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Cancer is a disease of aberrant gene expression. While the genetic causes of cancer have been intensively studied, it is becoming
evident that a large proportion of cancer susceptibility cannot be attributed to variation in protein-coding sequences. This is
highlighted by genome-wide association studies in cancer that reveal that more than 80% of cancer-associated SNPs occur in
noncoding regions of the genome. In this review, we posit that a significant fraction of the genetic aetiology of cancer is exacted
by noncoding regulatory sequences, particularly by long noncoding RNAs (lncRNAs). Recent studies indicate that several cancer
risk loci are transcribed into lncRNAs and these transcripts play key roles in tumorigenesis. We discuss the epigenetic and other
mechanisms through which lncRNAs function and how they contribute to each stage of cancer progression, understanding of
which will be crucial for realising new opportunities in cancer diagnosis and treatment. Long noncoding RNAs play important roles
in almost every aspect of cell biology from nuclear organisation and epigenetic regulation to post-transcriptional regulation and
splicing, and we link these processes to the hallmarks and genetics of cancer. Finally, we highlight recent progress and future
potential in the application of lncRNAs as therapeutic targets and diagnostic markers.

Cancer is a genetic disease – the result of dysregulation of the gene
networks that maintain normal cellular identity, growth and
differentiation. Only a small proportion of cancers are attributed to
inheritable single-gene disorders, usually involving non-synon-
ymous mutations in the coding sequence of protein-coding genes,
such as BRCA1 in familial breast cancer (Miki et al, 1994) and Rb1,
which causes familial retinoblastoma (Du and Pogoriler, 2006).
The majority of cancers arise via somatic mutations. The
susceptibility to develop sporadic cancer is complex, comprising
various genetic and environmental factors. The heritable compo-
nent of cancer susceptibility is dependent on the cancer type and is
in many cases considerable. Despite extensive study, the majority
of the genetic component of cancer susceptibility has not yet been
linked to individual genes, highlighting significant deficiencies in
our understanding of the molecular basis of cancer development. A
key development in unravelling the complex genetics of cancer
may be the shift in focus from looking exclusively at the protein-
coding components of the genome to consideration of the role of
variation in regulatory elements.

The combination of various genome-wide approaches, best
typified by the ENCODE project (Dunham et al, 2012), has
stimulated a dramatic reassessment of the information content of

the human genome. Rather than islands of protein-coding genes in
a sea of junk DNA, it is increasingly apparent that much of the
genome, far more than expected, encodes regulatory information.
Indeed the ENCODE project recently concluded that although only
B1.2% of the genome is protein-coding, at least 20% shows
biological function and over 80% exhibits biochemical indices of
function. The non-protein-coding regions of the genome serve not
only as a substrate for DNA-binding proteins that in turn govern
both the expression and 3D architecture of the genome, but also as
a template for the transcription of vast numbers of noncoding
RNAs (Carninci et al, 2005), which exhibit exquisite cell-specific
and developmental dynamic expression patterns (Dinger et al,
2008; Mercer et al, 2008, 2010; Pang et al, 2009; Cabili et al, 2011;
Khaitan et al, 2011), capable of transacting a wide repertoire of
regulatory functions (Amaral et al, 2008; Mercer et al, 2009).

Based on transcript size, these noncoding RNAs can be grouped
into two major classes: small noncoding RNAs (o200 bp) and long
noncoding RNAs (lncRNAs; 4200 bp, up to B100 kb). Long
noncoding RNAs share many features of mRNAs; they are
frequently transcribed by RNA polymerase II, polyadenylated
and can show complex splicing patterns. Long noncoding RNAs
are found in sense or antisense orientation to protein-coding genes,
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within introns of protein-coding genes or in intergenic regions of
the genome. While many lncRNAs may function in cis (through
the act of their transcription), a significant proportion of lncRNAs
have intrinsic RNA-mediated functions in trans (Guttman et al,
2011). Although the functions of only a minority have been
described, their dynamic and regulated expression suggests that
many more may be functional. Long noncoding RNAs can operate
through a variety of mechanisms (reviewed by Rinn and Chang,
2012) and their importance in many aspects of cell differentiation
and homeostasis is well established. In Figure 1, we have
summarised a number of these mechanisms and provide examples
for lncRNAs involved in different steps of cancer progression.

