellectual disability (de Silva et al., 2003). Downregulation of Slc9a9 

expression is also seen in the spontaneously hypertensive rat (SHR), which is known to display the 

combined phenotype of ADHD (Zhang-James et al., 2011). The limited work using knockout models 

of Slc9a9 has mostly identified traits related to ASD rather than ADHD (Yang et al., 2016). 

Considering that SLC9A9 has been shown to interact with proteins such as CHP and RACK1 (Lin 

and Barber, 1996; Ohgaki et al., 2008), known to be involved in Ca
2+

 signalling which is important 

for the phosphorylation of plasma membrane receptors such as solute carrier family 6 member 3 

(SLC6A3, also known as DAT1) and NMDA (Belmeguenai and Hansel, 2005; Lee et al., 2004; 

Mansuy et al., 1998), this may be how SLC9A9 variants contribute to ADHD. However, more 

research into SLC9A9 knockdown animal models is needed to determine if this is the case. 

 

  



 

 

  



Fig. 4. Impacts of ADHD associated gene knockdowns on synaptogenesis. Gene knockdowns or 

knockouts are shown in faded yellow, while decreases in synaptic density or plasticity are depicted as 

faded green. a) Loss of ADGRL3, CDH13, ST3GAL3, LAR-RPTP, FOXP2, MEF2C, α7nAChR, and 

BDNF all result in decreased synaptic densities. mGluR5 knockouts show decreased densities in 

young mice, and increased densities in older mice, potentially due to lack of postsynaptic glutamate 

regulation. b) Loss of NOS1, SNAP25, and GRM1 all result in decreased synaptic plasticity either 

through decreased long term potentiation or lack of synapse maintenance. An inability to recruit 

GRM7 to presynaptic membranes due to Elfin1 knockout is thought to lead to a decrease in 

presynaptic plasticity, while SLC6A3 3’UTR 10R could potentially lead to a decrease in potentiation 

through increased dopamine reuptake. SLC6A4 and 5-HT1B, through modulation of serotonin 

signalling, and SLC9A9, through endosomal recycling, could also disrupt synaptic plasticity. 

SORCS3 acts as a negative regulator of synaptic plasticity. 

 

SYNAPTIC PLASTICITY  

Potentiation and depression of synapses reflect how synaptic activity can modulate neuronal pathways 

in the context of learning and memory. Potentiation and depression refer to the strengthening and 

weakening of synapses, respectively, which allow for neuronal pathways to be tuned in an activity 

dependent manner to improve efficiency. The inability to regulate neural connections can lead to 

decreased brain volumes and inefficient neural networks. A range of neurotransmitter systems, 

including dopamine, nitrous oxide, glutamate, and serotonin have been implicated in synaptic 

plasticity, and could therefore play a role in maintaining these neural connections. 

The role of glutamate signalling in the long term depression and potentiation of synapses is 

demonstrated by members of the GRM family, as well as the newly identified ADHD gene, SORCS3. 

Members of the GRM family localise to pre- and postsynaptic elements, consistent with their role in 

long term depression and potentiation (Niswender and Conn, 2010). Grm1 knockout mice exhibit 

decreased long term potentiation in hippocampal neurons when attempting to learn an associative 

classical conditioning task, which coincides with an inability to learn the task (Gil-Sanz et al., 2008). 

GRM7’s regulation of both excitatory and inhibitory signalling systems makes it a candidate for the 

regulation of synapses (Palazzo et al., 2016). Its ability to inhibit excessive neurotransmitter release 

suggests that GRM7 is important for preventing over-excitation, and as such has a protective effect 

against neurological disorders, which is exemplified by the seizure susceptibility phenotype seen in 

Grm7 null mice (Niswender and Conn, 2010; Sansig et al., 2001). Similarly, an epileptic phenotype is 

observed in mice lacking the extracellular-leucine-rich repeat (LRR) fibronectin domain 1 (ELFN1) 

protein, which interacts with, and recruits, GRM7 to synapses in somatostatin-containing interneurons 

in the hippocampus (Tomioka et al., 2014). Elfn1 knockouts also show hyperactivity phenotypes and 

deficits in presynaptic plasticity (Tomioka et al., 2014). An inability to appropriately recruit GRM7 to 

synapses could be the cause of this phenotype, and the fact that Grm7 null mice have deficits in 

working memory as well as short term potentiation supports GRM7’s role in synaptic plasticity 

