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ABSTRACT
This paper endeavors to model the equilibrium speed–density rela-
tionship using a new fuzzy logic-based approach. To capture the
randomness in traffic flowdynamics, it develops a single-input Adap-
tive Neuro-Fuzzy Inference System (ANFIS) trained with a hybrid
algorithm. Furthermore, it proposes anewPremise-ConsequentCon-
jugate Effect (PCCE) relationship to estimate fundamental diagram
(FD) parameters from the ANFIS model. Several options (i.e. optimal
split of data into training and testing data, selection of suitablemem-
bership function) offered by ANFIS are then illustrated. An experi-
ment is performed to determine themaximum achievable goodness
of fit without the occurrence of overfitting phenomenon by chang-
ing the number of clusters. The calibrated ANFIS model is compared
against traditional and advanced speed–density models for five dif-
ferent freeway locations. Results show that the proposedmodel out-
performsotherprecedingmodelsby attaininggoodness-of-fit values
within a range of 0.82–0.92. Finally, the proposed PCCE relationship
shows the ANFIS model’s robustness in accurate estimation of FD
parameters for all freeway locations.
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1. Introduction

The fundamental diagram (FD), that is bivariate equilibrium relationships of traffic flow (q),
speed (v), and density (ρ), is of great importance in analysis of traffic flow and model-
ing of traffic behavior. For example, the concept of level of service for a highway relies
on input from the speed–flow relationship (TRB 2010). The flow–density relationship is
central in many investigations associated with traffic flow dynamics (Daganzo 1995). In
high-order traffic flow models (Messmer and Papageorgiou 1990; Kotsialos et al. 2002),
the speed–density relationship plays an important role. However, among the three ‘pair-
wise’ relationships (e.g. speed–density, flow–density, and speed–flow), the speed–density
relationship appears to be challenging as it encapsulates a direct connection to everyday
driving behavior. Traffic flow in the real world is characterized by heterogeneous driving
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experience, i.e. perturbation in speed choice influencedby the surrounding vehicles. There-
fore, a speed–density model that better captures these effects is demanded for traffic flow
analysis and efficient traffic control.

Modeling of the speed–density relationship began with the Greenshields’ linear model
in the seminal paper: A Study in Highway Capacity (Greenshields 1935). This seminal work
has inspired a slew of new models (Greenberg 1959; Underwood 1961; Pipes 1967; Drew
1968) which propose a variety of mathematical models containing several parameters. The
values of these parameters are estimated by fitting these models to empirical traffic data.
A comprehensive explanation of the parameters in terms of traffic flow dynamics is then
developed to endow the mathematical model with a phenomenological interpretation.
However, these models are limited in the sense that they try to fit the traffic dynamics
to a definite shape (i.e. logarithmic, exponential, and exponential to the quadratic and
various forms of polynomials). Nevertheless, a live transportation system is dictated by traf-
fic streams with dynamical randomness effects, which result from heterogeneity in both
vehicle attributes and driver preferences. For example, in a multimodal system, passen-
ger cars, trucks, and public transportation travel in the same right-of-way. The difference
in vehicle dynamics necessarily endows themwith heterogeneous gapmaintaining behav-
ior, lateral movement and longitudinal motion, and lanes to travel on. As another example,
drivers demonstrate heterogeneous driving behavior, e.g. minimum headway distances to
keep when following leading vehicles, frequency in applying brakes, fluctuation in arrival
pattern, etc. These lead to a complex traffic dynamics, which cannot be replicated by
conventional speed–density models. To address this phenomenon, the proposed model
must have sufficient shape flexibility to be fitted accurately to the measured field data
(MacNicholas 2008).

A number of studies suggest that changes in behavior of the leading vehicle cause fluc-
tuations in the reactionof drivers; this phenomenon causes traffic flow instability (Chandler,
Herman, and Montroll 1958; Kometani and Sasaki 1961). At low densities, vehicle inter-
actions are occasional and the drivers travel at their most comfortable speed. This leads
to a stable traffic flow and, therefore, there are no substantial speed drops. This type of
traffic flow pattern corresponds to a density range from 0 to 32 vehicle/mile/lane (del
Castillo 2001). Near critical density, the interaction between drivers becomes pivotal to
maintain stability of traffic flow. In particular, it has been observed that drivers vary their
choice in speed and spacing selection somewhat randomly between two branches in the
flow–density FD. It is assumed that drivers continuously vary their spacing and seek for
lane-changing opportunities (Kerner 2004). Thus the propagation of a speed perturbation
is not fully predictable because of the random nature of driving. Empirical observation
from I-80 detectors in Berkeley, CA (Figure 1(a)), shows that traditional speed–densitymod-
els perform poorly to capture random driver behavior influenced by the shockwave in
the transition zone. The transition zone is also associated with curvature change in the
speed–density curve. In addition, a number of researchers (Newman 1963; Mita, Kreer, and
Yuan 1969) demonstrate that traffic flow dynamics is influenced by different geometric
patterns of the road (i.e. on-ramp/off-ramp on a freeway). Figure 1(b) represents the afore-
mentioned phenomena showing that mainline traffic maintains its stability for a larger
density value.

However, for other freeway locations, there has been a variation on the origin of the
traffic flow instability due to the change in geometrical pattern of the road and traffic
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Figure 1. (a) Traditional speed–densitymodels performpoorly to capture randomdriver behavior influ-
enced by the shockwave in the transition zone and (b) variation in the origin of traffic instability for
different locations.

operation. A developed speed–density relationship must acknowledge the effects of: (a)
randomdriver behavior in the transition zone, and (b) different geometrical and traffic flow
patterns of basic and nonbasic roadway segments on the shape of FD.

Traffic flow dynamics is characterized by uncertainty, subjectivity, fuzziness, and ambi-
guity. Human operators, dispatchers, drivers, and passengers take decisions based on
subjective knowledge or linguistic information (Teodorovic and Vukadinovic 2012). Human
decisions about lane change, gap acceptance, and acceleration and deceleration process
affect the equilibrium speed–density relationship. The equilibrium traffic state assumes
that for a given traffic density, the mean speed converges (with a lag time) to the FD.
Thus, on the FD, all the drivers have the same desired speed, and the corresponding point
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will not move unless the density on that roadway changes. However, humans make deci-
sions based on complex reasoning and it becomes challenging to formulate an appropriate
model for it, making the application of fuzzy logic systems justified in developing the
speed–density relationship. The application of neural network based learning for various
transportation problems is not fresh at all. Teodorovic and Vukadinovic (2012) described
a number of potential applications of fuzzy logic and neural networks in transportation
problems. Andrade, Uchida, andKagaya (2006) developed an adaptive networkbased fuzzy
logic transportation choice model. Pahlavani and Delavar (2014) described the applica-
tion of a locally linear neuro-fuzzy system to perform multicriteria route planning based
on drivers’ preferences in multicriteria route selection.