REGULATORY ROLES OF LNCRNAS IN CANCER

The mechanisms through which lncRNAs contribute to the
regulatory networks that underpin cancer development are diverse.
Accumulating evidence suggests that a major role of lncRNAs is to
guide the site specificity of chromatin-modifying complexes to
effect epigenetic changes (Mattick and Gagen, 2001; Mattick et al,
2009). At least 38% of lncRNAs present in several human tissues

bind to the polycomb repressive complex 2 or the chromatin-
modifying proteins CoREST and SMCX (Khalil et al, 2009). Others
bind to trithorax chromatin-activating complexes and/or activated
chromatin (Dinger et al, 2008). The well-characterised lncRNAs
ANRIL, XIST, HOTAIR and KCNQ1OT1 are able to recruit
epigenetic modifiers to specific loci to reprogram the chromatin
state. Recent studies have linked their mis-expression to diverse
cancers (ANRIL: prostate cancer, XIST: female cancers, HOTAIR:
breast cancer, KCNQ1OT1: colorectal cancer) (Figure 1A;
Gutschner and Diederichs, 2012).

Other lncRNAs have been found to be key regulators of the
protein signalling pathways underlying carcinogenesis. The
lncRNA lincRNA-p21 contains binding sites for the tumour
suppressor p53 in its promoter and is directly activated by p53 in
response to DNA damage. LincRNA-p21 is associated with
heterogenous nuclear ribonucleoprotein K and localises this
protein to promoters of genes, downregulated in the canonical
p53 pathway and p53-mediated apoptosis, to maintain gene
repression (Figure 1B; Huarte et al, 2010). Thus, similar to its
activator p53, lincRNA-p21 may play an important role in tumour
suppression by operating as a transcriptional repressor.

To achieve replicative immortality, cancerous cells need to
override the cellular mechanisms inhibiting proliferation.

Associated examples of lncRNAs in cancer

ANRIL: PCR1- mediated repression of INK4A-ARF-INK4b 
tumour suppressor locus, upregulated in prostate cancer, 
hotspot in various GWAS (Kotake et al, 2011; Pasmant et al,
2011)

XIST: Involved in X-chromosomal inactivation, 
downregulated in female breast, ovarian and cervical cancer 
cell lines (Kawakami et al, 2004), suppresses haematologic
cancer in vivo in mice (Yildirim et al, 2013)

KCNQ1OT1: Loss of imprinting in colorectal cancer (Nakano
et al, 2006)

HOTAIR: Overexpressed in breast cancer, promotes cancer 
metastasis (Gupta et al, 2010)

LincRNA-p21: Regulation of p53 response upon DNA 
damage; upregulated in various cancer cell lines (Huarte et al,
2010)

H19: Upregulated in gastric cancer; ectopic expression 
promotes cell proliferation (Yang et al, 2012)

SRA: Transcriptional coactivator of stereoid receptors; 
upregulated in breast tumorigenesis (Leygue et al, 1999)

TERRA: Facilitates telomeric heterochromatin formation and 
inhibits telomerase by direct binding; expression significantly 
reduced in many human cancer cell lines (Redon et al, 2010)

MALAT1: Control of alternative splicing by regulating the 
distribution of serine/arginine splicing factors (SR) and their 
protein levels in nuclear speckles, upregulated in various 
cancer tissues, promotes cell motility and proliferation 
(Schmidt et al, 2011; Tripathi et al, 2010; Xu et al, 2011)