(Bushell et al., 2002; Goddyn et al., 2008; Hölscher et al., 2004). Given the strong evidence regarding 

the roles of GRM7 in neurodevelopment, and its interaction with ELFN1, ELFN1 may also be a 

promising candidate for ADHD.  

In addition to members of the GRM family, Sortilin Related VPS10 Domain Containing Receptor 3 

(SORCS3), demonstrates a role in long term depression via glutamatergic signalling. SORCS3 has 

been associated with ADHD both with rare overlapping CNVs (Lionel et al., 2011), and in a recent 

GWAS (Demontis et al., 2017). Loss of Sorcs3 in mice leads to a loss of NMDA and mGluR 

dependent long-term depression in the hippocampus, as well as deficits in spatial learning ability 



(Breiderhoff et al., 2013). Glutamate signalling thus plays a vital role in synaptic plasticity and 

variants in genes that are involved in glutamate pathways could lead to abnormal neural connections 

and inefficient brain networks.  

Nitrous oxide, serotonin, and dopamine, also play roles in synaptic plasticity. Nos1 knockout mice 

show increased impulsivity (Nelson et al., 1995), as well as deficits in spatial learning and memory 

(Wultsch et al., 2007). Memory deficits are suggestive of dysfunction in synaptic potentiation, as 

memory is the result of establishing lasting neuronal pathways. Serotonin has long been associated 

with alterations in synaptic plasticity, and the serotonin receptor 1B (5-HT1B) and SLC6A4 are both 

associated with ADHD (Gizer et al., 2009; Hawi et al., 2002; Manor et al., 2001) and are known to 

play a role in this process (Lesch and Waider, 2012). Knockout of Slc6a4 results in increased 

serotonin in the synaptic cleft (Lesch and Waider, 2012), and 5-Ht1b knockout mice display increased 

activity (Brunner et al., 1999). Further, 5-HT1B activation by serotonin inhibits glutamate release in 

the thalmocortical somatosensory pathway in the developing rat (Rhoades et al., 1994; Salichon et al., 

2001). The decrease in glutamate release following Slc6a4 knockout would reduce long term 

potentiation of excitatory synapses, supported by decreased NMDAR-dependent long term 

potentiation following treatment of rat primary visual cortex slice with serotonin (Kim et al., 2006). It 

is however, important to note that the effect of serotonin may vary between developmental stages and 

regions due to difference in the expression of its receptors (Wirth et al., 2017). 

SLC6A3 is potentially the best established ADHD-associated gene (Cook et al., 1995; Gizer et al., 

2009), and is important for the reuptake of dopamine from the synaptic cleft into the pre-synaptic 

neuron. ADHD individuals homozygous for the ten repeat (10R) VNTR allele in the SLC6A3 3’UTR 

show significantly decreased cortical thickness in the right prefrontal cortex compared to 

heterozygotes and homozygotes for the 9 repeat (9R; Fernández-Jaén et al., 2015). In children, the 

10R allele is associated with higher levels of the dopamine transporter (Brookes et al., 2007), which 

would lead to lower levels of dopamine in the synaptic cleft, consistent with a decrease in synaptic 

potentiation. This evidence further highlights the role of signalling molecules in synaptic plasticity, 

strengthening the association of neurotransmitter pathway genes with ADHD. 

The combined evidence points to disruption of synapses being the most common effect of ADHD 

associated variants. In addition, decreases in brain volume through decreased synaptic potentiation 

and synaptic maintenance are consistent with the ADHD phenotype. 