In this paper, we have demonstrated that traditional speed–density models perform
poorly in capturing the randomness in driver behavior as well as the effects of different
freeway locations (on-ramp, off-ramp) on the shape of FD. To address the problem, we
have developed a new calibration approach, integrating the abilities of ANNs self-learning
with the linguistic expression function of fuzzy inference, that can replicate speed–density
relation over all possible traffic states, i.e. light-traffic/free-flow conditions, transition region
as well as congested/jam conditions. We have also developed a new premise-consequent
relationship to extract FD parameters. A multitude of options (i.e. optimal split of data into
a training sample and a testing sample, selection of suitable membership function (MF)
offered by ANFIS are then illustrated using I-80 dataset near Berkeley. The calibrated ANFIS
model is compared against traditional as well as advanced speed–density models for five
different highway locations.

The remaining sections of this paper are outlined as follows. A literature survey on
speed–density models is provided in Section 2. This is followed by the proposed ANFIS-
based speed–density model and its parameters and properties in Section 3. Calibration
and validation of the proposed model is conducted using field observations from I-80 in
California in Section 4. Finally, Section 5 concludeswith some remarks and future directions.

2. Literature review

Considering the focus of this study, the extent of the literature review has been con-
finedwithin different traditional and advanced speed–densitymodels proposed by various
researchers. Particularly, a brief discussion on these models including their characteristics
and mathematical formulation has been presented in this section.

2.1. Traditional speed–densitymodels

It has been almost 82 years since Greenshields first rigorously documented a linear rela-
tionship between speed and density (Greenshields 1935). Consequently, corresponding
flow–density relationship considers a parabolic transition around capacity condition with
overestimated optimal density and underestimated optimal speed. Nevertheless, this sem-
inal work led to a new era of transportation science and engineering. There has been a
number of follow-up studies devoted to reviewing or improving such a simplified relation-
ship. These studies include single regimemodels: Greenberg’sModel (Greenberg 1959), the
UnderwoodModel (Underwood 1961), Northwestern (Drake, Schofer, andMay 1967; Drew
1968), and the Pipes–Munjal Generalized Model (Pipes 1967). There are also multi-regime
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Table 1. Single regime speed–density models.

Single regime models Functions Parameters

Greenshields (1935) v = vf

(
1 − ρ

ρj

)
vf , ρj

Greenberg (1959) v = vm log
ρj

ρ
vm , ρj

Underwood (1961) v = vf exp
−
(

ρ

ρo

)
vf , ρo

Northwestern (Drake, Schofer, and May 1967) v = vf exp
−
1

2

(
ρ

ρo

)2

vf , ρo
Drew (1968) v =

vf

⎡
⎢⎣1 −

(
ρ

ρj

)n+
1

2

⎤
⎥⎦

vf , ρj

Drake, Schofer, and May (1967) v = vf exp

1

2

(
ρ

ρj

)2
vf , ρj

Pipes (1967) v = vf

(
1 −

(
ρ

ρj

)n)
vf , ρj

Table 2. Multi-regime speed–density models.

Multi-regime models Free-flow regime Transitional-flow regime Congested-flow regime

Edie (1961) v = 54.9exp
−

ρ

163.9 (ρ ≤ 50) _ v = 26.8 ln
(
162.5

ρ

)
(ρ ≥ 50)

Two-regime model
(May 1990)

v = 60.9 − 0.51ρ(ρ ≤ 65) _ v = 40 − 0.265ρ(ρ ≥ 65)

Modified Greenberg
(May 1990)

v = 48(ρ ≤ 35) _ v = 32 ln
(
145.5

ρ

)
(ρ ≥ 35)

Three-regime linear
model (May 1990)

v = 50 − .098ρ(ρ ≤ 40) v = 81.4 − 0.913ρ(40 ≤
ρ ≤ 65)

v = 40.0 − 0.26ρ(ρ ≥ 65)

models which include two-regime models such as Edie Model (Edie 1961), multi-regime
model by cluster analysis (Sun and Zhou 2005), two-regime linearmodel (May 1990), modi-
fiedGreenberg, and three-regimemodels (Drake, Schofer, andMay1967;May1990). Table 1
and Table 2 list most of the well-known speed–density models.

The fact that traditional single- and multi-regime speed–density models match empiri-
cal observations poorly has been well documented in a number of studies (May 1990; Hall,
Hurdle, and Banks 1992; Qu,Wang, and Zhang 2015). For example, Greenshields (1935) col-
lected only seven data points from one lane in a two-way rural road in which six of the
data points were under 60 mile/hour and the seventh data point was taken from a dif-
ferent road (Hall, Hurdle, and Banks 1992). Seven data points are unlikely to generate a
whole picture of a speed–density relationship. Greenberg (1959) bridged the gap between
macroscopic models and the third General Motor car-followingmodel (Gazis, Herman, and
Potts 1959; Gazis, Herman, and Rothery 1961). However, this model fails to predict speed
at lower densities, because as density approaches zero, speed tends to increase to infin-
ity. In addition, optimum speed and jam density are difficult to observe from empirical
data (May 1990). Later, Underwood (1961) proposed an exponential model that tried to
overcome the drawback of the Greenberg model. The main limitation of the Underwood
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model is that speed becomes zero only when density reaches infinity and so this model
cannot be used for predicting speeds at high densities (May 1990). This deficiency also
appears in the Northwestern model (May 1990) coupled with its assumption of a concave
flow–density relationship for the congested regime that is not attractive to dynamic traffic
analysis. The Drew model (Drew 1968) and Pipe–Munjal model (Pipes 1967) are the varied
forms of Greenshields’ model and so they inherited the shortcomings of the origin model,
both severely predicting underestimated optimal speed.

