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ICA Color Space for Pattern Recognition

Chengjun Liu and Jian Yang

Abstract—This paper presents a novel independent component
analysis (ICA) color space method for pattern recognition. The
novelty of the ICA color space method is twofold: 1) deriving ef-
fective color image representation based on ICA, and 2) imple-
menting efficient color image classification using the independent
color image representation and an enhanced Fisher model (EFM).
First, the ICA color space method assumes that each color image
is defined by three independent source images, which can be de-
rived by means of a blind source separation procedure, such as
ICA. Unlike the RG B color space, where the R, G, and B com-
ponent images are correlated, the new ICA color space method de-
rives three component images C;, C>, and C; that are indepen-
dent and hence uncorrelated. Second, the three independent color
component images are concatenated to form an augmented pattern
vector, whose dimensionality is reduced by principal component
analysis (PCA). An EFM then derives the discriminating features
of the reduced pattern vector for pattern recognition. The effective-
ness of the proposed ICA color space method is demonstrated using
a complex grand challenge pattern recognition problem and a large
scale database. In particular, the face recognition grand challenge
(FRGC) and the biometric experimentation environment (BEE)
reveal that for the most challenging FRGC version 2 Experiment
4, which contains 12776 training images, 16 028 controlled target
images, and 8014 uncontrolled query images, the ICA color space
method achieves the face verification rate (ROC III) of 73.69% at
the false accept rate (FAR) of 0.1%, compared to the face verifi-
cation rate (FVR) of 67.13% of the RG B color space (using the
same EFM) and 11.86% of the FRGC baseline algorithm at the
same FAR.

Index Terms—Biometric experimentation environment (BEE),
enhanced Fisher model (EFM), face recognition grand challenge
(FRGC), independent component analysis (ICA) color space, pat-
tern recognition, principal component analysis (PCA), RG B color
space.

1. INTRODUCTION

color image, determined by a function of two spatial vari-
A ables and one spectral variable, is 3-D and multispectral
[14]. The spectral dimension is usually sampled to the red (R),
green (G), and blue (B) spectral bends, known as the primary
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colors. A color image, therefore, contains three component im-
ages: the red, green, and blue component images. Each pixel of
a color image is specified in a color space, which serves as a
color coordinate system. One commonly used color space is the
RG B color space, and other color spaces are usually calculated
from the RG'B color space by means of either linear or non-
linear transformations.

As different color spaces transformed from the RG B color
space display different discriminating power for pattern recog-
nition [10], [23], [34], this paper seeks a novel independent com-
ponent analysis (ICA) color space method for both effective
color image representation and efficient color image classifica-
tion. First, the ICA color space method assumes that each color
image is defined by three independent source images, C1, Co,
and Cj, which can be derived by means of a blind source sep-
aration procedure, such as ICA [7], [22]. Second, the three in-
dependent color component images are concatenated to form an
augmented pattern vector, whose dimensionality is reduced by
principal component analysis (PCA) [11]. Specifically, the three
images C1, Co, and C3 are first converted into vectors, respec-
tively. Each of the three vectors is then normalized to zero mean
and unit variance. The three normalized vectors are finally con-
catenated to form the augmented pattern vector. An enhanced
Fisher model (EFM) [25] then derives the discriminating fea-
tures of the reduced pattern vector for pattern recognition.

The novelty of the ICA color space method is twofold: 1) de-
riving effective color image representation based on ICA, and 2)
implementing efficient color image classification using the in-
dependent color image representation and an EFM. The motiva-
tion of investigating an ICA color space rests on the findings that
ICA provides a powerful data representation method for pattern
recognition [1], [7], [22]. ICA derives a linear transformation to
represent a set of random variables as linear combinations of sta-
tistically independent source variables [7]. The search criterion
involves the minimization of the mutual information defined as
a function of high-order statistics (cumulants). While PCA ap-
plies low-order (<2) statistics (mean, variance, and covariance)
to uncorrelate data, ICA would further reduce statistical depen-
dencies and produce a sparse and independent code useful for
subsequent pattern discrimination [30]. Unlike the RG'B color
space, where the R, G, and B component images are correlated,
the new ICA color space method derives three component im-
ages C1, C,, and Cj that are independent and hence uncorre-
lated.

The effectiveness of the proposed ICA color space method
is demonstrated using a complex grand challenge pattern
recognition problem and a large scale database. In particular,
the face recognition grand challenge (FRGC) [32] and the
biometric experimentation environment (BEE) [32] reveal
that for the most challenging FRGC version 2 Experiment 4,
which contains 12 776 training images, 16 028 controlled target

1045-9227/$25.00 © 2009 IEEE



LIU AND YANG: ICA COLOR SPACE FOR PATTERN RECOGNITION

images, and 8014 uncontrolled query images, the ICA color
space method achieves the face verification rate (ROC III) of
73.69% at the false accept rate (FAR) of 0.1%, compared to
the face verification rate (FVR) of 67.13% of the RGB color
space (using the same EFM) and 11.86% of the FRGC baseline
algorithm at the same FAR.

