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The prevalence of neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD), increases with age, and the number of affected patients is expected to increase
worldwide in the next decades. Accurately understanding the etiopathogenic mechanisms of these
diseases is a crucial step for developing disease-modifying drugs able to preclude their emergence or
at least slow their progression. Animal models contribute to increase the knowledge on the
pathophysiology of neurodegenerative diseases. These models reproduce different aspects of a given
disease, as well as the histopathological lesions and its main symptoms. The purpose of this review is
to present the main animal models for AD, PD, and Huntington’s disease.
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Introduction

The incidence of neurodegenerative diseases increases
with age and, considering the aging process of the
population worldwide, the prevalence of neurodegenera-
tive diseases such as Alzheimer’s disease (AD) and
Parkinson’s disease (PD) is expected to rise in the next
years. This is particularly true for AD, the most common
form of dementia, accounting for approximately 50-60%
of all cases and representing a major public health
concern with significant social and economic impact.1

There is still no curative treatment for AD or other
neurodegenerative diseases, but ongoing trials are
presently evaluating new therapeutic strategies.2 The
identification of effective disease-modifying drugs
depends on the accurate understanding of the etiopatho-
genic mechanisms underlying the disease so that
strategies that may eventually preclude its development
or at least lessen its progression may be suggested.

To increase the knowledge on the etiopathogenic
mechanisms of neurodegenerative diseases, a series of
animal models is currently being used. These models aim
to reproduce the causes, the pathological lesions, or the
symptoms of a given disease.3 Besides providing insights
into the pathophysiology of the diseases, animal models
are of paramount importance to assess the efficacy of
potential treatments before conducting clinical trials in
humans. In the present review, we present data on

animal models for AD, PD, and Huntington’s disease
(HD).

Animal models of Alzheimer’s disease

AD affects mainly people over 60 years old and its initial
presentation is usually memory impairment, but later
symptoms include visuospatial, language, and executive
dysfunctions. At present, there is no effective disease-
modifying strategy in AD, and the available drugs are
indicated to improve cognitive and behavioral symptoms.4

Although animal models have greatly advanced the
understanding of AD pathogenesis, the lack of knowledge
concerning its causes makes it difficult to develop a
model exhibiting all AD features, which hinders the
discovery and characterization of effective drugs.
Currently, the most employed animal models were
developed based on known genetic mutations associated
with AD.5 However, the vast majority of AD cases (over
90%) are sporadic, and the underlying causes are
unknown. Therefore, these genetic-based AD animal
models do not recapitulate all features of sporadic AD
and do not cover all factors that may influence the
etiopathogenesis of sporadic AD, such as apolipoprotein
E. An additional complicating factor is that AD animal
models do not exhibit the extensive neuronal cell loss
observed in human patients.6

The histopathological hallmark of AD is the accumula-
tion of neurofibrillary tangles and amyloid plaques.
Extracellular amyloid plaques are formed from b-amyloid
protein peptides (Ab), which are fragments formed by
cleavage of amyloid precursor protein (APP).7 APP can
be processed by a-and c-secretases, generating a non-
amyloidogenic product, or by b- and c-secretases,
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generating Ab peptides, which are amyloidogenic and are
prone to form plaques (Figure 1). However, there is no
direct correlation between the number of cortical plaques
and cognitive deficit in AD patients, and many individuals
have amyloid plaques without cognitive impairment or
dementia.8 Moreover, the amount and the topography of
the senile plaques are not correlated with the severity of
dementia, and the amyloid deposition seems to remain
stable during the progression of the disease.9 The clinical
progression of AD symptoms is not congruent with the
progression of the amyloid deposition in the human brain,
but it seems closely related to the progression of tau
pathology.10 This set of data indicates that factors other
than amyloid deposits might have a role in the disease
progression.11 For instance, soluble oligomeric Ab
species formed by 1 to 30 Ab amino acids correlate
better than amyloid plaques with cognitive decline in both
humans and AD transgenic mice. Synaptic loss that might
be caused by the neurotoxic effect of soluble Ab
oligomers and/or tau pathology is also directly related to
cognitive impairment.11,12