The inability of single regime models to fit the empirical data consistently well both
in free-flow regime and congested regime paved the way for the development of multi-
regime models in spite of the fact that this approach lacks mathematical elegance. Multi-
regimemodels usually include two or three regimes, for example two-regimemodels such
as the Edie Model (Edie 1961), two-regime model (May 1990), multi-regime model by clus-
ter analysis (Sun and Zhou 2005), modified Greenberg, and three-regime models (Drake,
Schofer, and May 1967; May 1990). The two-regime model is developed on the notion
that two different curves are used to model the free-flow regime and the congested-
flow regime separately. Edie (1961) first used this phenomenon and therefore proposed
a discontinuous exponential form using the Underwood model for the free-flow regime
and the Greenberg model for the congested-flow regime. In addition, there is a three-
regimemodel that applied three linear curves tomodel the free-flow, transitional-flow and
congested-flow regimes; each of the regimes is characterized by a Greenshields model
(May 1990). Table 2 lists most of the well-known multi-regime speed–density models
(Drake, Schofer, and May 1967; May 1990). The main drawback of the above multi-regime
models is that they cannot determine breakpoints in a precise way. To address this prob-
lem, Barua et al. (2017) adopted the likelihood maximization approach for identifying
multi-regime models’ breakpoint to calibrate various FDs under different road geometric
and traffic operational conditions. However, multi-regime models still lack mathematical
elegance.

2.2. Advanced speed–densitymodels

Mahnke and Kaupužs (1999) demonstrated that a stochastic relationship could better
characterize this fundamental relationship in consideration of the stochastic nature of scat-
tered samples. In view of this phenomenon, a few pioneering attempts have been made
to capture this stochastic property. Muralidharan, Dervisoglu, and Horowitz (2011) pro-
posed a probabilistic graphical approach to account for the probabilistic nature of FD
parameters based on the triangular deterministic model. Fan and Seibold (2013) intro-
duced a new varying parameter, the empty-road velocity, to capture the randomness in
the Aw–Rascle–Zhang (ARZ) model. Jabari, Zheng, and Liu (2014) explored the derivation
of probabilistic stationary speed–density relation based onNewell’s simplifiedmicroscopic
car-following model. Muralidharan, Dervisoglu, and Horowitz (2011), Fan and Seibold
(2013), and Jabari, Zheng, and Liu (2014) are among the few researchers that have devel-
oped models to generate the distributions of speed or flow as a function of density and
percentile based fundamental (flow/speed–density) relations are attainable (Qu, Zhang,
and Wang 2017). However, the fact that these models are developed based on a specific
traffic flowmodel limits their applicability to deal with the stochasticity of traffic flow using
other traffic flow models.
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Wang et al. (2009) have attempted to overcome the well-known shortcomings of tradi-
tional models by developing a stochastic speed–density relationship model. It considers
second-order statistics (i.e. mean and variance) to establish a stochastic speed–density
relationship. Moreover, an exponential correlation between different densities within
the empirical observations has also been considered to incorporate the dependency of
driver collective behavior. Later, Wang et al. (2011) proposed a five-parameter logistic
speed–density model (5PL) in consideration of the fact that the empirical speed–density
observations exhibit a reversed ‘S’ shape. The proposed logistic model did match the
empirical speed–density observations well and also included a parameter kt which aids in
capturing the inflection point, the point where there is no curvature or where the curve
shifts from being concave to convex. These attractive features make it possible for the 5PL
model to overcome almost all the drawbacks traditional speed–densitymodels suffer from.
However, themodel assumes that even if thedensity approaches infinity, there exists a non-
zero speed (ρ → ∞, V → vb); this makes it difficult to obtain one of the important FD
parameters, jam density. Later, Qu, Wang, and Zhang (2015) demonstrated that the inac-
curacy of the well-known three-parameter logistic (3PL) model (Wang et al. 2011) can be
contributed not only to their functional forms but also by the biasness in sample selection.
Afterwards, a weighted least square method (WLSM) was applied that addressed this bias-
ness. Besides, Ni et al. (2015) proposed the longitudinal control model (LCM) considering
the perspective of physics and human factors. Particularly, it is a single regimemodel with a
large set of parameters that is applied to the entire range of speed–density. Ultimately, the
research concluded that themodel flexibility andgoodness-of-fit increaseswith an increase
in the number of model parameters.

3. Fuzzy logic-based equilibrium speed–density relationship

The Adaptive Neuro-Fuzzy Inference System (ANFIS) was first originally developed by Jang
in 1993 (Jang 1993). ANFIS is a functional data processing technique that applies fuzzy logic
to map the input variables to output dependents (Jang 1993; Jang and Gulley 1994; Jang
and Sun 1995). As a neuro-fuzzy system is based on linguistic rules, it offers the advantage
of integrating prior knowledge into the system and this can substantially shorten the learn-
ing process. Fuzzy logic provides a simple way to arrive at a definite conclusion even if the
input information is vague, ambiguous, imprecise, noisy, or missing (Kaehler 1998). Typi-
cally, fuzzy systems rely on a set of IF–THEN rules pairedwithMFsmodified and adjusted to
emulate the trend of the dataset through connected nodes that have different parametric
functions. Afterwards, the learning algorithms are implemented to bring in the adjustment
of the MF parameters to capture the attributes of the input data and map output accord-
ingly. These IF–THEN rules cannot share the same output MF. The number of MFs must be
equal to the number of rules. To present the single-input ANFIS architecture, fuzzy IF–THEN
rules based on a first-order Sugeno model are considered:

Rule(1): IFρis A1, THEN

f1 = p1ρ + r1

Rule(2): IF ρis A2, THEN

f2 = p2ρ + r2
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Figure 2. ANFIS structure: (a) layer representation; (b) linguistic representation; (c) block diagram.

. . . .

Rule(n): IF ρis An, THEN

fn = pnρ + rn

where ρ is the density, Ai is the fuzzy set, fi are the outputs within the fuzzy region specified
by the fuzzy rule, and pi and ri are the design parameters that are determined during the
training process.

Figure 2(a) illustrates the reasoningmechanism for this Sugenomodel, which is the basis
of the ANFIS model. The ANFIS architecture implements the rules within this mechanism.
In this figure, a circle indicates a fixed node, whereas a rectangle indicates adaptive node.
Moreover, ANFIS has a five-layer architecture. Each layer is explained in detail below.

Layer 1 is made up of input parametric MFs, and it provides the input values to the fol-
lowing layer. All nodes here are considered as adaptive nodes. This layer takes density as
input and the outputs of Layer 1 are the fuzzy membership grade of the inputs, which are
given in Equation (1),

O1,i = mAi(ρ), i = 1, 2, . . . . . . n (1)

whereρ is thedensity input tonode i andAi is the linguistic labels (high, low, etc.) associated
with this node function that is shown in Figure 2(b).mAi can adopt any MF. If A bell-shaped
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MF is employed,mAi is given in Equation (2),

mAi = 1

1 +
[(

ρ−ci
ai

)2]
bi

, i = 1, 2, . . . n (2)

or the Gaussian MF by Equation (3),

mAi(ρ) = exp

[
−
(

ρ − ci
ai

)2
]
, i = 1, 2, . . . ..n (3)

where ai, bi, ci are the parameters of the MFs. The parameters in this layer are usually
referred to as premise parameters.