II. BACKGROUND

Color has been widely applied in machine learning and pat-
tern recognition [10], [13]. Color invariant moments and color
histograms, for example, are efficient cue for indexing into a
large image database or for object recognition against image
variations such as illumination [9], [15], [35], [37]. Different
color spaces defined by transformations from the RG B color
space possess different color characteristics, which can be ap-
plied for different visual tasks, such as object detection, in-
dexing and retrieval, and recognition [10], [13], [18], [27], [28],
[39]. For instance, the H SV (hue, saturation, value) color space
and the Y CbC'r (luminance, chrominance-blue, chrominance-
red) color space have been applied for face detection by many
researchers [12], [17], [18], [36], [40]. Different color spaces
also reveal different discriminating power for pattern recogni-
tion [10], [23], [34]. The R component image in the RG' B color
space and the V' component image in the H. SV color space, for
example, have been shown more effective for face recognition
than the component images in several other color spaces [34].
Jones and Abbott [21] propose a conversion of color images to
a monochromatic form, namely, from a 3-D color space to a
1-D space, for improving human face recognition performance
upon the grayscale images. Neagoe [29] presents a color conver-
sion using Karhunen-Loeve transform (KLT) or PCA, namely,
from the 3-D RG B color space to a 2-D PCA color space, for
pattern recognition using a concurrent neural network classifier,
and demonstrates the feasibility of the method on face recogni-
tion.

Face recognition has become a very active research area in
pattern recognition driven mainly by its broad applications in
human—computer interaction, homeland security, and enter-
tainment [4]-[6], [20], [31], [42]. To promote and advance face
recognition technologies, the National Institute of Standards
and Technology (NIST), sponsored by multiple U.S. govern-
ment agencies, conducted the face recognition grand challenge
program or FRGC [32]. FRGC consists of a number of ex-
periments, and the FRGC baseline algorithm reveals that the
FRGC version 2 Experiment 4, which is designed for controlled
single still image versus uncontrolled single still image, is the
most challenging FRGC experiment. The grand challenges
are caused mainly by those uncontrolled factors such as the
large illumination variations. The data contained in the FRGC
version 2 Experiment 4 includes 12 776 training images, 16 028
controlled target images, and 8014 uncontrolled query images.
Face recognition performance is reported using the receiver
operating characteristic (ROC) curves, which plot the FVR
versus the FAR. The biometric experimentation environment
system or BEE generates three ROC curves (ROC I, ROC II,
and ROC III) corresponding to the images collected within
semesters, within a year, and between semesters, respectively
[32]. Note that the FRGC baseline algorithm, which is a PCA
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Fig. 1. Architecture of the ICA color space method. An image in the first
column consists of three color component images R, G, and B shown in the
middle column. The three images in the right column are the independent source
images C;, C., and Cj3, derived using ICA. The three correlated R, G, and
B component images are defined by the linear combinations of the three inde-
pendent source images C;, C., and C3 with weights W, (¢,7 = 1,2, 3).

algorithm optimized for large scale problems [3], [26], [32],
achieves the FVR (ROC III) of 11.86% at the FAR 0.1%, using
the grayscale image that is the average of the three R, GG, and
B component images.

III. ICA COLOR SPACE FOR EFFECTIVE COLOR
IMAGE REPRESENTATION

In the RG B color space, a color image C with a spatial res-
olution of 7 X n contains three color component images R, G,
and B with the same resolution of m X n. Each pixel of the
color image C thus resides in a 3-D space: X € R?, where the
elements of X are the red, green, and blue values from the R,
G, and B component images, respectively. As the R, G, and B
component images are correlated, the elements of the random
vector X’ are also correlated. Recent research reveals that dif-
ferent color spaces transformed from the RG B color space dis-
play different discriminating power for pattern recognition [10],
[23], [34]. This paper, therefore, investigates a novel ICA color
space method for effective color image representation, which
can help improve pattern recognition performance.

The ICA color space method assumes that every color image
is defined by three independent source images Cq, Co, and Csg,
which can be derived by means of a blind source separation
procedure, such as ICA [7], [22]. Fig. 1 shows the architecture
of the ICA color space method. Specifically, a color image C
in the RG B color space contains three color component images
R, G, and B shown in the middle column. These correlated
R, G, and B component images are defined by means of the
linear combinations (with weights W;;, where ¢, 5 = 1,2, 3) of
the three independent source images C;, Cs, and C3 (in the
last column) derived using ICA. As ICA provides a powerful
data representation method for pattern recognition [1], [7], [22],
the ICA color space is expected to possess more discriminating
power than the RG' B color space.