As Ab is closely involved in AD pathogenesis, AD
rodent models were generated by intracerebral infusion of
Ab peptides.13,14 Importantly, direct intracerebral injection

of Ab peptides causes learning and memory deficits, as
well as neuropathological changes that resemble human
AD, including inflammation, microglial activation, and
limited cell loss. The infusion model allows researchers to
administer defined amounts of a specific Ab species of
known sequence and length, rather than waiting several
months (i.e., aging process) for the development of
pathological changes in transgenic animals. Ab infusion
models are very useful for pre-clinical drug testing as they
can deliver experimental results, including plaque pathol-
ogy, within a timeframe of few weeks.13 However, the
concentration of the Ab administered is much higher than
the Ab levels found in the brain of AD patients, leading to
brain alterations that surpass the effect of aging on AD
progression.14 Conversely, genetically modified mice
overexpressing APP or Ab42 accumulate Ab plaques
and soluble Ab oligomers in an age-dependent manner.15

These APP mouse models display progressive Ab
deposition in both diffuse and neuritic plaques, cerebral
amyloid angiopathy, astrocytosis, microgliosis, mild hip-
pocampal atrophy, neurotransmission changes, and
cognitive and behavioral deficits.14

Intracellular neurofibrillary tangles are formed due to
hyperphosphorylation and oligomerization of tau, a

Figure 1 Basic pathophysiology of Alzheimer’s disease. The amyloid precursor protein (APP) can be cleaved either by a
‘‘non-amyloidogenic pathway’’ or by the so-called ‘‘amyloidogenic pathway.’’ In the non-amyloidogenic pathway, the APP is
first cleaved by a-secretase, releasing a large fragment of APP (sAPPa), which is later digested by c-secretase, producing
non-toxic p3. In the amyloidogenic pathway, the APP is first processed by BACE-1 (a b-secretase), producing a fragment
(sAPPb) that will be subsequently cleaved by c-secretase. The resulting protein of this ‘‘amyloidogenic pathway’’ is the toxic b-
amyloid. In patients with presenilin mutations, the action of c-secretase is disturbed and the production of b-amyloid is
increased. The accumulation of insoluble b-amyloid leads to the formation of senile plaques and to the activation of kinases. b-
amyloid can also activate GSK3b, an enzyme that modulates the phosphorylation of the tau protein. The accumulation of
hyperphosphorylated forms of tau is toxic for the cell, leading to the formation of neurofibrillary tangles, which are associated
with the activation of kinases and neuronal death.
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microtubule-associated protein mainly present in
axons.16,17 APP mouse models do not develop neurofi-
brillary tangles and exhibit little neuronal loss, although
hyperphosphorylated tau can be observed in different
brain regions.18 Mice overproducing Ab do not exhibit
neurofibrillary tangles as well. However, Ab pathology
can activate kinases, downregulate phosphatases, and
impair tau degradation, leading to tau pathology.6 These
data supports the ‘‘amyloid cascade theory,’’ according to
which the accumulation of Ab is the initial pathophysio-
logical event in AD, leading to tau aggregation, synaptic
loss, and cell death.9 It has been shown that removal of
Ab via immunotherapy also leads to the removal of
hyperphosphorylated tau aggregate.19 Ab oligomers
impair proteasome activity, contributing to the age-related
pathological accumulation of Ab and tau in humans and
AD mouse models.20,21 Mice expressing both mutated
APP and tau exhibit greater neurofibrillary tangle pathol-
ogy as compared to mutated tau mice, further suggesting
that Ab accumulation leads to tau pathology.22 In
addition, Ab peptide injection into the brain of tau
transgenic mice exacerbates tau pathology.22,23

Crossing APP transgenic mice with tau knockout mice
prevents all cognitive deficits associated with the pre-
sence of APP, indicating that tau pathology activation via
Ab is necessary for cognitive impairment.24 Conversely,
Ab accumulation is not altered by the absence of tau. As
mentioned before, APP transgenic mice do not develop
extensive neurofibrillary tangles, and tau remains solu-
ble.18 Indeed soluble tau might be more important to the
disease than aggregated tau.