The membership layer is the second layer and here nodes are fixed nodes. This layer
involves fuzzy operators; it uses theAND operator to fuzzify the inputs. They are labeled as
π , indicating that they perform as a simplemultiplier. However, the speed–density relation
has only one input. Thus the output of these layers can be represented by Equation (4). This
layer exerts the firing strength of the rules. The individual rule possesses individual firing
strength.

O2,i = wi = mAi , i = 1, 2 . . . . . . n (4)

In Layer 3, the nodes are also fixed nodes labeled by N to indicate that they play a normal-
ization role to the firing strengths from the previous layer. The output of this layer can be
represented by Equation (5). The output of this layer is called normalized firing strengths.

O3,i = w̄i = wi

w1 + w2 + . . . .. + wn
, i = 1, 2, . . . .n (5)

In Layer 4, the nodes are adjustable. The output of each node in this layer is simply
the product of the normalized firing strength and a first-order polynomial (for a first-order
Sugeno model). The output of this layer is given in Equation (6),

O4,i = w̄ifi = w̄i(piρ + ri), i = 1, 2, . . . n (6)

where w̄i is the output of Layer 3 and pi, ri are the consequent parameters.
In the Layer 5, there is only single fixed node labeled with

∑
. This node performs the

summation of all incoming signals. The overall output of themodel is given in Equation (7).

O5,i =
∑
i

w̄ifi =

∑
i
wifi∑

i
wi

(7)

The learning algorithm for ANFIS is a hybrid algorithm that is a combination of gradient
descent and least squares methods. In the forward pass of the hybrid learning algorithm,
node outputs go forward until Layer 4 and the consequent parameters are identified by the
least squares estimate. In the backward pass, the error rates propagate backward and the
premise parameters are updated by the gradient descendent algorithm. The hybrid learn-
ing approach converges much faster by reducing search space dimensions of the original
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backpropagationmethod (Jang1991). Theoverall output canbeexpressedby Equation (8),
where p1, p2 . . . . . . ..pn and r1, r2, . . . . . . . . . rn are the linear consequent parameters.

f = w1
w1+w2+....+wn

f1 + w2
w1+w2+....+wn

f2 + . . . .. wn
w1+w2+....+wn

fn,

f = w1(p1ρ + r1) + w2(p2ρ + r2) + . . . . . .wn(pnρ + rn),
f = (w1ρ)p1 + (w1)r1 + (w2ρ)p2 + (w2)r2 + . . . . . . (wnρ)pn + (wn)rn,

⎫⎪⎬
⎪⎭ (8)

3.1. Themotivation for using ANFIS

The functional form of ANFIS is the Sugeno model (see Equation (6)), which is trained over
empirical data using hybrid algorithm mentioned in the previous section. Therefore, the
Sugeno model and its parameters (premise parameters and consequent parameters) are
directly related with the FD parameters. Equation (8) can be rearranged as

v = ρ

n∑
i

w̄ipi +
n∑
i

w̄iri (9)

wherewi is the firing strength, which depends upon the premise parameters (ai and ci) and
pi, ri are the consequent parameters. However, Equation (9) can also be rewritten as

v = Aρ + B

= B
(
1 + A

B
ρ

) (10)

where A =
n∑
i
w̄ipiand B =

n∑
i
w̄iri. Equation (10) and the functional form proposed by

Greenshields (1935) for speed–density are equivalent. However, unlike the Greenshields
model, the parameters in Equation (10) are not constant as follows: A = f (ρ, ai, ci, pi) and
B = f (ρ, ai, ci, ri).

ANFIS provides shape flexibility incorporating three factors: (a) number of MF; (b)
premise parameters; and (c) consequent parameters. Among these, premise parameters
provide the required curvature to the speed–density FD, whereas the number of MF con-
trols the extent of the curvature. IndividualMF covers a distinct region of the speed–density
curve. It opens a scope for agglomeration of the empirical data according to their charac-
teristics into a particular MF. Moreover, the overlapping among the MFs causes superim-
position of the curves, which ultimately adds further flexibility to the ANFIS model. Finally,
the consequent parameters control direction of baseline of the curvature. Combination of
these three functionalities enables ANFIS model to capture the actual trend of empirical
speed–density relationship.

3.2. FD parameters estimation fromANFISmodel

In general, free flow speed (vf) is the speed at ρ = 0 and the jam density (ρj) can be
termed as the density at v = 0. Using these conditions, vf and ρj can be estimated from
Equation (10). Consequently, putting (ρ, v) ∈ {(0, vf ), (ρj, 0)}, the following relations can be
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obtained as

vf = B

ρj = −B
A
.

For homogenous MFs and the Sugeno model, the free flow speed (vf ) and jam density (ρj)
can be extracted from the following equations:

vf =
n∑
i=1

wiri (11)

ρj =

n∑
i=1

wiri∣∣∣∣ n∑
i=1

wipi

∣∣∣∣
(12)

wherewi is the firing strength of MF i and n is the total number of MFs.
Equations (11) and (12) entail that both vf and ρj are related to premise (ai and ci) and

consequent parameters (pi and ri). vf includes only the constant term of the consequent
parameters. On the other hand, ρj considers both gradient (pi) and constant term (ri) while
estimation. It illustrates that the slope of the speed–density relationship also affects ρj. This
Premise-Consequent Conjugate Effect (PCCE) aids in providing the desired calibrated FD.
Premiseparameters control the shapeof theFD.On theotherhand, consequentparameters
are liable for providing the final output value.

The gradient pi can be described as the representative of the gradient of the

speed–density relationship
(
dv

dρ

)
, where dv

dρ
= 1

ρ
dq
dρ

− v
ρ

= f
(
dq
dρ

, v, ρ
)
, then ∃!i|ρj → pi,

which is similar to ‘backward wave speed’ phenomenon (Mehran, Kuwahara, and Naznin
2012). It also indicates that there exists only one MF that contains the consequent parame-
ters for estimating the jam density. However, practical application is not straight forward
as the consequent parameters in Sugeno models, premise parameters in MFs are not
homogenous. This heterogeneity can be observed from the dissimilarity in geometrical
shape among the MFs and Sugeno models.