PTENP1: Pseudogene of the tumour suppressor gene PTEN
controls PTEN expression levels by competing for microRNA 
binding with PTEN; lost in many human cancers (Poliseno et 
al, 2010)
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Figure 1. Generalised mechanisms and associated examples of lncRNAs involved in cancer progression. Long noncoding RNAs act through a
variety of mechanisms such as remodelling of chromatin (A), transcriptional co-activation or -repression (B), protein inhibition (C), as post-
transcriptional modifiers (D) or decoy elements (E). Consequently, mis-expression of lncRNAs can lead to changed expression profiles of various
target genes involved in different aspects of cell homeostasis.
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Telomeres are the protective ends of chromosomes, composed of
several kilobases of short repeats. These ends are progressively
shortened during cell division until they reach a critical length
triggering cell death or senescence. However, the majority of cancer
cells circumvent this loss by expressing telomerase, an enzyme that
adds telomeric repeats to the 30 end of chromosomes. Recent
studies have demonstrated that telomeric ends are transcribed into
a lncRNA named TERRA, which binds telomerase, inhibiting its
activity in vitro (Redon et al, 2010). In many cancer cells TERRA is
downregulated, providing a possible link to the longevity of cancer
cells by telomerase-mediated lengthening of chromosomal ends
(Ng et al, 2009; Figure 1C).

Some lncRNAs are constituents of macromolecular complexes
with roles in RNA processing. The lncRNA MALAT1 is thought to
act at a post-transcriptional level (Figure 1D) by controlling
alternative splicing of pre-mRNAs. It modulates the levels of active
(phosphorylated) serine/arginine (SR) splicing factors (Tripathi
et al, 2010). MALAT1 is upregulated in several cancer types and its
overexpression has been linked to an increase in cell proliferation
and migration in lung and colorectal cancer cells (Schmidt et al,
2011; Xu et al, 2011). A recent study indicated that MALAT1 may
also have a role in the regulation of gene expression, but not
alternative splicing, in lung metastasis, highlighting the contro-
versial nature of MALAT1’s molecular mechanism (Gutschner
et al, 2013).

Other lncRNAs can also act as decoys, sequestering biomole-
cules and preventing them from fulfilling their cellular functions.
An example of this mechanism is represented by the tumour
suppressor gene PTEN and its pseudogene PTENP1. While
PTENP1 has a disrupted open reading frame precluding its ability
to encode a functional protein, its 30UTR region is well-conserved.
By ectopic expression, Poliseno et al showed that the PTENP1
30UTR can increase PTEN expression by binding to microRNAs
that downregulate PTEN expression. Thus, PTENP1 plays an
important role in cancer biology, restricting cell proliferation by
acting as a microRNA decoy for the tumour suppressor PTEN
(Poliseno et al, 2010; Figure 1E).

In summary, lncRNAs can act through a number of mechan-
isms to control cancer state. Despite growing knowledge about the
molecular mechanisms of lncRNA functions in cancer, the modes
of action of most lncRNAs remain unclear. A broader under-
standing of the mechanisms of action of lncRNAs, and the
regulatory pathways, hierarchies and networks in which they
operate, will greatly increase our understanding of their functions
in cancer and open new therapeutic avenues to modulate their
function.

GENETIC ASSOCIATION OF LNCRNAS AND CANCER

As mentioned above, cancer susceptibility has a considerable
heritable component that varies with cancer type (Figure 2A).
Surprisingly, the large majority of genome-wide association studies
(GWAS) identify cancer risk loci outside of protein-coding regions.
We utilised a comprehensive GWAS catalogue (http://www.
genome.gov/gwastudies/) to assess the genomic context of SNPs,
filtered for association with cancer-related conditions. Of 301 SNPs
currently linked to cancer (Supplementary Table 1), only 12 (3.3%)
change the protein amino-acid sequence. Most are located in the
introns of protein-coding genes (40%) or intergenic regions (44%)
(Figure 2B), raising the question of the function of these noncoding
loci and their role in cancer development. While some may
contribute to cancer risk through cis-regulatory interactions, many
of these loci may be transcribed into noncoding RNAs.

