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CONVERGENCE OF UNSYMMETRIC KERNEL-BASED
MESHLESS COLLOCATION METHODS∗

ROBERT SCHABACK†

Abstract. This paper proves convergence of variations of the unsymmetric kernel-based col-
location method introduced by Kansa in 1986. Since then, this method has been very successfully
used in many applications, though it may theoretically fail in special situations, and though it had
no error bound or convergence proof up to now. Thus it is necessary to add assumptions or to make
modifications. Our modifications prevent numerical failure by dropping strict collocation and allow
a rigorous mathematical analysis proving error bounds and convergence rates. These rates improve
with the smoothness of the solution, the domain, and the kernel providing the trial spaces, but they
are currently not yet optimal and deserve refinement. They are based on rates of approximation to
the residuals by nonstationary meshless kernel-based trial spaces, and they are independent of the
type of differential operator. The results are applicable to large classes of linear problems in strong
form, provided that there is a smooth solution and the test and trial discretizations are chosen with
some care. Our analysis does not require assumptions like ellipticity, and it can be extended to
ill-posed problems.
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1. Introduction. The final goal of this paper is to prove error bounds and
convergence of certain numerical techniques that approximately solve a PDE problem
via an unsymmetric or even nonsquare system of linear collocation equations involving
meshless kernel-based trial functions. The most popular method of this kind was first
proposed by Kansa [8] in 1986, and there are many follow-up papers in engineering
journals (see, e.g., [5] for a selection) that can easily be retrieved via the Internet. This
is why this paper does not supply additional numerical examples. So far, the method
is quite successful in applications with smooth solutions, but it can fail [7] in specially
constructed situations. Consequently, it has neither error bounds nor convergence
proofs for its original form, and a rigorous mathematical analysis will either require
some additional assumptions or make changes to the method itself. We shall do both,
but we shall stay general enough not to spoil the applicability to elliptic, parabolic,
and hyperbolic problems. Therefore we need a somewhat nonstandard framework,
which we sketch here first, to make sure that the reader does not get lost in the
technical details we have to provide later.

Consider a linear operator equation

L(u) = f, L : U → F(1.1)

between normed linear spaces U and F which is to be solved for any given f ∈ F .
The map L takes a solution u ∈ U to its data L(u) in F . Thus F will usually be a
Cartesian product of trace spaces of functions prescribed on the domain or on parts of
the boundary. We shall consider a large class of unsymmetric discretization methods
to solve such equations approximately, and we need five essential ingredients.
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334 ROBERT SCHABACK

The first ingredient requires the problem to be continuously dependent on the
data. In quantitative form, this means that the inverse L−1 is a bounded linear map
from F to U . In particular, we assume an inequality of the form

‖u‖U ≤ Ca‖L(u)‖F for all u ∈ U(1.2)

with a positive constant Ca describing the stability of the problem. In practical
applications this will imply that the solution space U and the data space F have to be
chosen with some care. In particular, U and F must often be chosen on a theoretical
basis, e.g., as quite large spaces in which certain general existence results hold and
which carry only rather weak norms. Usually, U will be a Sobolev space Wμ

2 (Ω)
while F is a Cartesian product of Sobolev spaces which provide the right-hand sides
for the differential equation and the boundary data via trace operators. Continuous
dependence serves here as a replacement for more specific analytic assumptions like
coercivity of a bilinear form. However, in section 9 we shall abandon the assumption
of continuous dependence to be able to treat a certain class of ill-posed problems.

The second ingredient is some additional regularity. The actual solution u of a
specific problem will often have more regularity than needed for the spaces U and
F defining continuous dependence, and therefore we shall focus on a subspace UR ⊆
Wm

2 (Ω) ⊂ Wμ
2 (Ω) =: U of U which we call the regularity subspace. The additional

regularity of order m − μ > 0 will be the driving force behind convergence rates, as
we shall prove later.

The third ingredient is a scale of finite-dimensional trial subspaces Ur of U for
a trial discretization parameter r > 0 which uses the additional regularity to provide
a convergent scheme for data approximation. This is formalized by not necessarily
linear maps Ir : UR → Ur with error bounds

‖L(u− Ir(u))‖F ≤ εr(u) for all u ∈ UR.(1.3)

It will be this approximation property that yields our convergence rates driven by
additional regularity. Note that we do not use a single discretization parameter like
the usual h here, because we need two different discretization parameters r and s for
trial and test discretization. The trial spaces Ur can be chosen independent of the
operator L, and we do not approximate the solution directly but rather the data via
the linear operator L.

The fourth ingredient is a scale of stable test discretizations Fs of the data space F
with respect to the scale of trial spaces Ur. This is formalized by a test discretization
parameter s > 0 and linear maps Πs : F → Fs into a scale of finite-dimensional test
data spaces Fs such that the inequalities

‖L(ur)‖F ≤ C(r, s)‖ΠsL(ur)‖Fs for all ur ∈ Ur,
c(s)‖ΠsL(u)‖Fs ≤ ‖L(u)‖F for all u ∈ U

(1.4)

hold. We call a specific choice of trial and test discretization schemes uniformly stable
if both constants can be chosen independent of r and s for a certain range of these
parameters. When restricted to the finite-dimensional trial spaces Ur, the inequalities
express equivalence of discrete and nondiscrete norms on the data L(ur). The second
inequality will be easily satisfied by discretization, but the first one will be hard,
because it bounds a nondiscrete norm by a discrete norm, and this can work only
for finite-dimensional spaces. It also implies uniqueness of solutions of the discretized
finite systems ΠsL(ur) = ΠsL(u), which is a serious problem [7].
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CONVERGENCE OF UNSYMMETRIC COLLOCATION 335

To simplify some of the later arguments, we outline here how we proceed to prove
the first inequality of (1.4).

Theorem 1.1. Assume a Poincaré–Friedrichs inequality

‖f‖F ≤ c1(s)‖f‖FR
+ c2(s)‖Πsf‖Fs for all f ∈ FR ⊂ F(1.5)

on a regularity subspace FR of the data space F . Second, assume a Markov–Bernstein
inequality

‖Lur‖FR
≤ c3(r)‖Lur‖F for all ur ∈ Ur ⊂ UR(1.6)

on a scale of trial spaces Ur ⊂ UR with L(UR) ⊆ FR. Third, let the trial and test
discretization parameters r and s satisfy the stability criterion

c1(s)c3(r) <
1

2
.(1.7)

Then the first inequality of (1.4) holds with C(r, s) ≤ 2c2(s).
Proof. Just consider

‖L(ur)‖F ≤ c1(s)‖L(ur)‖FR
+ c2(s)‖ΠsL(ur)‖Fs

≤ c1(s)c3(r)‖Lur‖F + c2(s)‖ΠsL(ur)‖Fs

≤ 1
2‖Lur‖F + c2(s)‖ΠsL(ur)‖Fs

for all ur ∈ UR.
Note that in (1.5) we shall have c1(s) → 0 for s → 0, because the inequality

means that a function is small in a weak norm if it is bounded in a strong norm and
is small on a large discrete set. In (1.6) we have to expect c3(r) → ∞ for r → 0
because c3 bounds a strong norm by a weak one on a finite-dimensional space. Thus
the stability criterion (1.7) will usually be satisfied if the test discretization is “fine
enough” with respect to the trial discretization.