In practice, different MFs cover different portions of the data (as shown in Figure 3(b)).
It makes the parameter values different for different MFs which introduce heterogeneity.
Thus complexity arises when formulations based on homogeneity, such as Equations (11)
and (12) are used, as the value of the FD parameters become dependent on the density.
Thus, to solve this, conditions need to be adopted which will also ensure the accuracy in
estimation of FD parameters. In this regard, two basic properties of the FD: (i) vf can be
obtained at ρ = 0 and (ii) ρj can be obtained at v = 0 are considered. These entail that vf
must comprise of the premise and consequent parameters of the first MF and ρj is included
in the last MF; the first and last MFs cover the data associated with vf and ρj respectively
(see Figure 3(b)). Moreover, the premise and consequent parameters needed for estimating
qmax reside in one of the MFs apart from the first and the last one.

To accommodate all these above-mentioned considerations, modified formulations
are necessary to obtain FD parameters. These considerations reduce the complexity and
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Figure 3. (a) Probability density function for capacity estimation and (b) position of different MFs.

dependency of the formulations on density and ensure an accurate result in FD parameter
estimation. vf can be estimated from the following equation:

vf =
n∑
i=1

w̄i(c1)ri (13)

where w̄i(c1) = wi(c1)/
n∑
i
wi(c1) andwi(c1) = exp[−((c1 − ci)/ai)2].

c1 is the premise parameter of the first MF. Inclusion of c1 eliminates the effect of the other
MFs by reducing firing strength for them. The reduced firing strength reduces the effect of
other MFs on vf estimation, whereas infiltration of the unwanted parameters significantly
affects the estimation of parameter vf . Similarly, the estimation of ρj can be done using the
second condition which uses the final MF. Thus ρj can be estimated from

ρj =

n∑
i=1

wi(cn)ri∣∣∣∣ n∑
i=1

wi(cn)pi

∣∣∣∣
(14)

where w̄i(cn) = wi(cn)/
n∑
i
wi(cn) andwi(cn) = exp[−((cn − ci)/ai)2].

However, the determination of capacity (qmax) is not straightforward. The required MF
for estimation of qmax is in which the max flow resides. This particular MF determined from
the probability distribution function is as follows:

Pr(ρ) = e− (ρ−λ)2

2σ2 (15)

In Equation (15), λ is determined using the empirical data after the data is aggregated into
bins. It is noted that the flowdata is estimatedbymultiplying the estimated speeddatawith
the empirical density data. Afterwards, the bin density (λj) and bin flow (fj) are determined
from the following formula:

Bin density, λj = ρek+ρsk
2
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Bin flow, fj = median{fsk (j), fsk+1(j), fsk+1(j), . . . , fek (j)}, j = 1, 2, . . . , B
where sk and ek denote the start and end density of a particular bin,M = ek − sk + 1 is the
number of data in the bin, and B is the total number of bins. The bin flow over the different
bin density is shown in Figure 3(a).

From the aggregation, the parameter λ is obtained considering λ = λJ, ∃!J|fJ =
max

(
B⋃

j=1
fj

)
, J ∈ j. On the other hand, the value of σ is determined from the following

equation:

σ =
(

λ

ρj

)
(Q3 − Q1)

⎛
⎜⎜⎜⎜⎝1 −

√
1
B

B∑
i=1

(fmax
j − fj)

2

fmax
j

⎞
⎟⎟⎟⎟⎠ , ∃!fmax

j |fmax
j ∈ max(fi)

where ρj is the jam density obtained from Equation (14). Q3 and Q1 are the 75th and

25th percentile of the λj. The
(

λ
ρj

)
(Q3 − Q1) term dominates the width of the distribu-

tion curve. However, it is reduced by the term between

(
1 −

√
1
B

∑B
i=1 (fmax

j −fj)
2

fmax
j

)
which

stands for the deviation in the flow from fmax
j . Its value ranges from 0 to 1. Values towards

1 indicate skewed parabola-shaped flow–density diagram and values towards 0 indicate
inverse lambda shape FD. The probability distribution generated by Equation (15) is shown
in Figure 3(a). Afterwards the critical density for each MF is determined from the following
equation (16) and the probability of each of the critical densities to become the actual crit-
ical density is determined using Equation (15). For which, the probability is maximized, is
called the critical MF. Using the firing strength and the value of the consequent parameters
of that MF, the capacity can be found from Equation (17),

ρci = ri
|2pi| (16)

qmax =
(

rc
2pc

)2 n∑
i=1

wipi −
(

rc
2pc

) n∑
i−1

wiri (17)

where rc and pc are consequent parameters of critical MF.

4. Model calibration and validation

There are a variety of options and settings to explore while proposing an ANFIS model.
Authors provide an illustration of the available options and their effects on a number of
modeling aspects. For example, an experiment was performed to identify the optimal split
of data into a training and a testing sample. In addition, three other aspects are the type
of MFs, number of epochs and number of clusters. These aspects are also illustrated here.
The developed ANFISmodel is further validated using a different dataset and against other
conventional models and the results are accumulated in later part of this paper.
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Figure 4. Illustration of layout of study site I-80, Berkeley (not to scale).

4.1. Data sources

Data collection process for model calibration, validation and comparison is based on five
different locations. These locations represent different driving behavior and consist of
mainline, mainline with interruption from off ramp, mainline with interruption from on
ramp, off-ramp and on-ramp. Four datasets were collected for each location from different
locations. One dataset is used for calibration and the other three are used for validation.
These datasets were collected from PeMS (http://pems.dot.ca.gov/) which provides flow,
speed and density data across different vehicle detector stations in the form of time series
data over days of operation. The data used in this research were aggregated over an inter-
val of 5 minutes. The data was collected from I-80 near Berkeley which is a freeway with
on-ramps and off-ramps. At each location, 1 year continuous observations were collected.
This time interval is long enough for calibration and validation of FD. A general setting of
I-80 detectors from the study site in Berkeley, CA, is shown in Figure 4.

4.2. Calibration results

To implement and test the proposed single-input ANFIS architecture, MATLAB Fuzzy Logic
Toolbox fromMathWorkswas selected as the development tool. This tool offers an environ-
ment to build and evaluate fuzzy systems using a graphical user interface (GUI). It consists
of a Fuzzy inference system (FIS) editor, the rule editor, an MF editor, the fuzzy inference
viewer, and the output surface viewer.

4.2.1. Effect of size of training and testing datasets
In neural networks, a subset of the sample (training dataset) is used to train the neural
network. Later, to test the ability of the model to reproduce other realities, the remaining
portion of the sample (testing dataset) that was not used for model calibration is used as
a testing device. In practice, the optimal composition of the original sample (separation of
the data into training and testing sets) needs to be known. The effects of different sizes of
the training and the testing datasets on goodness-of-fit value are summarized in Table 3.