ICA of a random vector seeks a linear transformation that
minimizes the statistical dependence among the elements of the
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vector [7], [16], [33], [41]. We apply independent component
analysis to the 3-D pattern vector &X', whose elements corre-
spond to the red, green, and blue values from the R, G, and B
component images of the color image C. In particular, the co-
variance matrix of X is defined as: Xy = E{[X — E(X)][X —
E(X)]'}, where £() is the expectation operator, ¢ denotes the
transpose operation, and Xy € R3*3 is a real and symmetric
square matrix. Note that 3.y can be estimated using the sample
covariance matrix of the 3-D pattern vectors of all the training
color images (with mn 3-D pattern vectors in each training color
image). The ICA of the 3-D pattern vector X" factorizes the co-
variance matrix X y into the following form:

Yy =WVW! (1)
where V € R3*? is diagonal real positive and W € R3*3,
defined by the weights (W;;, where 4, 7 = 1,2, 3) of the linear
combinations in the architecture of the ICA color space method
(see Fig. 1), transforms the original pattern vector ¥ € R3 to a
new 3-D pattern vector Z € R?

X=W2Z. 2)
The three components of the new pattern vector Z are indepen-
dent or the most independent possible. Note that (1) is not just a
PCA decomposition, because PCA can only derive uncorrelated
principal components rather than independent components. To
derive the W matrix in (2), Comon [7] develops an algorithm by
calculating mutual information and high-order statistics. Next,
we briefly review some high points of Comon’s ICA algorithm
in order to explain the three major steps applied to derive the
independent pattern vector Z in (2).

Let the probability density function of the random vector Z €
R be p.(z). Vector Z has mutually independent components if
and only if its joint density equals the product of its marginal
densities

p.(z) = Hp (2): 3)

To measure the independence among the components of the
random vector Z, Comon [7] introduces an optimization crite-
rion by calculating the Kullback—Leibler divergence (or relative
entropy) of the two probability density functions corresponding
to the left-hand and right-hand sides of

) p=(2) z
/pz (z) log —H - (o) dz.

1(p.) now defines the average mutual information of Z. Equa-
tions (3) and (4) reveal that the mutual information vanishes if
and only if the random vector Z has mutually independent com-
ponents. Comon [7] further shows that (4) can be rewritten as
follows:

I(p-) = “4)

I Vi
7]

1) = J(0:) = 32 (2) + 5 log ©

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 2, FEBRUARY 2009

where V' is the covariance matrix of Z, and J(p.) is the negen-
tropy, a measure of similarity between a density p.(z) and the
Gaussian density ¢.(z)

¢+(2) 2
-(2) dz.

Equations (5) and (6) provide a way to approximate the mu-
tual information. Comon’s ICA algorithm [7] applies an opti-
mization procedure to minimize the mutual information and it
consists of three major steps: 1) a singular value decomposition
(SVD) procedure, which involves only low-order statistics, can-
cels the last term of (5); 2) a number of rotation transformations,
which apply high-order statistics by means of «-statistics, mini-
mize the second term on the right-hand side of (5) while keeping
the others unchanged; and 3) a normalization procedure, which
standardizes the column vectors of W in (1) in terms of order,
norm, and phase, defines a unique ICA transformation. To sum-
marize, the algorithm that derives the ICA transformation ma-
trix W in (1) consists of the following steps.
1) Form a data matrix using the training RG' B color images

J(ps) = - / p-(2)log ©)

T1,72, s Ttmn
D= 91,92, Jtmn
b17b27 T '7btm,n

where m xn and ¢ are the spatial resolution and the number
of the training images, respectively.

2) Apply Comon’s ICA algorithm [7] to the data matrix D to
derive the ICA transformation matrix W by means of three
operations: an SVD procedure, a number of rotation trans-
formations, and a normalization procedure for obtaining a
unique ICA transformation.

The ICA transformation matrix W € R3*3 [see (2)], derived
by Comon’s algorithm [7], transforms the 3-D vector X € R®
in the RG B color space to a new 3-D vector Z € R? with in-
dependent color components. The new color space where the
3-D vector Z resides is the ICA color space. Just as the RGB
color space has the R, G, and B color component images, the
ICA color space has three color component images as well. But
contrary to the correlation property among the R, G, and B im-
ages, the three color component images in the ICA color space
are independent and therefore uncorrelated. Let the three color
component images in the ICA color space be C1, Cs, and Cs.
As the original color image C has a spatial resolution of m X n,
the three independent color component images in the ICA color
space C1, Ca, and Cj3 have the same spatial resolution of m x n
as well. Without loss of generality, we still use Cy, Cs, and C3
to represent the column vectors converted from the three inde-
pendent color component images: C;, Cy,Cs € RY, where
N = mn.