 

SELECTIVE CELL DEATH  

In the nervous system, neurons are generated in excess and the brain undergoes a phase of selective 

cell death to eliminate redundant neurons. Connectivity is one of the main criteria determining if a 

neuron is to survive or not. This is achieved through the release of trophic factors at the level of the 

post-synaptic neuron, including nerve growth factor and brain derived neurotrophic factor (BDNF), to 

promote the survival of the presynaptic neuron. Therefore, the more active connections a neuron 

establishes, the more likely it is to survive. Nerve growth factor and BDNF bind with tropomyosin 

receptor kinase A (TrkA) and tropomyosin receptor kinase B (TrkB), respectively. Nerve growth 

factor binding to TrkA prevents an apoptosis cascade in the peripheral nervous system, but its role in 

the central nervous system is not clear (Dekkers et al., 2013), although cholinergic neurons in the 

basal forebrain follow this same form of neuronal survival (Sanchez-Ortiz et al., 2012). In the CNS 

TrkB does not activate apoptosis, and BDNF binding is not required to prevent apoptosis from 

occurring (Nikoletopoulou et al., 2010), suggesting BDNFs role in cell survival is not via TrkB. 



However, most Bdnf null mice die at postnatal day 2 (Jones et al., 1994), and conditional Bdnf 

knockout in the cortex, (Baquet et al., 2004), which is the source of striatal BDNF, or the whole brain 

(Rauskolb et al., 2010), results in loss of dendritic complexity and neurons in the striatum, as well as 

loss of dopaminergic neurons in the midbrain-hindbrain region (Baquet et al., 2005). Conditional, 

forebrain restricted, knockouts also show progressive loss of cortical dendrite complexity (Gorski et 

al., 2003). There is therefore, substantial evidence that BDNF contributes to neuronal survival in the 

CNS, consistent with the ADHD phenotype. 

The regulation of neuronal survival is also influenced by the ADHD associated genes SNAP25, 

PTPRF, PARK2, NOS1, SLC6A4, and GRMs, via control of BDNF release, apoptosis, and oxidative 

stress. Loss of SNAP25 leads to neuronal degeneration, through an inability to maintain protein 

recycling at the plasma membrane (Peng et al., 2013). In addition to this, SNAP25 demonstrates an 

important role in neuronal survival through regulation of the exocytosis of BDNF in axons and 

dendrites of cortical neurons (Shimojo et al., 2015). Given that loss of BDNF results in neuronal loss 

in the CNS, appropriate regulation of its release would be essential for neuronal survival. Interestingly, 

BDNF strengthens the interaction of LAR-RPTP with TrkB in mice hippocampal neurons (Yang et al., 

2006), and BDNF neurotrophic activity decreases in Lar knockouts and knockdowns, and increases 

following exogenous expression of Lar (Yang et al., 2006), connecting BDNF to another ADHD 

associated factor. PARK2 regulates apoptotic factors, with dopaminergic neurons formed from 

PARK2 mutant iPSC lines showing lower pro-apoptotic factors and higher anti-apoptotic factors than 

controls (Konovalova et al., 2015). However, how this particular imbalance of apoptotic factors alters 

neuronal survival in ADHD requires further examination. 

Signalling molecules such as nitrous oxide, serotonin, and glutamate demonstrate roles in neuronal 

programmed cell death. Administration of anaesthetics containing high levels of NO to postnatal 

infant rats causes severe hippocampal neurodegeneration (Head et al., 2009) and activation of the 

apoptotic proteins caspase-3 and -9 in the cerebral cortex and thalamus (Lu et al., 2006). Slc6a4 

knockout mice have decreased levels of apoptosis in the striatum, thalamus/hypothalamus, cerebral 

cortex, and hippocampus, suggesting that serotonin activity can trigger programmed cell death 

(Persico et al., 2003). In the case of glutamate, excess glutamate can lead to reduced glutathione levels, 

causing oxidative stress and cell death (Murphy et al., 1989). This glutamate cytotoxicity can be 

prevented through the activation of group 1 metabotropic glutamate receptors, GRM1 and GRM5, 

restoring glutathione levels and preventing oxidative stress (Sagara and Schubert, 1998). Considering 

other members of the GRM family such as GRM7 also regulate glutamate levels, they may also have 

a role in programmed cell death. 