For this study, five different compositions of datasets for each location were considered
to assess the effect.With an increase in training dataset, the fitness value (R2) obtained from
Equation (18) improves as the generated FIS structure is fed with larger number of training
dataset to optimize its parameter values. On the other hand, decreasing testing dataset
causes the ‘overfitting’ phenomenon to occur. Overfitting is a common problem in ANFIS
model building, which occurs when the data is over trained by ANFIS. Every dataset that

http://pems.dot.ca.gov/
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Table 3. Effect of different composition of training dataset on fitness of data (R2 values) for different
locations.

Training dataset and testing dataset composition

Highway locations 50–50 60–40 70–30 80–20 90–10

Mainline 0.86825 0.85964 0.8663 0.87682 0.87399
Mainline close to off-ramp 0.88327 0.88350 0.88411 0.88459 0.86604
Mainline close to on-ramp 0.91362 0.91608 0.91814 0.92058 0.91554
Off-ramp 0.90985 0.91711 0.91360 0.92654 0.91132
On-ramp 0.94493 0.94596 0.94713 0.95118 0.94361

Table 4. Effect of type of MF on fitness of data (R2 values) for five different highway locations.

Type of input MFs

Highway locations Triangular
Symmetric
gaussian

Gaussian
combination Trapezoidal

Generalized
bell shaped

Clustered
based

gaussian

Mainline 0.86772 0.87208 0.86729 0.8670 0.86781 0.87463
Mainline close to off-ramp 0.88127 0.88413 0.88465 0.88405 0.88473 0.88488
Mainline close to on-ramp 0.91977 0.91773 0.91434 0.91307 0.92041 0.92063
Off-ramp 0.85731 0.88766 0.88696 0.89194 0.87546 0.90988
On-ramp 0.94236 0.94319 0.94317 0.94273 0.94343 0.94509

is trained using ANFIS has its maximum number of epochs before overfitting occurs; this
causes the predicted output to be over its accuracy. From Table 3, it can be observed 80-
20 composition demonstrated the best fit over others. As, 80-20 split of original dataset
for training and checking produced best results for all locations, this size is adopted as
optimum composition for ANFIS modeling in this paper.

R2 = 1 − SSE
SST

(18)

where SSE =
N∑
i

(vActual,i − vANFIS,i)
2, SST =

N∑
i

(vActual,i − v̄Actual)
2, vActual,i = Actual speed

for ith observation, and vANFIS,i = ANFIS estimated speed for ith observation.

4.2.2. Effect of MF type
MFsdetermine the shapeof theprojectionof input–outputmapping and theparameters of
theseMFs are adjusted through the fuzzy system to capture the trend of the empirical data.
In this study, six types of MFs were considered: (1) triangular (trimf); (2) symmetric gaussian
(gaussmf); (3) gaussian combination (gauss2mf); (4) trapezoidal (trapmf); (5) generalized
bell shaped (gbellmf); and (6) clustered based gaussian.

The results for different MFs are summarized in Table 4 for different locations. In all
cases, clustered based gaussian achieved the best fitness value (R2) as determined from
Equation (18). As clustering of a given dataset serves the purpose of discerning its nat-
ural classification and generate an incisive representation of the data, a clustered based
approach reproduces better results in all locations. In addition, from the visual evaluations
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Figure 5. FD of speed–density model upon empirical scattered plot for on-ramp location using dif-
ferent type of MFs: (i) Triangular (trimf), (ii) Symmetric gaussian (gaussmf), (iii) Gaussian combination
(gauss2mf), (iv) Trapezoidal (trapmf), (v) Generalized bell shaped (gbellmf), and (vi) clustered based
gaussian.

(see Figure 5), it is noticed that FIS fromclustered based gaussianMFs best project the trend
of the speed–density relationship.

4.2.3. Effect of number of epoch
Epoch number controls the number of times the combined execution of back propaga-
tion and least square estimation (hybrid learning) occurs for training dataset. The training
process terminates once the designated epoch number or the training goal is reached.
However, the number of epoch should be chosen such that overfitting does not occur.
In this research, experiments with ANFIS training on six different types of MFs were con-
ducted with varying epoch numbers (i.e. 3, 5, 10, 50, and 100). Analysis shows that no
notable variation in results was found (R2 value varying less than 0.002% on average). Only
a minor change in computation time was noticed if all other calibration parameters were
kept unchanged. For example, an average runtime for a 1-year dataset with epoch num-
ber 3 was found to be 32.04 seconds, with epoch number 5, runtime increased to be 36.87
seconds and with epoch number 100, the runtime was 72.12 seconds. Later, basing on rec-
ommendation from some of the literatures (Petković et al. 2012), a fixed epoch number of
100 is chosen for analysis all through this research.

4.2.4. Effect of number of clusters
In the subclusteredANFISmodel, each input variable is clustered into several class values to
build up fuzzy rules and each fuzzy rule would be constructed through several parameters
of MF. The number of MFs and rules are mutually related; more MFs imply more rules and
determine the level of detail of the model. Fuzzy C-means (FCM) clustering is used in this
study to identify the antecedent MFs and a set of rules. The results of the effects of num-
ber of clusters on the mainline dataset are summarized in Table 5. From the analysis, it is
observed that with increasing number of clusters, R2 value improves and the absolute error
(|e|) of the fittedmodels (see Equation 19) decreases but these improvements in results are
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Table 5. Improvement in fitness of data (R2 values) and absolute
error of fitted output with increasing no. of clusters.

Number of clusters R2 value Absolute error

3 0.86669 0.025507
5 0.86688 0.025458
7 0.86753 0.025357
9 0.86761 0.025341
12 0.86776 0.025316
15 0.86776 0.025312

Figure 6. Overfitting phenomenon on root mean square error versus epochs curve (mainline with
interruption from off-ramp location is illustrated here).

imperceptible.

|e| = 1
N

N∑
i

|vActual,i − vANFIS,i|
vActual,i

(19)

where N =Total number of observations.
Although it is better to take a large number of clusters as it indicates better classification

of varying data points, it may cause ‘overfitting’ (see Figure 6). Overfitting is analyzed by
setting the number of clusters to different values for 100 epochs. Considering these two
phenomena, an optimum number of clusters has to be determined for which maximum
R2value will be obtained without the occurrence of overfitting. In this regard, the following
objective function (Equation 20) has been used to determine the optimumnumber of clus-
ters. The objective function gives the optimumnumber of clusters considering two aspects:
whether (1) inflection point in error–epoch curve exists, (2) the change in R2 is less than a
particular significance threshold τ or not.