To form an effective color image representation, we first cal-
culate the mean value and the standard deviation of the N ele-
ments inside each column vector, and let m1, ms, and m3 and
01, 02, and o3 be the mean values and the standard deviations of
C,, C,, and C3, respectively. We then concatenate these three
column vectors (corresponding to the color component images)
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to form a new pattern vector )) € R3M by normalizing each
color column vector to zero mean and unit variance

= (N

y_ (Cﬁ—ml Cé—mg Cé—m;:,)t

o1 g2 g3

where the subtraction of a number (the mean value) from a
vector is evaluated by subtracting the number from every el-
ement of the vector. The reason of normalizing each column
vector to zero mean and unit variance before the concatenation
is to avoid that one vector excessively dominates the others. The
augmented pattern vector ) thus forms the new effective color
image representation in the ICA color space. Next, we will dis-
cuss how to use such an effective color image representation to
improve pattern recognition performance.

IV. ICA COLOR SPACE FOR EFFICIENT COLOR
IMAGE CLASSIFICATION

This section discusses implementing efficient color image
classification using both the effective color image representa-
tion () in the ICA color space and an enhanced Fisher model
or EFM [25] for extracting the discriminating features from
Y for classification. As YV € R3Y resides in a high-dimen-
sional vector space, we first apply PCA to reduce the dimension-
ality of the vector space. Specifically, let 3y, be the covariance
matrix of V: ¥y = E{[Y — E)]|[V — £(I)]}, then PCA
factorizes Yy into the following form: ¥ = ®AP!, where
® = [p1¢2...dsn] is an orthogonal eigenvector matrix and
A = diag{A1, A2, ..., Asn} a diagonal eigenvalue matrix with
diagonal elements in decreasing order (A; > Ao > -+ > A3y ).
b1, P2,...,¢03n and A1, Ao, ..., Az are the eigenvectors and
the eigenvalues of Xy, respectively. The dimensionality of the
pattern vector ) can be reduced from 3N to K (K < 3N) using
the K eigenvectors corresponding to the K largest eigenvalues

U=PrYy ®)

where P = [p1¢2 ... dx]. As a result, the lower dimensional
pattern vector 4 € R¥ captures the most expressive features of
the original pattern vector ).

PCA, however, produces only the most expressive features
that are not suitable for pattern classification. One solution to
this problem is to apply the Fisher linear discriminant (FLD)
analysis [11] to the lower dimensional pattern vector // € R¥
to derive the most discriminating features for pattern recogni-
tion. Note that applying PCA for dimensionality reduction and
then FLD for discriminant analysis has been suggested by many
research groups [2], [8], [38]. For PCA, the more principal com-
ponents are used, the better the quality of image reconstruction
becomes. The same reasoning, however, does not apply to the
FLD discrimination analysis. One can actually show that using
more principal components can actually lead to decreased clas-
sification performance [25]. The explanation for such behavior
is that the trailing eigenvalues (resulting from the more principal
components used) correspond to high-frequency components
and usually encode noise. When these trailing and small valued
eigenvalues are included to define the reduced PCA space, FLD
has to fit for noise as well and as a consequence overfitting takes
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place [25]. The enhanced Fisher models address the overfit-
ting problem and would display increased generalization perfor-
mance [25]. Next we briefly review the EFM method and apply
it to implement efficient color image classification.

Let wy,ws, . ..,wr denote the classes, and My, Mo, ..., M|,
and M be the means of the classes and the grand mean, respec-
tively. The within-class and between-class scatter matrices X5,

and X, are defined as follows [11]:

L
&M:E:P@QEﬂU—ALXU—ALYWJ )
zl
Sy =Y Plw)(M; — M)(M; — M)'
=1

(10)

where P(w;) is a priori probability. FLD derives a projection
matrix W by maximizing the criterion J; = tr(X;13) [11].
This criterion is maximized when U consists of the eigenvectors
of the matrix 2;12b [11]

Yo, =UA (11)
where W, A are the eigenvector and eigenvalue matrices of
1%, respectively. The most discriminating features are
derived by projecting the pattern vector / onto the eigenvectors
in ¥

VY =UU. (12)
V thus contains the most discriminating features for pattern
recognition.