The final ingredient is the class of numerical methods. We do not specify details
in this overview, but we can always find nonunique trial functions u∗

r,s ∈ Ur with

‖ΠsL(u− u∗
r,s)‖Fs

≤ δr,s(1.8)

solving ΠsL(ur) = ΠsL(u) approximately with a small tolerance. In fact, the approx-
imation Ir(u) is a solution if we have (1.4) and

c(s)εr(u) ≤ δr,s.(1.9)

Note that we do not attempt to solve the discrete system ΠsL(ur) = ΠsL(u) exactly,
because it will be overdetermined and unsolvable in general. However, under the
assumption (1.9) we know that the relaxed problem (1.8) is solvable. In section 8
we show how to tackle such problems. Altogether, we replace strict collocation by a
generalized form of “almost interpolation.” Now we can formulate the core result of
this paper.

Theorem 1.2. If the analytic problem is solvable by u ∈ UR and if we solve (1.8)
by some u∗

r,s ∈ Ur, then the following error bound holds:

‖u− u∗
r,s‖U ≤ Ca

(
εr(u)

(
1 +

C(r, s)

c(s)

)
+ c(s)δr,s
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336 ROBERT SCHABACK

provided that all of the above ingredients are available. If the discretization is uni-
formly stable with constants

C(r, s) ≤ C,
0 < c ≤ c(s) ≤ c̃,

and if we choose c̃εr(u) ≤ δr,s ≤ 2c̃εr(u) to satisfy (1.9), we get the bound

‖u− u∗
r,s‖U ≤ εr(u)Ca

(
1 +

C

c
+ 2c̃2

)
,

which behaves asymptotically like the trial approximation error εr(u).
Proof. The assertion follows from a simple chain of inequalities:

1
Ca

‖u− u∗
r,s‖U ≤ ‖L(u− u∗

r,s)‖F
≤ ‖L(u− Ir(u))‖F + ‖L(Ir(u) − u∗

r,s)‖F
≤ εr(u) + c(s)‖ΠsL(Ir(u) − u∗

r,s)‖Fs

≤ εr(u) + c(s)‖ΠsL(u− u∗
r,s)‖Fs

+ c(s)‖ΠsL(Ir(u) − u)‖Fs

≤ εr(u) + c(s)δr,s + C(r,s)
c(s) ‖L(Ir(u) − u)‖F

≤ εr(u)
(
1 + C(r,s)

c(s)

)
+ c(s)δr,s.

But now we shall have to show how this abstract machinery can be set to work. We
shall finally derive specific convergence rates for unsymmetric collocation techniques
solving strongly posed problems with continuous dependence in Sobolev spaces, in-
cluding the Poisson problem with Dirichlet data as an illustration. But note that the
above formalism is much more general, and there may be various other future ways to
apply the framework, e.g., to unsymmetric methods solving problems in weak form.

The following sections will treat the above ingredients one by one, and then we
shall patch the results together. Our key tools will be nonstationary meshless kernel-
based trial spaces which allow approximation schemes with high-order convergence
rates while maintaining stability if paired with sufficiently rich test discretizations. It
turns out that the use of smooth kernels makes the final convergence order dependent
mainly on the regularity of the solution and the problem. The numerical methods for
solving (1.8) will consist of certain variations of the original unsymmetric collocation
method, and we already have solvability via (1.9). This saves us from the degeneration
problems of the standard unsymmetric collocation technique [7].

2. Well-posed problems and regularity. For example, consider a standard
Poisson boundary value problem

−Δu = fΩ in Ω,
u = fD on ∂Ω

(2.1)

on a bounded domain Ω ⊂ R
d with Dirichlet data fD on the piecewise smooth bound-

ary ∂Ω. In such problems, we consider the equations as being given in strong form;
i.e., we assume the solution u to be regular enough to pose the equations pointwise as

(−Δu)(x) = (δx ◦ (−Δ))(u) = fΩ(x) for all x ∈ Ω,
u(x) = (δx ◦ Id)(u) = fD(x) for all x ∈ ∂Ω.

(2.2)
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CONVERGENCE OF UNSYMMETRIC COLLOCATION 337

This leads to (1.1) if we define L(u) := (−Δu|Ω , u|∂Ω
) on U := Wμ

2 (Ω) with values in

F := Wμ−2
2 (Ω) ×W

μ−1/2
2 (∂Ω), with given data f = (fΩ, fD) ∈ F .

But we allow much more general linear equations and boundary value operators.
Formally, we follow the notation of [3] and others to combine differential and boundary
operators into just one equation and write the latter as (1.1) where u is a function
from some normed space U of functions. The mapping L : U → F maps solutions
u ∈ U to their data L(u) ∈ F , and the given problem consists in the inversion of L.

When aiming at methods with error bounds and convergence, we have to take a
closer look at the given analytic problem (1.1). In particular, we shall assume that
the problem (1.1) is well-posed in the sense that the solution u depends continuously
on the data f of the right-hand side of (1.1). But we have to make this more precise.
This can be done in various ways, e.g., by total sets of data functionals, but this is not
quantitative. For later use we impose a norm ‖.‖F on F := L(U) in a suitable way
and assume (1.2) with a positive “analytic” constant Ca which describes the norm of
the linear map L−1 that takes the data f ∈ F and maps them back to the solution u
in the function space U . Clearly, for such a priori inequalities we must be careful with
the choice of norms, because they depend on regularity theory, and they always imply
that the homogeneous equation has only the trivial solution. The numerical methods
following below will work on discretized versions Fs of F , and thus the proper choice
of F will also have practical consequences.