BDNF, NO, serotonin, glutamate, PARK2, SNAP25, and PTPRF, all play important roles in selective 

cell death. Increases in apoptosis would result in decreased neuronal number, consistent with 

decreased brain volumes seen in ADHD, while a decrease in apoptosis could result in an inability to 

clear inefficient neural connections, preventing the establishment of optimal neural networks. 

 

GLIA AND MICROGLIA 

Glial and microglial cells are essential to the development of a normal functioning brain and genetic 

variants affecting their organisation have been linked to neurodevelopmental cognitive disorders, 

including ASD (Zhan et al., 2014). Glial cells, comprising oligodendrocytes and astrocytes, arise from 

the same pools of progenitors as neurons, and disperse through the developing brain using the same 

guidance molecules as neurons. The supporting role of glial cells in neurodevelopment cannot be 



overstated, as they are important in synaptic plasticity, maintaining neural environments, and allowing 

efficient neural networks through myelination. Disruptions to glial cell processes can therefore have 

wide reaching effects during neurodevelopment. 

Oligodendrocytes are the myelinating cells of the brain, they wrap around segments of the axon, 

forming a sheath of insulating myelin to accelerate the conduction of action potentials. Myelinated 

fibres assemble in bundles, forming large white matter tracts easily detected by MRI and are reduced 

in ADHD (Liston et al., 2011; van Ewijk et al., 2012). The migration of oligodendrocyte precursor 

cells (OPCs) depends on cues expressed by neurons, including polysialylated neural adhesion 

molecule (PSA-NCAM), which promotes OPCs survival (Palser et al., 2009) and migration (Decker 

et al., 2000). PSA-NCAM also prevents the differentiation of OPCs into myelinating oligodendrocytes 

(Decker et al., 2000) with downregulation of PSA-NCAM on axons coinciding with the onset of 

myelination in the human fetal forebrain (Jakovcevski et al., 2007). Decreased levels of PSA-NCAM 

have also been shown in St3gal3 null mice, which coincides with decreased myelination, myelin basic 

protein, and oligodendrocyte transcription factor 2 (Yoo et al., 2015). Variants in NCAM have 

demonstrated association with schizophrenia, which shows significant genetic overlap with ADHD 

(Cristino et al., 2013). In addition to this, NOS1 which promotes the growth and arborisation of 

oligodendrocytes (Garthwaite et al., 2015) also shows association with ADHD, suggesting that 

myelination defects might contribute to ADHD symptoms. 

Genes implicated in the development and maturation of astrocytes have also been associated with 

ADHD. Astrocytic functions are essential for the brain's development and activity, providing 

supportive roles for neurons, clearing the environment of metabolic waste and cell debris following 

injury. The migration of astrocytes during brain development and maturation depends on GIT1, which 

promotes cell motility. Git1 null mice exhibit abnormal astrocytosis in the basal ganglia pathway, 

altering synaptic transmission in the basal ganglia and, ultimately, impairing the inhibitory 

modulation of the thalamus (Lim and Mah, 2015). Alteration of these structures in ADHD (Table 1) 

and genetic studies revealing a correlation between GIT1 and ADHD (Won et al., 2011), suggest that 

increased astrocytosis may play a role in the disorder. However, there is conflicting evidence with 

regards to GIT1’s role in ADHD (Klein et al., 2015), and this requires future investigation. 

In addition to its neuronal expression, α7nAChR has also been detected on astrocytes, in the rat 

hippocampus (Shen and Yakel, 2012). Activation of astrocytic α7nAChR results in a greater increase 

in intracellular calcium in astrocytes compared to that recorded in neurons, suggesting that astrocytic 

α7nAChR participates in neuroprotection by reducing levels of extracellular calcium. Abnormal 

astrocytic expression of CHRNA7 in ADHD could therefore result in increased neuronal cell death. 