Further study reveals that in order to improve the generaliza-
tion performance of the FLD method, one should keep a proper
balance between the energy criterion—the need that the se-
lected eigenvalues (corresponding to the principal components
for the original pattern vector space) account for most of the
spectral energy of the raw data, for representation adequacy, and
the magnitude criterion—the requirement that the eigenvalues
of the within-class scatter matrix (in the reduced PCA space)
are not too small, for generalization improvement [25]. In par-
ticular, the EFM method improves the generalization capability
of the FLD method by decomposing the FLD procedure into a
simultaneous diagonalization of the within- and between-class
scatter matrices [25]. The simultaneous diagonalization is step-
wise equivalent to two operations as pointed out by Fukunaga
[11]: whitening the within-class scatter matrix and applying
PCA to the between-class scatter matrix using the transformed
data. The stepwise operation shows that during whitening the
eigenvalues of the within-class scatter matrix appear in the
denominator. Since the small (trailing) eigenvalues tend to
capture noise [25], they cause the whitening step to fit for
misleading variations, which leads to poor generalization per-
formance. To achieve enhanced performance, the EFM method
preserves a proper balance between the need that the selected
eigenvalues account for most of the spectral energy of the
raw data (for representational adequacy), and the requirement
that the eigenvalues of the within-class scatter matrix (in the
reduced PCA space) are not too small (for better generalization
performance) [25].
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The EFM method thus derives an appropriate low-dimen-
sional representation [the most expressive feature vector I/ in
(8)] and further extracts the discriminating features [the most
discriminating feature vector V in (12)] from U for efficient
color image classification. Image classification is implemented
by computing the similarity score between a target discrimi-
nating feature vector and a query discriminating feature vector.
Specifically, let 7; be a target feature vector, 7 = 1,2,...,7,
andlet Q;, 5 = 1,2,...,Q, be a query feature vector, then, the
similarity score S(7;, Q;) based on similarity measure ¢ is cal-
culated as follows:

S(T;, Q;) = 8(T;, Q;). (13)

Different similarity measures usually lead to different image
classification performance. The Euclidean or Lo distance mea-
sure is among the most commonly used similarity measures in
pattern recognition. Next we show that the normalized Lo dis-
tance measure is equivalent to the cosine similarity measure for
pattern recognition. Let §,, and .. represent the Lo distance
measure and the cosine similarity measure, respectively. 01,
and ..s may be formulated as follows:

1/2

6, (1, v) = (= v)'(u—v)] (14)
utv
Beos(U, V) = ——— (15)
[[alll[v]
where u,v € R¥ are two pattern vectors and || - || denotes the

norm operator. From (14) and (15), we can derive the relation-
ship between the Lo distance measure and the cosine similarity
measure

[l = v|* = [Ju|* + [|v]]* = 2[[ull[[v] cos(u,v)  (16)
where cos(-, ) is the cosine of the angle between two vectors.
If the pattern vectors u and v are normalized to have unit norm,
then (16) becomes

[62,(1,v)]* = 2 — 26c0s(u, V). (17)
Equation (17) shows that the cosine similarity measure and
the normalized L, distance measure are equivalent for pattern
recognition—a pattern recognition system that applies either
the maximum cosine similarity measure or the minimum nor-
malized L, distance measure (i.e., the Lo distance measure
with pattern vectors normalized to unit norm) will achieve the
same classification performance. For a general discussion of
the relationship among some popular similarity measures and
their pattern recognition performance, see [24]. The similarity
measure 6 of (13) used in our experiments is the cosine simi-
larity measure Ocos.

V. EXPERIMENTS

This section assesses the effectiveness of the ICA color space
method using a complex grand challenge pattern recognition
problem and a large scale database, i.e., the face recognition
grand challenge or FRGC problem and the FRGC version 2
database [32]. The biometric experimentation environment or
BEE provides an FRGC baseline algorithm, which is a PCA al-
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TABLE I
NUMBER OF IMAGES AND IMAGE QUALITY (CONTROLLED, UNCONTROLLED)
OF TRAINING, TARGET, AND QUERY SETS FOR THE
FRGC VERSION 2 EXPERIMENT 4

Database Experiment Set Images Image Quality
Training | 12,776 | Controlled or Uncontrolled
FRGC Version 2 | Experiment 4 | Target | 16,028 Controlled
Query 8,014 Uncontrolled

gorithm optimized for large scale problems [3], [26], [32]. The
FRGC baseline algorithm shows that the FRGC version 2 Ex-
periment 4, which is designed for indoor controlled single still
image versus uncontrolled single still image, is the most chal-
lenging FRGC experiment. We therefore choose this FRGC ex-
periment to assess the ICA color space method. For Experiment
4, the FRGC version 2 database contains 12 776 training images,
16028 controlled target images, and 8014 uncontrolled query
images. Table I shows the number of images and image quality
(controlled, uncontrolled) of the training, target, and query sets
for the FRGC Experiment 4.