So far we have not mentioned any specific numerical algorithm. But if any numer-
ical method has produced an approximate solution ũ ∈ U to the problem (1.1), one
can calculate the data f̃ = L(ũ) ∈ F and the norm ‖f̃ − f‖F to get the a posteriori
error bound

‖u− ũ‖U ≤ Ca · ‖L(u− ũ)‖F = Ca · ‖f − f̃‖F(2.3)

for free, since the residuals L(u − ũ) = f − f̃ are explicitly known. It means that
errors in the solution are bounded by the norm of the residuals, multiplied with the
analytic constant. Thus any numerical technique that produces approximate solutions
of well-posed problems with small residuals will automatically guarantee small errors
in the solution. This trivial observation is well known in numerical analysis and
serves as a basis for defect correction and residual minimization techniques, and is
important for providing a safe a posteriori foundation for many unsafe and ad hoc
numerical calculations published in science and engineering journals. If the underlying
problem is continuously dependent on the data and if the naive user at least checks
the residuals carefully, the calculations are on the safe side. But, unfortunately, there
is no handbook listing all known inequalities of the form (1.2) for typical applications
in science and engineering. In particular, it would be very useful to have proven upper
bounds for the analytic constants.

Guided by regularity theory for elliptic problems, we focus on operator equations
(1.1) where the linear map L splits into maps L1, . . . , Ln with Li : U → F i, 1 ≤
i ≤ n, such that F = F 1 × · · · × Fn is the data space. We assume U = Wμ

2 (Ω)
for some bounded domain Ω ⊂ R

d and F i := Wμ−μi

2 (Ωi), where μi is defined via a
trace theorem by the order of the operator Li and the dimension di ≤ d of the partial
domain Ωi ⊂ Ω ⊂ R

d. The space F is then equipped with the sup of the norms
of the spaces F i. The regularity subspace UR occurring later will then be a space
UR ⊆ Wm

2 (Ω) ⊂ U := Wμ
2 (Ω) for some m ≥ μ.

In the standard Poisson problem with Dirichlet data we take L(u) = (−Δu, u∂Ω)

mapping U ⊆ Wμ
2 (Ω) into F = Wμ−2

2 (Ω) ×W
μ−1/2
2 (∂Ω). This is a well-established
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338 ROBERT SCHABACK

continuous dependence setting if the domain is smooth enough to make trace theorems
and the regularity order μ valid. See, e.g., [3, 12] for early references which also allow
distributional data and negative μ.

3. Approximation from trial spaces. The second ingredient of our framework
is some additional regularity defined via a subspace UR of the space U occurring in
the continuous dependence bound (1.2). At this point, the regularity space can be
quite general, but we also want an approximation property like (1.3) to hold. Thus we
now have to consider our third ingredient, i.e., techniques that construct approximate
solutions ũr from a scale of trial spaces Ur ⊆ U with a trial discretization parameter r.
Note that this includes plenty of methods, with or without meshes, like finite elements,
Petrov–Galerkin schemes, spectral methods, and all variations of collocation. It is
trivial that the choice of the trial space should be such that the true solution u can
be approximated easily by functions from the trial space. In case of solutions with
singularities, like for Poisson problems on domains with incoming vertices, one should
make sure that the trial space contains the expected singular functions.

One way to make this more precise is to assume that there is a mapping Ar :
UR → Ur with

‖u−Ar(u)‖U =: δr(u) for all u ∈ UR(3.1)

with a certain error δr(u) which will depend on the regularity subspace UR.
But the previous section teaches us that we do not need to approximate the exact

solution u in the space U by functions ur ∈ Ur ⊂ U directly. It suffices to make sure
that the residuals L(u) − L(ur) are small. Thus the crucial quantity is the residual
error ‖L(u − ur)‖F for any u ∈ U and an approximation ur ∈ Ur. In contrast to
the theory of finite elements, we do not consider optimal approximations of u by ur

here, nor do we attempt to minimize the above error with respect to ur. Instead, we
are satisfied if the trial space Ur contains for each function u ∈ U an approximation
ur := Ir(u) with small residual error εr(u) as in (1.3).

Of course, if an L-independent approximation operator Ar with (3.1) is available,
one can take Ir = Ar and assume εr(u) ≤ ‖L‖δr(u) because of

εr(u) = ‖L(u− Ir(u))‖W ≤ ‖L‖‖(u−Ar(u))‖U ≤ ‖L‖δr(u).

But there may be better choices of Ir if L and the special structure of the residual
space W are taken into account.

Inspection of (1.3) for F being a Cartesian product of Sobolev spaces reveals that
the special approximation Ir(u) should approximate u well including its derivatives,
as far as they occur in the collection of data spaces F i forming the space F . In
fact, if we go back to our special case U = Wμ

2 (Ω) and F = F 1 × · · · × Fn with
F i := Li(U) := Wμ−μi

2 (Ωi) with a regularity subspace UR ⊆ Wm
2 (Ω) and m > μ, we

should expect approximation bounds like

‖Li(u) − Li(Ir(u))‖
W

μ−μi
2 (Ωi)

≤ Crm−μ‖Li(u)‖
W

m−μi
2 (Ωi)

≤ Crm−μ‖u‖Wm
2 (Ω) for all u ∈ Wm

2 (Ω),
(3.2)

and this should work for a reasonable choice of 0 ≤ μ ≤ m and with rates that just
depend on the regularity gap m− μ and not on the order of the operators involved.

Note that the standard trial spaces of h-type finite element techniques consisting
of piecewise linear functions fail to provide approximations of more than first-order
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CONVERGENCE OF UNSYMMETRIC COLLOCATION 339

derivatives. In contrast to this, trial spaces generated by sufficiently smooth ker-
nel functions can contain approximations to derivatives of any order, without any
additional work needed. We shall explain this in the following sections.

In contrast to many engineering applications where a rather simple solution func-
tion is calculated via a huge finite element method system of millions of unknowns, we
tend to argue in favor of small trial spaces designed to capture the essential features
of the solution without taking the detour via a fine-grained space discretization. The
consequence will be that the linear systems get unsymmetric, because any solution
from a small trial space must be tested on a fine-grained space discretization, asking
for many more degrees of freedom on the “test side” than on the “trial side.” Un-
symmetry of a method can be a feature instead of a bug. In what follows we shall
investigate the relation of test and trial spaces more closely.

4. Kernel-based trial spaces. Now it is time to study maps Ir or Ar with
good approximation properties for certain trial spaces Ur in the sense of (1.3) and
(3.1). This is independent of PDE solving, and we shall see that nonstationary scales
of meshless kernel-based trial spaces work perfectly.

Definition 4.1. A kernel is a function of the form K : Ω×Ω → R with Ω ⊆ R
d.

It is translation-invariant if K(x, y) = Φ(x− y) with Ω = R
d and Φ : R

d → R. It is
radial if it is translation-invariant and of the form

K(x, y) = Φ(x− y) = φ(‖x− y‖2) with φ : [0,∞) → R and x, y ∈ R
d.