Using Equation 20, optimal number of clusters are obtained for different freeway loca-
tions. From analysis, it was obtained that the proposed ANFIS model works best without
causing the overfitting phenomenon for all the study locations, if the number of MFs is in
between 4 and 7. Particularly, the optimum number of MFs are: 8 for freeway mainline, 7
for mainline close to off-ramp, 6 for mainline close to on-ramp, 4 for off-ramp, and 5 for
on-ramp. The analysis also shows that for different highway locations, overfitting occurs at
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differentnumberof clusters. This change inoptimumnumberof clusters canbecontributed
to the traffic stability phenomenon. As mentioned in Section 1, geometrical and environ-
mental changes have an influence on the variation of the origin of the traffic instability. At
different locations, variance in the reaction of drivers to changes in behavior of the leading
vehicle causes instability. This variation leads to a different number of cluster points.

No = Min(CO, Max(CO, CR2))
CO = {n|n ∈ Z, En,i+1 ≥ En,i}
CR2 = {n|n ∈ Z, R2n − R2n−1 ≥ τ }, R2n > R2n−1

⎫⎬
⎭ (20)

where E = relative absolute error, CO = maximum number of clusters without causing
overfitting,CR2 = minimumnumberof clusters attaining saturatedR2, and τ = significance
threshold. This equation gives the optimum number of clusters for any location consider-
ing that overfitting must not occur before attaining a marginal value of goodness-of-fit.
The iteration proceeds for different number of clusters n until it finds either overfitting
phenomena or marginal goodness-of-fit value. The overfitting phenomena is defined as
a change in gradient in error–epoch curve. Equation 20 represents the discretized form of
finding this gradient change. When error En,i+1 for a certain n number of clusters becomes
greater than the error En,i generated in the previous epoch i, the iteration stops and gives
the corresponding n number of clusters.

4.3. Model validation result

Validation is indicative of how theproposedmodel replicates systembehaviorwith enough
reliability to serve analysis objectives. The ANFIS-based speed–density model is fitted from
an I-80 dataset. In order to test whether the model also fits well with empirical data from
other highway locations, in total 15 independent datasets (3 datasets for each five loca-
tions) are fitted using the ANFIS model as shown in Figure 7. Five locations considered for
validation are: (a) Mainline (LC-1); (b) Mainline close to off-ramp (LC-2); (c) Mainline close
to on-ramp (LC-3); (d) Off-ramp (LC-4); and (e) On-ramp (LC-5). LC-1 contains uninterrupted
traffic flow having very light amount of data below the speed 20 mph in comparison to
other locations. LC-2 and LC-3 represent traffic flow influenced by either off-ramp or on-
ramp, respectively. Furthermore, LC-4 and LC-5 are isolated flows of off-ramp and on-ramp
having different characteristics than mainline.

4.3.1. Comparisonwith single regimemodels
A graphical representation of the numerical comparison of different model performance
in terms of goodness-of-fit (R2) at various locations using the testing data is plotted in
Figure 7. The models considered are Greenshields model, Greenberg model, Underwood
model, Northwestern model, Pipes Munjal model, Drew model, and the proposed ANFIS
model. All the aforementioned models are included in a single plot to see the effective-
ness in capturing the traffic state along with the empirical trend for different locations. The
results compared to empirical observations show that:

1. There exists a curvature change in the speed–density relationship (see Figure 7). How-
ever, the relative positions of the point of curvature change (inflection point) with
respect to the (vf , 0) and (0, ρj) are not same for all locations, where vf and ρj are free
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Figure 7. Graphical representation of different model performances at I-80.

flow speed and jam density, respectively. It can be seen that the inflection point shifts
to the left from LC-1 to LC-5. It is due to the origin of instability near the inflection
point. This instability occurs due to sudden speed variation caused by heterogeneous
driving behavior. It can be seen from Figure 7 that only the ANFIS model captures the
exact inflection point in all locations. Interestingly, the left part of the inflection point
is concave and the other is convex. The left part is partially skewed downward and the
right part becomes asymptotic near the zero speed. ANFIS model can also sense the
shift in the inflection point and therefore show different inflection points for differ-
ent locations. Although, Northwestern model shows the inflection point, the point is
not in exactly same position as the empirical one. Other speed–density models cannot
capture this kind of trend in data.
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Table 6. Performance comparison in estimation of FD parameter.

vf (mile/hour) qmax (veh/hour) ρj (veh/mile) R2 value

Highway locations ANFIS 5PL %Error ANFIS 5PL %Error ANFIS 5PL ANFIS 5PL

Mainline 68.84 69.86 1.46 7218.58 7158.75 0.84 299.98 – 0.82 0.80
Mainline close to on-ramp 67.39 67.44 0.08 3263.77 3259.42 0.13 423.40 – 0.92 0.91
Mainline close to off-ramp 67.94 67.86 0.12 3338.05 3058.01 9.16 756.50 – 0.87 0.86
On-ramp 65.14 68.38 4.74 3886.30 3969.12 2.08 454.56 – 0.88 0.87
Off-ramp 70.48 68.97 2.20 4030.74 4062.10 0.77 358.70 – 0.84 0.84

2. The proposed ANFIS model achieved the best goodness-of-fit (R2) in all the locations
(see Figure 7). Although Northwestern, Drew and Pipes-Munjal models achieve good
R2 value,Greenberg,Greenshields andUnderwoodperformpoorly to capture the trend
of empirical data. Greenshields, being a linear model, fails to produce good R2 as none
of locations has datawith linear trend. In addition, bothGreenberg andUnderwood are
convex in nature and so these models fail to capture the concave portion of the data.
However, the performance of the underwood model increases from LC-1 to LC-5. It is
due to decrease in the length of concave part of the curve.

3. Another observation from Figure 7 is that ANFIS generated curve does not have any
definite shape, rather its shape changes with the change in the trend of the dataset. In
other words, the gradient of the equilibrium curve generated by ANFIS model is data
driven as it does not have any deterministic gradient. However, other models have a
deterministic gradient in nature meaning that they try to fit the traffic dynamics to a
definite shape forcing the empirical data into the model without capturing the actual
trend.

4. Change in shape, orientation and location of the transition region in speed–density is
observed from LC-1 to LC-5. Interestingly, the proposed ANFIS model has captured all
the changes perfectly, whereas the other models have failed to capture the changes.
The superimposed effect of premise parameters from different MFs enables the ANFIS
model to capture the curvature of the transition region. On the other hand, consequent
parameters determine the target gradient of the superimposed curvature.