During AD progression, the axonal protein tau accu-
mulates within dendritic spines, impairing synaptic func-
tion.25 Using tau knockout mice and truncated tau
expressing mice, it has been shown that the tau protein
present in the dendrites can target the protein kinase Fyn
to the postsynaptic terminals, where it phosphorylates the
NR2B subunit of the N-methyl-d-aspartate (NMDA)
receptor. This receptor increases NMDA localization in
postsynaptic membrane and, hence, the influx of calcium
into the neuron, facilitating excitotoxicity.26 Using an APP
mouse model of AD, it has been demonstrated that Ab
oligomers can also regulate NMDA receptor cellular
trafficking.27 Therefore, tau knockout mice and APP
overexpressing mice have been useful for elucidating
essential mechanisms related to AD pathophysiology.

Knockout mice for genes involved in APP processing
and secretion have also been generated. Presenilin is an
important component of the c-secretase complex and the
knockout of presenilin 1 is lethal due to developmental
defects in both the central nervous and skeletal
systems.28 These data indicate that presenilin 1 may be
involved in physiological functions other than Ab produc-
tion and that presenilin 1 blockage might not be a good
pharmacological strategy to treat AD. Presenilin 2 knock-
out mice exhibit no change in APP processing, although
lack of presenilin 2 can exacerbate the lethal phenotype
of presenilin 1.29 The knockout of BACE1, which is the b-
secretase enzyme, does not lead to any obvious
alteration other than the absence of Ab production.30

Thus, BACE1 appears to be a potential target for AD
treatment. Supporting this hypothesis, crossing the APP
transgenic mice, Tg2576 mice, with the BACE1 knockout
mice, resulted in a mouse that did not exhibit cognitive
decline, cholinergic dysfunction, and high levels of Ab,
which were observed in the Tg2576 mice.31

Although AD mouse models have greatly contributed to
elucidate different aspects of disease pathogenesis, so
far no drug has been developed to treat AD using such
models. The extensive neuronal cell loss that takes place
in AD patients is not observed in AD models. Moreover,
tau pathology is absent in most APP models. An animal
model exhibiting most of the typical pathological aspects
of AD, including increased neuronal death, seem to be
necessary to select drugs that could have a greater
potential in AD. Transgenic mice expressing mutated
presenilin 1 and 2 do not exhibit any major phenotype.32-34

However, when these presenilin mice were crossed with
APP overexpressing mice, the resulting double mutant
mice displayed increased Ab42/Ab40 ratio, accelerated Ab
pathology, neuronal loss, and cognitive decline.35

However, neurofibrillary tangles were very rare in this
double transgenic model. To overcome this problem, a
triple transgenic mouse expressing mutated tau was
developed, and this AD mouse model exhibit most of the
AD-related features, including tau pathology.36 To gen-
erate this triple mutant, transgenic constructs (mutant APP
and tau) were microinjected into single-cell embryos from
homozygous mutant presenilin 1 mice, thereby preventing
segregation of APP and tau genes in subsequent genera-
tions. In accordance with the amyloid cascade theory,
these triple transgenic mice develop Ab plaques prior to
neurofibrillary tangles, with a temporal and spatial profile
equivalent to AD, in addition to inflammation, synaptic
dysfunction, and cognitive decline.36 Due to the growing
number of AD rodent models, this review only mentioned a
few representative mouse models of AD. For an updated
overview of available genetically modified AD models, we
refer the readers to specialized websites, such as http://
www.alzforum.org.