Radial kernels are also called radial basis functions.
Note that radial basis functions φ can in principle be used in any space dimension,

but certain properties of the associated translation-invariant kernel Φ on R
d may

depend [6, 19] on the dimension d.
Kernels provide excellent tools in various disciplines, including approximation

theory, partial differential equations, and machine learning [17]. The most important
kernels are reproducing kernels of some Hilbert space which can be called the “na-
tive” Hilbert space for the kernel. Any Hilbert space H of functions on a domain Ω
with continuous and linearly independent point evaluations has a kernel K with the
reproduction property

f(x) = (f,K(x, ·)) for all f ∈ H, x ∈ Ω.

Conversely, any (strictly) positive definite [6, 19] and continuous kernel K on Ω is the
reproducing kernel of a native Hilbert space NK of continuous functions on Ω. We
denote the norm on the native space NK by ‖.‖K .

We focus here on trial spaces provided by kernels. Like in wavelet theory, the
notions of translation and dilation play an important role. First, a general kernel
K : Ω × Ω → R can be translated to points y1, . . . , yM ∈ Ω called centers to
provide trial functions uj(x) := K(x, yj), 1 ≤ j ≤ M , on Ω. In many cases, the set
Y := {yj : 1 ≤ j ≤ M} of centers should fill a bounded domain Ω in such a way that
the centers get dense when M → ∞. This is expressed by the fill distance

h := h(Y,Ω) := sup
x∈Ω

inf
y∈Y

‖x− y‖2

depending on Ω and the M centers in Y , which should converge to zero if M tends
to infinity. The fill distance is the radius of the largest open ball with center in Ω
that contains none of the centers yj from Y . We use the notation h here, but later
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340 ROBERT SCHABACK

we shall have two different fill distances for trial and test centers, and then we shall
use r and s for clarity.

A nonstationary scale of kernel-based trial spaces can now be defined as

Ur := span {K(·, yj) : 1 ≤ j ≤ M} with r := h(Y,Ω),(4.1)

where the dependence on the location and number of the centers is suppressed in the
notation.

In the above nonstationary situation, only translations, but no dilations are used.
The translated kernel is fixed and independent of the fill distance. There is no rescal-
ing, if the fill distance gets small. This is in contrast to the stationary technique in
standard and general finite elements [4]. There, the basis functions are rescaled when
the fill distance changes, and in the translation-invariant kernel-based case this can
be described by a scale of trial spaces

Ur := span

{
Φ

(
x− yj

r

)
: 1 ≤ j ≤ M

}
,

where now the wavelet style interaction of translation and dilation is apparent.
The mathematics of the stationary and nonstationary cases are quite different.

This often leads to misunderstandings. The stationary situation, as included in the
meshless generalized finite element method [4], uses polynomial reproduction and the
Bramble–Hilbert lemma. If centers are on a grid, it applies the Strang–Fix theory.
Convergence orders are closely tied to polynomial reproduction properties, and the
choice of kernels is quite restricted, because integrable kernels like the Gaussian do not
yield convergent stationary approximations for h → 0 [6]. Stability is usually much
better than in the nonstationary case, but convergence rates (if they exist at all, e.g.,
for thin-plate splines or multiquadrics) are much smaller. We focus on nonstationary
kernel-based trial spaces here, because condition problems can be overcome [5, 9], and
we are heading for methods with high approximation orders.

We define a map Ir : u → ur := Ir(u) ∈ Ur of (1.3) via interpolation in the trial
centers by solving the system

ur(yk) :=

M∑
j=1

αjK(yj , yk) = u(yk), 1 ≤ k ≤ M,(4.2)

for the coefficients α1, . . . , αM defining the function ur := Ir(u) in terms of the basis
functions of the nonstationary trial space Ur of (4.1). This interpolation problem
is solvable by definition if the kernel K is symmetric and positive definite [6, 19],
because then the M × M matrix with entries K(yj , yk) is symmetric and positive
definite. Table 4.1 gives some examples. We ignore conditionally positive definite
kernels here and refer to the literature [6, 16, 19] for details.

The interpolation system (4.2) makes sense for all functions u which have well-
defined function values at the trial centers yk. Thus the mapping Ir is at least defined
on C(Ω), but for solutions u of PDE problems in strong form we use it on a regularity
subspace UR of C(Ω) ⊂ U .

The book [19] contains a fairly complete account of interpolation error bounds
in the nonstationary setting, while bounds for stationary and regular cases are in [6].
But in view of (1.3) and (3.2), we need very general error bounds in Sobolev spaces
which are not covered in these books. Here (on the trial side) and later (on the test
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CONVERGENCE OF UNSYMMETRIC COLLOCATION 341

Table 4.1

Radial basis functions φ(r), positive definite on R
d.

Function φ(r) Range Smoothness β
Gaussian exp(−r2) d ≥ 1 all β

inverse multiquadric (r2 + c2)γ , γ < −d/2, c > 0 d ≥ 1 all β

Sobolev for Wk
2 (Rd) rk−d/2Kk−d/2(r), k > d/2 d ≥ 1 β = 2k − d

Wendland C2 [18] (1 − r)4+(1 + 4r) d ≤ 3 3

(1 − r)5+(1 + 5r) d ≤ 5 3

Wendland C4 [18] (1 − r)6+(3 + 18r + 35r2) d ≤ 3 5

(1 − r)7+(1 + 7r + 16r2) d ≤ 5 5

side for proving (1.5)) we use a general result from [13] which was extended in [20],
while the range of admissible parameters was enlarged in [14].

Theorem 4.2. Suppose Ω ⊂ R
d is a bounded domain with an interior cone

condition. Choose q ∈ [1,∞] and constants

0 ≤ μ < μ + d/2 < �m�(4.3)

with μ being an integer. Then there are positive constants C, h0 such that

|u|Wμ
q (Ω) ≤ C

(
hm−μ−d(1/2−1/q)+ |u|Wm

2 (Ω) + h−μ‖u‖∞,Yh

)
(4.4)

holds for every discrete set Yh in Ω with fill distance at most h ≤ h0 and every
u ∈ Wm

2 (Ω).
This can be seen as a quantitative Poincaré–Friedrichs inequality for functions

which are small on a finite subset, and it is independent of any trial space. If we
replace seminorms by norms and extract h−μ out of the right-hand side, the rest is
a μ-independent norm on Wm