Face images are first cropped to extract the facial region that
contains only face, so that the performance of face recognition
is not affected by factors not related to face, such as background
or hair styles. Fig. 2 shows some example FRGC images used
in our experiments that are already cropped to the size of 64 x
64 to extract the facial region. In particular, the top row displays
four training images: two controlled images (the first two im-
ages) and two uncontrolled images (the remaining two images).
The bottom row shows a target image (the first image, which is
controlled) and three query images (the remaining three images,
which are uncontrolled). Note that the uncontrolled face images
usually contain challenging factors, such as large illumination
variations, that affect the face recognition performance.

The ICA color space is derived using Comon’s ICA al-
gorithm [7] to compute the vector Z [with independent
components—see (2)] from the pattern vector A’ defined in the
RG B color space. The number of the training vectors X equals
the multiplication of the number of pixels (4,096 = 64 x 64) in
each training color image and the number of all the training im-
ages (12776). Comon’s ICA algorithm [7] applies a three-step
optimization procedure (SVD, rotation transformations, and
normalization) to minimize the mutual information and derive
the W matrix in (2).

Given a face image in the RG B color space, the 4096 (64 X
64) 3-D vectors X’ can be transformed into 4096 3-D vectors
Z using (2). These 4096 3-D vectors Z define three 64 x 64
component images, C1, Cs, and Cs, corresponding to the first,
second, and third components of Z, respectively. These Cq, Co,
and Cj3 images are the independent component images in the
ICA color space. Fig. 3 shows some example component images
in the RG B and the ICA color spaces, respectively. Specifically,
the top row shows the R, G, and B component images in the
RG B color space, and the bottom row displays the Cq, Co, and
C3 independent component images in the ICA color space.

Face recognition performance is evaluated using the ROC
curves, which plot the FVR versus the FAR. When a similarity
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Fig. 2. Example FRGC images cropped to the size of 64 x 64. The top row displays two controlled training images (the first two images) and two uncontrolled
training images. The bottom row shows one controlled target image (the first image) and three uncontrolled query images.

"= ::*h

Fig. 3. Example color component images in the RGB and the ICA color
spaces, respectively. The top row shows the R, G, and B component images
in the RG'B color space, and the bottom row displays the C;, C., and C;
independent component images in the ICA color space.

matrix is provided to the BEE system, it generates three ROC
curves (ROC I, ROC II, and ROC III) corresponding to the im-
ages collected within semesters, within a year, and between
semesters, respectively [32]. The similarity matrix stores the
similarity score of every target versus query image pair. As are-
sult, the size of the similarity matrix is 7' x @, i.e., the number of
target images 7' multiplies the number of query images Q (T =
16028 and Q = 8014 for the FRGC version 2 Experiment 4),
and the elements (similarity scores) of the similarity matrix are
computed using (13).

We now assess the face recognition performance of the ICA
color space method. The three independent color component im-
ages in the ICA color space C;, C5, and C3 are first converted
into vectors. These vectors are then normalized to zero mean
and unit variance, and finally concatenated to form a new pattern
vector ) [see (7)]. The new pattern vector ) thus resides in a
12 288-dimensional vector space, as the spatial resolution of the
three color component images is 64 x 64. PCA then reduces this
high-dimensional vector space into a lower dimensional space,

where the EFM method further derives the discriminating fea-
tures for pattern recognition. The choice of the dimensionality
of the lower dimensional space considers the issue of overfit-
ting and generalization and follows the idea of the EFM method
by examining the eigenvalue spectrum [25]. The cosine simi-
larity measure [see (15)] further applies the EFM discriminating
features to compute the similarity matrix [see (13)], and finally
BEE generates the three ROC curves based on the similarity ma-
trix.

We first assess the face recognition performance in the ICA
and the RG'B color spaces, respectively. Fig. 4 shows the face
recognition performance, the ROC curves without any score
normalization (ROC I, ROC II, and ROC III), of the FRGC ver-
sion 2 Experiment 4 using the concatenated pattern vector corre-
sponding to the three independent color component images Cy,
Cs, and C3 in the ICA color space, and the concatenated pattern
vector corresponding to the R, GG, and B component images in
the RG B color space, respectively. Note that the R, GG, and B
component images are first converted into column vectors, then
normalized to zero mean and unit variance before they are con-
catenated to form a new pattern vector. For both the ICA and the
RG B color spaces, the dimensionality of the concatenated pat-
tern vectors is first reduced to 1000 by PCA, after analyzing the
eigenvalue spectra [25]. As the total number of subjects (i.e.,
classes) of the FRGC version 2 Experiment 4 training data is
222, the rank of the between-class scatter matrix is at most 221.
We therefore choose 220 EFM features after the EFM analysis
in the 1000 dimensional space. Equation (13) applies these 220
EFM features and the cosine similarity measure [see (15)] to
produce the similarity matrix, which is finally analyzed by BEE
to generate the three ROC curves. The horizontal axis of Fig. 4
represents the FAR, while the vertical axis corresponds to the
FVR. As these curves are generated by the BEE system, the
face recognition performance of the FRGC baseline algorithm
is also included for comparison. These ROC curves show that
the ICA color space achieves better FVR than the RG' B color
space does. In particular, the ROC III curves in Fig. 4 reveal
that the new ICA color space achieves the FVR of 62.15% at
the FAR of 0.1%, compared to the FVR of 52.11% of the RGB
color space and 11.86% of the BEE baseline algorithm at the
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Fig. 4. Face recognition performance (without score normalization) of the
FRGC version 2 Experiment 4 using the concatenated pattern vector in the
ICA color space and the concatenated pattern vector in the RG B color space,
respectively. The face recognition performance of the FRGC baseline algorithm
is also included for comparison.