Recently several examples of functional lncRNAs transcribed
from cancer risk loci have been reported. For example, SNP

rs944289 in the 14q13.3 region, which is strongly associated with
papillary thyroid carcinoma (PTC), affects the function of a
tumour suppressor lncRNA (Jendrzejewski et al, 2012). A thyroid-
specific lncRNA, termed PTC susceptibility candidate 3 (PTCSC3),
that was strongly downregulated in PTC was identified in this
region and it was found that the repression was caused by the
associated SNP. The risk allele alters the binding of the C/EBP
proteins to the PTCSC3 promoter, reducing gene expression.
PTCSC3 exhibits tumour suppressor activity, controlling the
expression of genes involved in DNA replication and repair,
tumour morphology, cell movement and cell death. This study is to
our knowledge the first to link a cancer-associated SNP to a
mechanism of action by altering the expression of a tumour
suppressor lncRNA.

ANRIL, a large lncRNA gene spanning 126 kb adjacent to p14/
ARF, is located in a GWAS ‘hot spot’ linked to many complex
diseases, including type-2 diabetes, coronary artery disease and,
recently, cancer (Pasmant et al, 2011). ANRIL interacts with
polycomb group proteins and may add repressive histone marks to
the p15/CDKN2B-p16/CDKN2A-p14/ARF locus, suppressing cell
proliferation. Intriguingly, disease-associated SNPs in ANRIL
cluster by disorder; vascular conditions are associated with the 30

end of the transcript, while cancer susceptibility SNPs map to the
50 region (Figure 3). This may reflect the mode of action of ANRIL.
Polymorphisms in different regions of the ANRIL RNA may affect
the RNA–DNA or RNA–protein interactions necessary for ANRIL-
induced gene silencing. The region mutated may cause changes in
site selectivity of epigenetic programming, with some interactions
required for vascular function while other interactions are required
for cell cycle maintenance. Further analysis of the structure–
function effects of ANRIL polymorphisms may unravel the
complexity of this GWAS ‘hot spot’.

It is likely that many more lncRNAs are transcribed from cancer
loci, as these loci have typically not been examined in a targeted
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Figure 2. Heritability and genomic distribution of SNPs in cancer.
(A) The heritable component of risk for common cancers. Despite many
cancers having sizeable genetic components, the identity of most of
these heritable risk factors is currently unknown. Table adapted from
SNPedia (Cariaso and Lennon, 2012). (B) Genomic distribution (%) of
SNPs in selected cancer types. The majority of cancer-related SNPs are
located in noncoding regions of the genome (intergenic or intronic) and
only a small number are found in coding regions.
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manner and low-abundance RNAs originating from them may not
have been detected or characterised. Even apparent gene desert
regions including the extensively studied prostate cancer 8q24
locus produce a lncRNA that may be involved in prostate
carcinogenesis (Chung et al, 2011). Recently we described a
technology termed RNA Capture-Seq, which is capable of detecting
lowly expressed and highly tissue-specific transcripts (Mercer et al,
2012). When applied to gene deserts, whole forests of previously
unannotated transcripts were identified. This technique will allow
the focused re-examination of cancer-associated regions for novel
and rare noncoding transcripts that may be important regulators of
carcinogenesis. Combined, these studies suggest that many
noncoding cancer risk loci identified by GWAS are transcribed
into lncRNAs with important regulatory functions in cancer
biology.