2 (Ω) and we can apply interpolation theory to replace
(4.4) by

‖u‖Wμ
q (Ω) ≤ C

(
hm−μ−d(1/2−1/q)+‖u‖Wm

2 (Ω) + h−μ‖u‖∞,Yh

)
(4.5)

under the assumptions (4.3) without the restriction of μ being an integer.
Now we take h = r because we discretize the trial side, and we interpolate a

function u on Yr by Ir(u) using points from Yr as translations in (4.1) to get

‖u− Ir(u)‖Wμ
2 (Ω) ≤ Crm−μ‖u− Ir(u)‖Wm

2 (Ω) for all u ∈ Wm
2 (Ω).(4.6)

Then we use the standard fact that the interpolant Ir(u) solves the minimization
problem

‖v‖K → min, v ∈ K, v(yj) = u(yj) for all yj ∈ Yr,

implying that ‖Ir(u)‖K ≤ ‖u‖K holds if we assume u to be in the native space NK

for the kernel K.
Therefore we strengthen the requirement on the regularization subspace UR and

on the regularity of our solution u to

u ∈ NK = UR ⊆ Wm
2 (Ω) ⊆ U(4.7)

with bounded embeddings, where we always assume (4.3). This is easy if the kernel
is smooth enough, and for the kernels in Table 4.1 the inequality

2m ≤ β + d(4.8)
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342 ROBERT SCHABACK

is a sufficient condition.
We can now replace (4.6) by

‖u− Ir(u)‖Wμ
2 (Ω) ≤ Crm−μ‖u‖K for all u ∈ NK

with a different constant. This inequality can be coupled with trace theorems for the
operators Li : Wm

2 (Ω) → Wm−μi

2 (Ωi) to get

‖Li(u− Ir(u))‖
W

μ−μi
2 (Ωi)

≤ C‖u− Ir(u)‖Wμ
2 (Ω) ≤ Crm−μ‖u‖K for all u ∈ NK

which yields (3.2) in a slightly restricted form and our third ingredient (1.3) as

‖L(u− Ir(u))‖F ≤ Crm−μ‖u‖K =: εr(u) for all u ∈ UR = NK(4.9)

under the assumptions (4.3), (4.7), and (4.8).

5. Stability of kernel-based test discretizations. We now consider the sta-
bility conditions (1.4), our fourth ingredient. We do this for meshless kernel-based
trial spaces and for our running example generalizing the Poisson equation. The trial
discretization via Ur and a set Yr of centers is chosen as in section 4. We assume (4.7)
and have the approximation result (4.9). On the test side, we use a set Xs of test
centers which has a fill distance s on all of Ω. For all the operators Li that arise in
L, we will have a selection Xi

s := Xs ∩ Ωi of points with the same fill distance with
respect to Ωi, because we can assume that all Ωi are subsets of Ω. The projectors Πi

s

on F i just map functions from F i = Wμ−μi

2 (Ωi) to their values on Xi
s. We thus have

to assume Sobolev embedding conditions

2(μ− μi) > di := dim(Ωi) ≤ d := dim(Ω), 1 ≤ i ≤ n.(5.1)

The discretized spaces F i
s will be R

|Xi
s| with the L∞ norm, and we have

Πi
sL

i(u) = (Li(u))(Xi
s), ‖Πi

sL
i(u)‖F i

s
= ‖Li(u)‖∞,Xi

s
.

This implies by Sobolev embedding

‖Πi
sL

i(u)‖F i
s

= ‖Li(u)‖∞,Xi
s
≤ ‖Li(u)‖∞,Ωi ≤ Ci‖Li(u)‖

W
μ−μi
2 (Ωi)

,

where the constant is independent of u and s. We now assemble this into a discretiza-
tion Fs := F 1

s × · · · × Fn
s with Πs := Π1

s × · · · × Πn
s of F = F 1 × · · · × Fn and take

the sup norm of the components. Then we have

‖ΠsL(u)‖Fs = sup1≤i≤n ‖Πi
sL

i(u)‖F i
s

≤ C sup1≤i≤n ‖Li(u)‖
W

μ−μi
2 (Ωi)

= C‖L(u)‖F

and get the second inequality of (1.4) with a constant that is independent of s and
dependent only on Sobolev embedding. This leaves us to prove the first inequality of
(1.4) via Theorem 1.1.

Fortunately, the inequality (4.5) holds for general Sobolev spaces, and we can
apply it on the test side for different operators. We get

‖Li(u)‖
W

μ−μi
2 (Ωi)

≤ C
(
sm−μ‖Li(u)‖

W
m−μi
2 (Ωi)

+ s−(μ−μi)‖Li(u)‖∞,Xi
s
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CONVERGENCE OF UNSYMMETRIC COLLOCATION 343

under the assumptions (5.1) and

di/2 < μ− μi < μ− μi + di/2 < �m− μi� for all i, 1 ≤ i ≤ n,(5.2)

which pose no serious problems if m is large enough. Now we define FR to be the
range of L(UR) in the Cartesian product of all spaces Wm−μi

2 (Ωi), taking the sup of
the component norms. With part of the notation

min
i

μi =: μ ≤ μi ≤ μ := max
i

μi,(5.3)

this yields (1.5) in the form

‖L(u)‖F ≤ C
(
sm−μ‖L(u)‖FR

+ sμ−μ‖ΠsL(u)‖Fs

)
.

We now want to consider (1.6). Assume K to be a translation-invariant positive
definite kernel of finite smoothness which is Fourier-transformable in R

d with an
exact decay

c(1 + ‖ω‖2)
−β−d ≤ K̂(ω) ≤ C(1 + ‖ω‖2)

−β−d for all ω ∈ R
d,(5.4)

where the constants β can be read from Table 4.1. If we again assume (4.8), we can
cite the Bernstein-type inequality

‖ur‖Wm
2 (Ω) ≤ C · ‖ur‖W (d+β)/2

2 (Rd)
≤ Cr−(d+β)/2‖ur‖L∞(Ω) for all ur ∈ Ur

from [15] provided that the trial centers in Yr ⊂ Ω are not too wildly scattered in the
sense that the minimal separation distance q(Yr) is uniformly bounded below by the
fill distance h(Yr,Ω) via

q(Yr) := min
yj �=yi∈Yr

‖yj − yi‖2 ≥ C sup
y∈Ω

min
yi∈Yr

‖y − yi‖2 =: h(Yr,Ω)(5.5)

such that both quantities behave asymptotically like the trial discretization parameter
r. This yields

‖L(ur)‖FR
= maxi ‖Li(ur)‖Wm−μi

2 (Ωi)

≤ C‖ur‖Wm
2 (Ω)

≤ Cr−(d+β)/2‖ur‖L∞(Ω)