same FAR. Note that the BEE baseline algorithm applies the
grayscale image that is the average of the three R, GG, and B
component images.

To assess the effect of score normalization on face recogni-
tion performance, we apply the z score normalization [19] on
the similarity matrix. Fig. 5 shows the face recognition perfor-
mance, the ROC curves with score normalization (ROC I, ROC
II, and ROC III), of the FRGC version 2 Experiment 4 using the
concatenated pattern vector corresponding to the three indepen-
dent color component images in the ICA color space, the con-
catenated pattern vector corresponding to the R, G, and B com-
ponent images in the RG B color space, respectively. Again,
the ROC curves show that the ICA color space achieves better
FVR than the RG B color space does. In particular, the ROC III
curves in Fig. 5 show that the new ICA color space achieves the
FVR of 73.69% at the FAR of 0.1%, compared to the FVR of
67.13% of the RG B color space at the same FAR.

Table II summarizes the ROC III FVRs at 0.1% FAR using
the concatenated pattern vector in the ICA color space and the
concatenated pattern vector in the RG B color space, respec-
tively. The FRGC baseline performance is included as well for
comparison. These experimental results show that the ICA color
space improves upon the RG B color space for face recognition.

We then assess the comparative face recognition performance
of the ICA color space method and a PCA color space method
[29] in both 2-D and 3-D color spaces. To evaluate the contribu-
tions of the color transformations (ICA versus PCA) to the face
recognition performance, we apply the same PCA dimension-
ality reduction procedure and the same EFM feature extraction
procedure to the color component images derived by ICA and
PCA, respectively. Fig. 6 shows the FRGC version 2 Experi-
ment 4 face recognition performance (without score normaliza-
tion), the ROC curves (ROC I, ROC II, and ROC III), of the
ICA color space method and the PCA color space method in
3-D color spaces. While the ICA color space method uses the
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Fig. 5. Face recognition performance (with score normalization) of the FRGC
version 2 Experiment 4 using the concatenated pattern vector in the ICA color
space and the concatenated pattern vector in the RG B color space, respectively.
The face recognition performance of the FRGC baseline algorithm is also in-
cluded for comparison.

TABLE II
FRGC VERSION 2 EXPERIMENT 4 ROC III FVRS AT 0.1% FAR USING
THE CONCATENATED PATTERN VECTOR IN THE ICA COLOR SPACE
AND THE CONCATENATED PATTERN VECTOR IN THE RG B COLOR
SPACE, RESPECTIVELY. THE FRGC BASELINE PERFORMANCE
IS INCLUDED FOR COMPARISON

Method FVR at 0.1% FAR (ROC III)
ICA color space with score normalization 73.69%
RG B color space with score normalization 67.13%
ICA color space without score normalization 62.15%
RG B color space without score normalization 52.11%
FRGC Baseline Algorithm 11.86%

concatenated pattern vector corresponding to the three indepen-
dent color component images in the ICA color space, the PCA
color space method utilizes the concatenated pattern vector cor-
responding to the three uncorrelated component images derived
by PCA. The ROC curves show that the ICA color space method
achieves better FVR than the PCA color space method. In par-
ticular, the ROC III curves in Fig. 6 show that the ICA color
space method achieves the FVR of 62.15% at the FAR of 0.1%,
compared to the FVR of 54.95% of the PCA color space method
at the same FAR. Fig. 7 shows the FRGC version 2 Experiment
4 face recognition performance (with score normalization), the
ROC curves (ROC I, ROC II, and ROC III), of the ICA color
space method and the PCA color space method in 3-D color
spaces. Again, the ROC curves show that the ICA color space
method achieves better FVR than the PCA color space method.
In particular, the ROC III curves in Fig. 7 show that the ICA
color space method achieves the FVR of 73.69% at the FAR of
0.1%, compared to the FVR of 69.92% of the PCA color space
method at the same FAR.