In order to demonstrate the proposed ANFISmodel’s efficacy in estimation of FD param-
eters,we consider the 5-parameter logistic speed–densitymodel (5PL) ofWanget al. (2011).
The choice of the 5PLmodel is supported by its discerning similaritieswith theANFISmodel
in capturing inflection point and also achieving good R2 value in comparison to the tradi-
tionalmodels. Table 6 lists the comparisonof performanceof theANFISmodel in estimation
of the FD parameters with the 5PLmodel. The results reveal that bothmodels produce sim-
ilar result in parameter estimation as well as achieve good R2 value for all five highway
locations. In addition, ANFIS model provides estimation of jam density which 5PL model
cannot determine.

4.3.2. Comparisonwithmulti-regimemodels
An illustrative numerical performance comparison with Multi-Regime models at LC-1 is
plotted in Figure 8. Additionally, the goodness-of-fit values for different location are pro-
vided in Table 7. The Multi-Regime models considered in this research work are the Edie
model and Two-Regime Linear model. Quandt’s likelihood estimation technique (Quandt
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Figure 8. Comparison between ANFIS and multi-regime models (mainline location is illustrated here).

Table 7. Performance comparison with multi-regime models.

Highway locations Eddy Two regime linear ANFIS

Mainline 0.80 0.79 0.82
Mainline close to on-ramp 0.85 0.83 0.92
Mainline close to off-ramp 0.79 0.75 0.87
On-ramp 0.81 0.79 0.88
Off-ramp 0.78 0.72 0.84

1958) is adopted in these two models to identify breakpoints between the regimes for
freeway traffic (May 1990). Analysis shows that Edie and Two-Regime Linear model have
performed well and achieved goodness-of-fit value 0.80 and 0.79, respectively, for main-
line location. However, the ANFIS model has achieved the maximum goodness-of-fit value
(0.82) and has outperformed them. The existence of estimable breakpoint allows themulti-
regime models to reduce the residual while performing the regression. However, it force-
fully fits the data into the predefined shapes identical to the single regime models. Thus
it also inherits the limitations of the single regime models such as inability to capture the
transition point, the inflection point, and the gradient of the empirical data. In contrast, the
data-driven ANFIS model is able to address these limitations; therefore, the ANFIS model
performed best.

5. Conclusion and future directions

FDs have been the subject of comprehensive study due to its importance in both the
design of traffic facilities and for the control of traffic operations. Traditional speed–density
models try to fit the traffic dynamics to a definite shape (i.e. logarithmic, exponential, and
exponential to the quadratic and various forms of polynomials) rather than capturing the
variations in drivers’ behavior caused by the shockwave in the transition zone. In addi-
tion, they fail to acknowledge the effect of different geometric patterns of the roadway (i.e.
on-ramp/off-ramp on a freeway) on the shape of the speed–density FD.

Wehave applied theANFIS inmodeling equilibrium speed–density relationship because
of its efficacy in being shape-flexible. ANFIS provides shape flexibility incorporating three
factors: (a) premise parameters; (b) number of MF; and (c) consequent parameters. Among
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these, premise parameters provide the required curvature to the speed–density FD,
whereas the number of MF controls the extent of the curvature. Individual MF covers
a particular region of the speed–density curve. It opens a scope for agglomeration of
the empirical data according to their characteristics into a particular MF. The overlapping
among the MFs causes superimposition of the curves, which ultimately adds further flex-
ibility to the ANFIS model. In contrast, the consequent parameters control the direction
of the baseline of this curvature. Combination of these three factors enables ANFIS model
to capture the actual trend in empirical speed–density data. Moreover, in this research,
the Sugeno model has been correlated with the equivalent Greenshields model, which
proves the eligibility of ANFISmodel to represent speed–density relation. It helped to reveal
the contribution of premise and consequent in the speed–density relation. Incorporating
this knowledge, the PCCE relationship with the speed–density equilibrium is established.
Accordingly, the MFs for estimating free flow speed, jam density and capacity have been
revealed.

A number of options (i.e. optimal split of data into an estimation sample and a validation
sample, selection of suitable MF) offered by ANFIS are illustrated using data from I-80 near
Berkeley. Hybrid learning algorithm has been used to optimize the parameters within the
ANFIS structure. The study results show that with an increase in training dataset, the fitness
value improves as the generated FIS structure is fed with larger number of input–output
data pairs to optimize its parameter values. It is observed that 80-20 split of the original
dataset for training and checking produced best results for all locations. For MFs, clustered
based gaussianMFs best project the trend of the speed–density relationship in all locations
as clustering of a given dataset serves the purpose of discerning its natural classification
and generate an incisive representation of the data. An epoch number of 100 is chosen
so that ‘overfitting’ phenomenon does not occur. Epoch number controls the number of
times the combined execution of back propagation and least square estimation (Hybrid
learning) occurs for training dataset. Model results show that with increasing number of
clusters, fitness of data (R2 value) improves and the absolute error of the fitted models
decreases but these improvements in results are imperceptible. Although it is better to take
a large number of clusters as it indicates better classification of varying data points, it may
cause ‘overfitting’. To incorporate this contrasting behavior, we propose an objective func-
tion to obtain the optimal number of clusters so that ‘overfitting’ phenomenon does not
occur.

Calibrated ANFIS models are validated using 15 different datasets and against other
conventional speed–density models. Results show proposed ANFIS-based speed–density
model achieves the best R2 value compared to the other five models that indicate the
model’s efficacy in capturing the traffic state along with the empirical trend for all five
locations. Empirical observation shows that the relative positions of the point of curva-
ture change (inflection point) with respect to free flow speed and jam density are not
same for all locations. This variation is due to the origin of instability near the inflection
point and occurs due to sudden speed variation caused by drivers’ random decision about
lane changing. ANFIS model captures this variation most effectively. We then compare the
performance of the ANFIS model in matching the empirical speed–density observations
and also in estimation of the FD parameters with the 5PL proposed by Wang et al. (2011).
The results reveal that the ANFIS model achieves R2 value in the range of 0.82–0.92 for
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all five highway locations and produces similar result to the 5PL model in FD parameter
estimation.

In high-order traffic models, the speed–density or speed–spacing FD also plays a critical
role. However, the speed–density relation used on these models are as similar to con-
ventional models. ANFIS will be more suitable as it is data driven and capture real-time
flow dynamics more efficiently. In this regard, authors have a plan to investigate the
performance of ANFIS-based higher order traffic state estimation model.
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