≤ Cr−(d+β)/2‖ur‖Wμ
2 (Ω)

= Cr−(d+β)/2‖ur‖U
≤ CaCr−(d+β)/2‖L(ur)‖F for all i, 1 ≤ i ≤ n,

under the additional assumption μ > d/2. This result is far from optimal, but it
establishes (1.6) and allows us to apply Theorem 1.1 under a stability condition of
the form

Csm−μr−(d+β)/2 <
1

2
.(5.6)

This finally implies the following theorem.
Theorem 5.1. Assume that the trial kernel K with (5.4) is smooth enough

to satisfy (4.8). Let the trial space consist of quasi-uniform translates on Ω with
discretization parameter r, and consider a test discretization on Ω with fill distance
s. Then, under the notation (5.3), and the additional conditions (4.3), (5.2), (5.6),
and μ > d/2, the first inequality of (1.4) is satisfied with

‖L(ur)‖F ≤ Csμ−μ‖ΠsL(ur)‖Fs

for all ur ∈ Ur.
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344 ROBERT SCHABACK

6. Strong convergence in Sobolev spaces. We now assemble what we have
in case of our running example with continuous dependence in Sobolev norms. In
contrast to the introduction, we proceed here from the user’s point of view.

We start with the analytic problem. Consider an operator equation L(u) = f
as in (1.1) whose solution u is continuously dependent on the data f . We assume
continuous dependence in the sense of (1.2) to hold if we pick spaces U = Wμ

2 (Ω)
and F defined as a Cartesian product of Sobolev trace spaces F i as in section 2.
But note that users have to make sure in each application problem that the a priori
inequalities composing (1.2) are actually satisfied. If several choices of μ are possible,
the user should know that the final convergence will take place in U = Wμ

2 (Ω), but
large μ have to be paid for by regularity. If convergence of higher-order derivatives
is of importance, a sufficiently large μ must be chosen. Since we solve problems in
strong form via evaluation of residuals, we have to pick μ large enough to let all data
have continuous point evaluations. This is expressed by the requirement (5.1). At
this point, the lower bounds for μ will rule out problems with low regularity. Such
problems should be tackled with methods using weak data functionals and involving
integration. We plan to deal with such methods in the future, in particular with the
unsymmetric meshless Petrov–Galerkin method of Atluri and his collaborators [1].

The next step concerns regularity. We assume that the solution should have at
least a UR ⊆ Wm

2 (Ω) regularity with some m > μ. By standard arguments from
approximation theory, the difference between m and μ is the driving force for the
possible convergence rates. The user has to decide which m is adequate. Larger m
will improve the convergence rates, but they may not be justified by the smoothness
of the problem.

Then we pick a kernel K which is smooth enough to have its native space NK

contained in Wm
2 (Ω). In view of Table 4.1, this requires (5.4) and (4.8). The solution

u must have at least the regularity of Wm
2 (Ω), because it should be in UR = NK ⊆

Wm
2 (Ω). The excess regularity of NK over Wm

2 (Ω) does not pay off later, and thus it
is a good idea to stay with a kernel satisfying β + d = 2m to have norm equivalence
between Wm

2 (Ω) and NK . Note that the compactly supported radial polynomial
kernels of Wendland [18] satisfy this for certain choices of m,β, and d.

Now it is time to pick a meshless trial discretization Ur via a set Yr of trial
centers with fill distance r using the kernel K. Then we can expect an error behavior
εr(u) ≤ Crm−μ for u ∈ NK for a direct interpolant to the regular solution in the
points of Yr. This rate is the ideal goal we want to achieve for our numerical solution
of the given operator equation.

The next step is to pick a test discretization via a set Xs of test centers in Ω with
fill distance s. The second inequality of (1.4) holds with c(s) independent of s because
we assume continuous residuals and corresponding Sobolev embedding theorems. By
Theorem 5.1, the first inequality of (1.4) will then hold with C(r, s) ≤ Csμ−μ using
(5.3). But we have to make the test discretization fine enough to satisfy (5.6). As
expected, this means that the test discretizations must be somewhat finer than the
trial discretizations, and the required relation between s and r is

s < c · r1+ μ
m−μ .(6.1)

There is plenty of leeway for small trial and large test spaces.

We are now ready to put everything into Theorem 1.2, while we assume that we
solve the discretized problem (1.8) with accuracy δr,s. With new generic constants
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CONVERGENCE OF UNSYMMETRIC COLLOCATION 345

we get

‖u− u∗
r,s‖Wμ

2 (Ω) ≤ C
(
rm−μ

(
1 + Csμ−μ

)
+ δr,s

)
‖u‖K .(6.2)

Note that this bound has the proper approximation error of order rm−μ holding
between Sobolev spaces U = Wμ

2 (Ω) and UR = NK ⊆ Wm
2 (Ω), but there also is a

counteracting term sμ−μ which is the price we have to pay for working on discrete
residuals in the L∞ norm while bounding the residual error in the norm on Sobolev
trace spaces Wμ−μi

2 (Ωi) in order to use continuous dependence on Sobolev space data.
If we choose δr,s properly via (1.9) and s via (5.6), we have solvability of the system
and an error bound

‖u− u∗
r,s‖Wμ

2 (Ω) ≤ Crm−2μ+μ−
μ(μ−μ)

m−μ ‖u‖Wm
2 (Ω).

Of course, this is not an optimal bound because μ must be positive and even larger
than d/2. Consequently, there is quite some future work necessary on this bound,
though it is improving when m is much larger than μ. In this context, it is not
surprising that most of the practical applications of unsymmetric collocation methods
have very regular solutions.

To show the minimum regularity requirements for the results of this section, we
should track the possible range of m for the Poisson problem in d dimensions. For
operators L1 := −Δ and L2 providing Dirichlet boundary data, we have μ1 = 2 and
μ2 = 1/2 with d1 = d and d2 = d − 1. Then (5.2) requires d/2 < μ − 2 while (4.3)
leads to �m� > 2 + d as the minimum regularity requirement. This clearly needs
improvement by future work, but it should be mentioned that the resulting error
bound is strong enough to include derivatives up to order μ with 2 + d/2 < μ <
�m� − d/2 ≥ m− 1 − d/2.