We now assess the comparative face recognition performance
of the ICA color space method and the PCA color space method
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Fig. 6. FRGC version 2 Experiment 4 face recognition performance (without
score normalization), the ROC curves (ROC I, ROC II, and ROC III), of the ICA
color space method and the PCA color space method in 3-D color spaces. The
face recognition performance of the FRGC baseline algorithm is also included
for comparison.
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Fig. 7. FRGC version 2 Experiment 4 face recognition performance (with score
normalization), the ROC curves (ROC I, ROC II, and ROC III), of the ICA color
space method and the PCA color space method in 3-D color spaces. The face
recognition performance of the FRGC baseline algorithm is also included for
comparison.

in 2-D color spaces. Fig. 8 shows the FRGC version 2 Experi-
ment 4 face recognition performance (without score normaliza-
tion), the ROC curves (ROC I, ROC II, and ROC III), of the
ICA color space method and the PCA color space method in
2-D color spaces. While the ICA color space method uses the
concatenated pattern vector corresponding to the first two in-
dependent color component images in the ICA color space, the
PCA color space method utilizes the concatenated pattern vector
corresponding to the first two uncorrelated component images
derived by PCA. The ROC curves show that the ICA color space
method achieves better FVR than the PCA color space method.
In particular, the ROC III curves in Fig. 8 show that the ICA
color space method achieves the FVR of 51.58% at the FAR
of 0.1%, compared to the FVR of 46.14% of the PCA color
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Fig. 8. FRGC version 2 Experiment 4 face recognition performance (without
score normalization), the ROC curves (ROC I, ROC II, and ROC III), of the ICA
color space method and the PCA color space method in 2-D color spaces. The
face recognition performance of the FRGC baseline algorithm is also included
for comparison.
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Fig.9. FRGC version 2 Experiment 4 face recognition performance (with score
normalization), the ROC curves (ROC I, ROC II, and ROC III), of the ICA color
space method and the PCA color space method in 2-D color spaces. The face
recognition performance of the FRGC baseline algorithm is also included for
comparison.

space method at the same FAR. Fig. 9 shows the FRGC ver-
sion 2 Experiment 4 face recognition performance (with score
normalization), the ROC curves (ROC I, ROC II, and ROC III),
of the ICA color space method and the PCA color space method
in 2-D color spaces. Again, the ROC curves show that the I[CA
color space method achieves better FVR than the PCA color
space method. In particular, the ROC III curves in Fig. 9 show
that the ICA color space method achieves the FVR of 61.93% at
the FAR of 0.1%, compared to the FVR of 59.16% of the PCA
color space method at the same FAR.

Table IIT summarizes the ROC III FVRs at 0.1% FAR of the
ICA color space method and the PCA color space method in
2-D and 3-D color spaces. The FRGC baseline performance is
included as well for comparison. The experimental results in
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TABLE III
FRGC VERSION 2 EXPERIMENT 4 ROC IIT FVRS AT 0.1% FAR OF THE ICA
COLOR SPACE METHOD AND THE PCA COLOR SPACE METHOD IN 2-D
AND 3-D COLOR SPACES. THE FRGC BASELINE PERFORMANCE
IS INCLUDED FOR COMPARISON

Method FVR at 0.1%
FAR (ROC III)

ICA color space method in 3D color space with score normalization 73.69%
PCA color space method in 3D color space with score normalization 69.92%
ICA color space method in 3D color space without score normalization 62.15%
PCA color space method in 3D color space without score normalization 54.95%
ICA color space method in 2D color space with score normalization 61.93%
PCA color space method in 2D color space with score normalization 59.16%
ICA color space method in 2D color space without score normalization 51.58%
PCA color space method in 2D color space without score normalization 46.14%
FRGC Baseline Algorithm 11.86%

2-D color spaces are much worse than those in 3-D color spaces
for both the ICA color space method and the PCA color space
method. The experimental results also reveal that the ICA color
space method improves upon the PCA color space method for
face recognition.

VI. CONCLUSION

This paper presents an ICA color space method for pattern
recognition. The ICA color space, derived by means of ICA of
the RG B color space, defines three new component images that
are more effective than the tristimuli R, G, and B component
images for pattern recognition. In contrast to the RGB color
space, where the R, G, and B component images are correlated,
the new ICA color space defines three component images that
are independent and hence uncorrelated. As the ICA algorithm
performs the blind source separation, the three component im-
ages in the ICA color space are formed by the independent color
sources, and should encode more discriminating power than the
R, G, and B component images for classification. Experiments
using a complex grand challenge pattern recognition problem
together with a large scale database show that the proposed ICA
color space is more effective than the RG B color space for face
recognition.
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