DIAGNOSTICS AND THERAPEUTIC POTENTIAL OF
LNCRNAS IN CANCER

The discovery that lncRNAs are key regulators in cancer
transformation and progression leads to intriguing possibilities of
application for diagnostics and therapeutics. Many lncRNAs are
expressed in a tissue- and cancer-type restricted manner and have
already shown to be useful as prognostic markers. HOTAIR
expression, for example, is strongly increased in primary tumours
and metastases of breast cancer patients, and expression levels
correlate positively with a poor outcome (Gupta et al, 2010). In a
recent study, Yang et al proposed that high expression levels of
HOTAIR could serve as a biomarker to predict tumour recurrence
in patients with hepatocellular carcinomas (Yang et al, 2011).

The use of noncoding RNAs in diagnostics has intrinsic
advantages over protein-coding RNAs. Although lncRNAs may
require post-transcriptional modifications or protein interactions
to function, because the mature product is the functional
end-product, measurement of its expression directly represents

the levels of the active molecule. In contrast, mRNA levels are only
indirectly indicative of the levels of the functional product of
coding genes (the encoded protein). Long noncoding RNA levels
may have a higher correlation with particular cancer states and
thus be more useful diagnostic tools. Noncoding RNAs are often
stable in human serum and thus measuring either individual
marker RNAs (e.g., by qPCR) or the entire transcriptome (e.g.,
RNA-seq) may allow the non-invasive generation of reliable and
actionable clinical indicators (Tong and Lo, 2006). For example,
the lncRNA prostate cancer gene 3 (PCA3) is highly associated
with prostate cancer and is routinely used to indicate prostate
cancer risk (Progensa PCA3 urine test) in urine samples, thereby
avoiding unnecessary prostate biopsies (de la Taille, 2007).

Clinical transcriptomics will greatly impact on the medical
treatment of cancer. It is foreseeable that clinicians may use
analysis of tumour transcriptomes on initial diagnosis, enabling a
personalised treatment regime rather than a generic alternative.
This unbiased approach avoids preconceptions about which
molecular pathways (coding or noncoding) may underlie the
disease. Additionally, this information may allow more accurate
prognostic predictions, for example, by determining the expression
of molecular markers of prognosis and metastasis (e.g., HOTAIR).
Subsequently, progression of the individual cancer may be
monitored by transcriptomics to detect progression, recurrence
and metastasis. Long noncoding RNAs are typically more cell-type
specific than protein-coding genes (Cabili et al, 2011) and may
allow estimation of the cellular composition of a tumour by
marking a specific cell population (e.g., cancer stem cells) (Chan
et al, 2013).

Finally, the cell-type specificity of cancer-associated lncRNAs
and their regulatory networks can aid the development of targeted
therapies. H19, a lncRNA with oncogenic properties, is upregulated
in a wide range of tumours. To treat H19-driven cancer types, a
plasmid (BC-819) carrying diphtheria toxin under the control of
the H19 regulatory sequence has been developed to target cells
overexpressing H19. Intratumoral injection of BC-819 was
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successfully applied in patients with bladder, ovarian and
pancreatic cancer to reduce tumour size (Smaldone and Davies,
2010). Several studies also indicate that the reduction of MALAT1
expression levels by siRNAs can influence the migratory and
proliferative potential of lung adenocarcinoma and cervical cancer
cells in culture (Guo et al, 2010; Tano et al, 2010). Similarly to
H19/BC-819, expression of these lncRNA-specific siRNAs in a
tumour-restricted manner will allow precise targeting of further
tumour types without excessive harm to healthy tissue.

CONCLUSION

In summary, lncRNAs play integral roles in the control of cellular
growth, division and differentiation. The perturbation of lncRNA
expression can contribute to the development and progression of
cancer. While a large proportion of cancer susceptibility is
heritable, the underlying genetic components are largely unknown.
Here we posit that a large proportion of the cancer risk may be
explained by lncRNAs transcribed from cancer-associated loci.
These RNAs exact functions through a diverse range of mechan-
isms. Characterisation of these lncRNA genes and their modes of
action will allow their use for improved cancer diagnosis,
monitoring of progression and targeted therapies.
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