7. Weak convergence in Sobolev spaces. Analysis of the previous section
shows that the term sμ−μ in (6.2) with some positive μ satisfying (5.1) and μ > d/2
makes the final bound worse than expected. Tracing this back to (4.4) shows that
one should better look at another variation which allows μ = 0 at that point without
spoiling the assumption that the data are still continuous. In fact, (4.4) also allows

‖u‖L∞(Ω) ≤ C
(
hm−d/2‖u‖Wm

2 (Ω) + ‖u‖∞,Yh

)
for all u ∈ Wm

2 (Ω)(7.1)

if d/2 < �m� holds.
But this does not easily fit into the framework required for continuous depen-

dence. Thus we start anew, defining the data spaces F i as spaces C(Ωi) of continuous
functions under the L∞ norm. To make continuous dependence valid, we use embed-
dings C(Ωi) ⊂ L2(Ω

i) = W 0
2 (Ωi) ⊆ Wμ−μi

2 (Ωi) for μ := μ = minμi. Then we apply
the standard continuous dependence relating the standard solution space Wμ

2 (Ω) to
the trace spaces Li(Wμ

2 (Ω)) ⊆ Wμ−μi

2 (Ωi), which fortunately hold for small and even
negative μ, if the domain is smooth [12, 3]. This yields a new continuous dependence
relation via

‖u‖Wμ
2 (Ω) ≤ C maxi ‖Li(u)‖

W
μ−μi
2 (Ωi)

≤ C maxi ‖Li(u)‖W 0
2 (Ωi)

≤ C maxi ‖Li(u)‖C(Ωi)

= C maxi ‖Li(u)‖F i

= C‖L(u)‖F ,
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346 ROBERT SCHABACK

holding only on the subspace U of functions u in Wμ
2 (Ω) with continuous data L(u).

Note that this will lead to a weak convergence result in U ⊂ Wμ
2 (Ω), though the

problem formulation is still strong. For instance, a problem with Dirichlet data will

lead to μ = 1/2 due to the trace map Wμ
2 (Ω) → W

μ−1/2
2 (∂Ω) if all other trace or

differential operators have a larger loss in the order of the respective Sobolev trace
spaces.

Thus we now repeat our basic argument for U ⊂ Wμ
2 (Ω) with μ = μ = mini μi.

Our choice of regularity space UR and the kernel K will be as above. This fixes β and
m. To derive the approximation order in (1.3) we apply (4.5) to get

‖Li(u− Ir(u))‖W 0
∞(Ωi) ≤ Crm−μi−d/2‖Li(u− Ir(u))‖

W
m−μi
2 (Ωi)

≤ Crm−μi−d/2‖u− Ir(u)‖Wm
2 (Ω)

≤ Crm−μ−d/2‖u‖Wm
2 (Ω),

which requires only

d/2 < �m− μi�, 1 ≤ i ≤ n,(7.2)

and where we now also need μ from (5.3). Thus we get

εr(u) ≤ Crm−μ−d/2

for (1.3).
The discretization of the F i = C(Ωi) spaces is again by pointwise evaluation on

a set Xi
s of test centers, taking the discrete L∞ norm, but we now can skip Sobolev

embedding which led to the inequalities (5.1) we want to avoid now. Since every data
space is equipped with the L∞ norm, we have c(s) = 1 in the second inequality of
(1.4). The proof of the first inequality of (1.4) again proceeds via Theorem 1.1. To
prove (1.5) we start with (7.1) on the various data:

‖Li(u)‖W 0
∞(Ωi) ≤ C

(
sm−μi−di/2‖Li(u)‖

W
m−μi
2 (Ωi)

+ ‖Li(u)‖∞,Xi
s

)

for all u ∈ UR = NK where we need (7.2) again. We define FR as in the previous
section, and then we have (1.5) in the form

‖L(u)‖F ≤ C
(
sm−μ−d/2‖L(u)‖FR

+ ‖ΠsL(u)‖Fs

)
.

Unfortunately, the proof for (1.6) given in section 5 proceeds via ‖.‖∞ and thus needs
μ > d/2. Of course there is always some a priori inequality of the form (1.6), but we
currently have no explicit upper bounds for c3(r) in terms of r. Anyway, if we take s
small enough to satisfy (1.7) with c1(s) = Csm−μ−d/2, Theorem 1.1 still is valid and
yields the first inequality of (1.4) with C(r, s) independent of r and s provided that s
is small enough.

Then we continue as in the proof of Theorem 5.1. Since the discretization scheme
is uniformly stable for sufficiently small test discretizations s, Theorem 1.2 now gives
the error bound

‖u− u∗
r,s‖Wμ

2 (Ω)
≤ Crm−μ−d/2‖u‖Wm

2 (Ω) for all u ∈ Wm
2 (Ω)

provided that the numerical solution of (1.8) observes (1.9) and the test discretization
is fine enough in a way we currently cannot specify explicitly. The left-hand norm
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is rather weak here, and the approximation order can probably be improved. For
instance, a standard two-dimensional Poisson problem with Dirichlet data would lead
to

‖u− u∗
r,s‖W 1/2

2 (Ω)
≤ Crm−3‖u‖Wm

2 (Ω) for all u ∈ Wm
2 (Ω),

but an optimal rate for the Sobolev spaces involved would be m−1/2 instead of m−3.
The minimum regularity in this case is m = 4 because of (7.2).

Future work should improve the results of this and the previous sections. This may
be done by better choices of spaces and norms, plus better versions of the Markov–
Bernstein inequality (1.6) which are currently investigated.

8. Numerical methods. We now look at techniques to solve the discrete prob-
lem (1.8). It amounts to solving the n linear problems

Πi
sL

i(u− u∗
r,s) = 0, 1 ≤ i ≤ n,

approximately, where we discretized the operators Li on the domains Ωi by taking
only point evaluations. This takes the form of collocation

Li(u)(xji) = Li(u∗
r,s)(xji) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ Ni,

where the points of the test discretization Xs are the union of the sets

Xi
s := {xj1, . . . , xjNi}, 1 ≤ j ≤ n,

and where we dropped the dependence on s in the notation for the xji and for Ni.
For a shorthand notation, we introduce the functionals

λji : v �→ Li(v)(xji)

and rearrange them into a single-indexed list λ1, . . . , λN with N = N1 + · · · + Nn.
Since u∗

r,s should be in the trial space Ur generated by translations of the kernel
K at trial centers forming Yr := {y1, . . . , yM}, we arrive at a system

M∑
m=1

αmλz
iK(z, ym) = λz

i u(z), 1 ≤ i ≤ N,

with M unknowns and N equations. In case M = N this is exactly the unsymmetric
collocation technique dating back to Kansa in 1986 [8]. It has no rigid foundation
yet, and it can fail in specially constructed situations [7], though it works fine in
many applications. In the first years it was applied to small problems with smooth
solutions due to serious condition problems, but recently there have been results on
preconditioning [5, 9] that allow a wider range of applicability.