Astrocytes are responsible for clearing the neurotransmitter at the level of the synaptic space 

following neurotransmission to prepare the environment for a new release. Therefore neurotransmitter 

receptors and transporters are expressed in astrocytes, in particular the norepinephrine transporter 

SLC6A2 (Inazu et al., 2003), which is associated with ADHD (Lasky-Su et al., 2008). It is therefore 

possible that abnormal norepinephrine signalling by astrocytes may contribute to ADHD. Similarly, 

the dopamine receptor DRD5 is expressed in striatal astrocytes during development (Brito et al., 2004) 

and has also been associated with ADHD (Daly et al., 1999; Gizer et al., 2009). Astrocytic expression 

of Drd5 is promoted by BDNF, which is pivotal in brain development, accelerating the maturation of 

newborn neurons and facilitating their survival (Brito et al., 2004). BDNF is expressed by 

oligodendrocytes and, to a lesser extent, astrocytes, which upregulate the trophic factor's expression 

following lesion (Dougherty et al., 2000). Altogether, the evidence indicates that abnormal 



oligodendrogenesis would lead to a reduction of BDNF, impairing the astrocytic expression of DRD5 

and dopamine reuptake. 

The brain also contains microglia, the resident myeloid cells found throughout the mammalian central 

nervous system. Microglia are critically involved in the immune response in the injured brain but also 

play essential roles during brain maturation. Microglia promote learning-dependent synapse formation 

in the juvenile brain through BDNF release at the level of the synapse (Parkhurst et al., 2013). Both 

spine elimination and formation, part of learning-dependent synaptic turnover, are significantly 

reduced following loss of microglial BDNF, resulting in severe learning deficits as seen in 

neurological disorders. Therefore, the symptoms associated with ADHD could result from abnormal 

secretion of BDNF from microglia. Similar to astrocytes, microglia express neurotransmitter receptors, 

including the serotonin receptor HTR2B (Kolodziejczak et al., 2015) and α7nAChR (Shytle et al., 

2004; Suzuki et al., 2006). The cholinergic activation of α7nAChR that promotes the neuroprotective 

functions of microglia, and inhibits inflammation, may be another route by which variants in 

CHRNA7 contribute to ADHD.  

Therefore, whilst research has mainly focussed on the neuronal defects underlying ADHD symptoms, 

genes associated with ADHD are also involved in the development of the non-neuronal fraction of the 

brain and abnormal gliogenesis and microgliogenesis could contribute to the disorder. 

 

CONCLUSIONS 

ADHD associated genes participate in all stages of brain development, with those affecting 

neurotransmission potentially playing a role at every stage. Of course, neurotransmitters have been 

associated with ADHD for a long time, with the targeting of dopamine reuptake by methylphenidate 

being the most common medication. The beneficial effects of methylphenidate suggests that 

neurotransmitter dysregulation contributes to the disorder, but this does not preclude an additional 

contribution of neurotransmitters during neurodevelopment, and the dysregulation of the dopamine 

pathway in ADHD may have its origins in the early stages of brain development.  

The majority of ADHD associated genes with a known developmental role are involved in the 

formation and activity of synapses, and disruption of this process is a likely cause of the reduced brain 

volume observed in ADHD. Furthermore, aberrations in neuronal and axonal migration are consistent 

with the developmental delay hypothesis. Whilst it is therefore possible to look at cell and animal 

studies to make a link to the symptoms observed, it is important to note that most of the studies 

reviewed here involve gene knockout or overexpression systems, while variants detected in ADHD 

are usually SNPs or variable number tandem repeats. The majority of these variants are found in non-

coding regions and, individually, are likely to have very small effects on function. Looking forward, 

this presents a challenge in modelling ADHD-associated variants, as while it is getting easier to 

introduce single variants into animal models, we are lacking the necessary assays to detect the small 

changes in behaviour and physiology that these variants likely cause. Examining multiple variants 

simultaneously could provide us a way of examining the effects of these variants in a form naturally 

seen in ADHD, but would not allow dissection of their individual roles. The development of suitable 

animal models and, importantly, sensitive behavioural assays for these models, will allow further 

examination of the neurodevelopmental contribution to ADHD, and is a paramount to understanding 

the disorder as a whole. 
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