In view of Theorem 5.1 and the two previous sections we know that N ≥ M holds
and the system has full rank M , provided that our stability conditions are satisfied,
calling for a somewhat finer discretization on the test than on the trial side. Thus the
system will be unsymmetric and overdetermined, but at least there is no rank loss.
Furthermore, we know by (1.3) and (1.9) that there is a good approximate solution to
the full system. This means that we can allow any numerical method that produces
a solution with similar or less deviation.
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Since our convergence analysis worked with the L∞ norm on the discretized Fs

spaces, a first choice would be to go for a best L∞ approximation of the right-hand
side. This means solving a linear optimization problem which minimizes η under the
constraints

−η ≤
M∑

m=1

αmλz
iK(z, ym) − λz

i u(z) ≤ η, 1 ≤ i ≤ N,(8.1)

where α1, . . . , αM are the other variables. If the revised simplex method is applied to
the dual problem, each step has an O(M2) complexity. The Kuhn–Tucker conditions
ensure that one can work with at most M+1 active test conditions at each time. This
makes the number N >> M of test centers much less relevant than M , and for nicely
chosen low-dimensional trial spaces one can get away with rather small computational
complexity, as demonstrated in [10, 11].

But one can also try all other techniques that somehow provide a function u∗
r,s ∈

Ur which by a posteriori inspection leads to a small residual norm δr,s in (1.8). This
can happen to the original Kansa method when executed on a subset of M test points,
or by adaptive bootstrapping techniques like the one in [10, 11] which picks suitable
test centers and trial centers one by one. Other alternatives are to use pivoting with
row exchange or to go for a least-squares solution first. Anyway, if the resulting
residual norm δr,s is small, the result of Theorem 1.2 is still valid, proving that one
actually has a good approximation to the real solution.

As an aside, we note that a simpler theory is possible if we optimize over a
nondiscrete residual norm on F . Section 5 will then be obsolete, but one has to
solve semi-infinite optimization problems (if F carries a sup-norm) or apply least-
squares methods with integrations (if F carries an inner product). Another strategy
to avoid stability problems is to add the numerically accessible quadratic constraint
‖ur‖2

K ≤ C to any method trying to make residuals small. This regularization trick
has connections to machine learning [17] and should be investigated in future work.

9. Ill-posed problems. For ill-posed problems, continuous dependence fails,
but our method and its analysis will still be useful. We assume that the problem still
has the form (1.1), but we now assume that the “true solution” u ∈ U satisfies only

L(u) = f + ρ ∈ F,(9.1)

where F contains the available data f and a small residual ρ. The problem L(u) = f
may be unsolvable, and (1.2) is not available. We consider a function ũ ∈ U to be
acceptable as a “solution” if

‖L(ũ) − L(u)‖F = ‖L(ũ) − f − ρ‖F

is not much larger than ‖ρ‖F . We still assume (1.3) and (1.4), but we have to replace
(1.8) by

‖Πs(f − L(u∗
r,s))‖Fs ≤ δr,s,(9.2)

because L(u) now is unknown and does not coincide with f . Furthermore, solvability
of the above system now requires

c(s)(‖ρ‖F + εr(u)) ≤ δr,s(9.3)
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instead of (1.9) as a sufficient condition. The proof technique of Theorem 1.2 then
still implies the following theorem.

Theorem 9.1. If the analytic problem is ill-posed, but solvable by u ∈ UR in the
sense of (9.1), and if we solve (9.2) by some u∗

r,s ∈ Ur, then there is a bound

‖L(u− u∗
r,s)‖U ≤ c(s)‖ρ‖F +

(
εr(u)

(
1 +

C(r, s)

c(s)

)
+ c(s)δr,s

)
.

If the discretization is uniformly stable, then there is a choice of δr,s via (9.3) such
that the above residual error behaves asymptotically like the trial approximation error
εr(u) plus ‖ρ‖F .

Proof. We modify the proof of Theorem 1.2 to get

‖L(u− u∗
r,s)‖F ≤ ‖L(u− Ir(u))‖F + ‖L(Ir(u) − u∗

r,s)‖F
≤ εr(u) + c(s)‖ΠsL(Ir(u) − u∗

r,s)‖Fs

≤ εr(u) + c(s)‖ΠsL(Ir(u) − u)‖Fs

+c(s)‖Πs(L(u) − f)‖Fs

+c(s)‖Πs(f − L(u∗
r,s))‖Fs

≤ εr(u) + c(s)δr,s + C(r,s)
c(s) ‖L(Ir(u) − u)‖F + c(s)‖Πs‖‖ρ‖F

≤ c(s)‖ρ‖F + εr(u)
(
1 + C(r,s)

c(s)

)
+ c(s)δr,s.

For simplicity of the above presentation, we have replaced the second inequality
of (1.4) by

c(s)‖Πsg‖Fs
≤ ‖g‖F for all g ∈ F

which is no serious complication. However, we should comment on what happens with
Theorems 1.1 and 5.1 if we have no analytic constant Ca for carrying out the proof.
We replace Ca by the constant Ca(r) arising in a finite-dimensional version

‖ur‖U ≤ Ca(r)‖L(ur)‖F for all ur ∈ Ur

of (1.2). This is feasible due to norm equivalence, but we leave it to future research
to derive upper bounds for Ca(r).

10. Conclusions. We provided convergence proofs for a generalized nonsquare
version of Kansa’s collocation method, showing that the convergence rates are deter-
mined by approximation results for nonstationary meshless kernel-based trial spaces.
The rates improve with the smoothness of the solution, the domain, the differential
operator, and the kernel. They hold for large classes of analytic problems, provided
that there is continuous dependence on the data, and they result from a fairly general
framework that possibly has applications to other unsymmetric methods. On the
downside, the results still need improvement by proving better a priori inequalities to
plug into the framework.

There are many possibilities for enhancement and extension of these results:
1. Find sufficient conditions for nonsingularity of square Kansa-type collocation

matrices.
2. Introduce discretization-dependent weights for different parts of residuals into

the theory of this paper in order to align dimension- and order-dependent
convergence rates.
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350 ROBERT SCHABACK

3. For important problems of applied analysis, state the continuous dependence
of the solution on the data in precise form and derive upper bounds for the
analytic constants.

4. Implement algorithms of this paper as local components of a global algorithm
using localization features like domain decomposition or partitions of unity
and efficiency-enhancing features like preconditioning and iterative solvers.

5. For such a global algorithm, perform large-scale numerical experiments and
compare observed convergence rates with the theoretical ones of this paper.

6. Generalize all of this to unsymmetric methods for weak problems like the
meshless local Petrov–Galerkin (MLPG) method of Atluri and collaborators
[2].
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