Besides mammal models, zebra fish have been
increasingly recognized as a model organism for studying
AD. Zebra fish present some characteristics that make
them an interesting model for central nervous system
(CNS) diseases, such as short time to reach sexual
maturity and a high reproductive rate.37 Moreover, their
embryos have external development and are transparent,
thus allowing direct observation of embryogenesis and
CNS formation. Zebra fish may present complex beha-
viors in memory and conditioned responses tasks.
Transgenic zebra fish models may be of particular
interest for investigating the neurodegeneration asso-
ciated with taupathy.37

In addition to vertebrate models of AD, invertebrate
animals, such as Caenorhabditis elegans and Drosophila,
may be suitable to study AD, as they have short
reproduction time, short life span, known genomics, a
variety of phenotypes, and are able to express human
genes of interest. These invertebrate animals allow rapid
construction of different transgenic models, boosting
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genetic and drug screens to identify mechanisms related
to age-dependent neurodegeneration.

Drosophila expressing genetically modified tau exhibits
adult onset, progressive neurodegeneration, early death,
enhanced toxicity of mutant tau, and accumulation of
abnormal tau, but no neurofibrillary tangles.38 Intracellular
inclusion resembling neurofibrillary tangles can be pro-
voked in wild-type tau expressing flies when glycogen
synthase kinase 3b (GSK-3b) activity is increased, as
GSK-3b can promote hyperphosphorylation of tau and
subsequent aggregation.39 A number of APP Drosophila
models has also been developed, and it has been
demonstrated that Drosophila can produce Ab peptide
and develop neurodegeneration and memory decline.40,41

Moreover, Drosophila overexpressing APP and BACE
have been used for drug testing. Administration of either
BACE inhibitor or c-secretase inhibitor increased survival
rates of this Drosophila model.42

C. elegans have only about 302 neurons, greatly
facilitating the study of neuronal morphology and physiol-
ogy. Moreover, about 65% of the human disease genes
have a counterpart in the nematode’s genes.43 Although
C. elegans are not able to process APP to form Ab
peptide, C. elegans expressing Ab42 peptide intracellu-
larly in muscle cells exhibit aggregation and, hence,
muscle dysfunction (paralysis phenotype).44 This model
provides important insights into Ab toxicity, but does not
allow screening of genetic or chemical modifiers of APP
processing. Transgenic nematodes expressing Ab42 in
neurons develop amyloid deposits, but display only a very
mild phenotype.45 To create nematode tau pathology
models, either wild-type or mutated human tau proteins
were expressed in C. elegans neurons, inducing age-
dependent motor neuron dysfunction, neurodegenera-
tion, and locomotor deficits due to impaired neurotrans-
mission.46,47 In conclusion, although invertebrates lack
the neuronal cognitive complexity of mammals, they
represent a feasible model to study AD mechanisms and
to perform drug screening.

Even though these animal models provided valuable
and important data concerning the pathophysiology of
AD, the recent failure of anti-amyloid immunotherapy in
AD points the limits of the pathophysiological paradigms
established from these animal models. Indeed, new
animal models for sporadic AD taking into account the
genetic variability and the immunological factors that may
influence the pathophysiology of the disease are required
for the development of effective disease-modifying drugs
for AD.

Animal models of Parkinson’s disease

PD is the second most common age-related human
neurodegenerative disorder. Prevalence rate varies from
1 to 4% in people over 60 years old.48,49 However,
prevalence rates up to 10% have been reported in elderly
people depending on the epidemiological approach,
diagnostic criteria, and population survival rate.

The main histopathological hallmark of PD is the loss
of dopaminergic neurons in the substantia nigra pars

compacta. The progressive striatal dorsoventral dopa-
mine depletion leads to the cardinal motor signs of PD,
bradykinesia, resting tremor, rigidity, and postural
instability.50 Therapeutic strategy is based on dopamine
analogs, dopamine-degrading enzyme inhibitors, and
deep brain stimulation, but none is able to halt the
progressive neuronal death.51

Olfactory deficits are frequently evident in the very
early stage of PD. Sleep abnormalities and autonomic
failure accompanies motor symptoms. Dementia is often
observed in the later stages of PD. In consonance with
this broad spectrum of non-motor symptoms, histopatho-
logical abnormalities have been also described in other
encephalic areas, comprising the dorsal motor nucleus of
the vagus, nucleus basalis of Meynert, locus coeruleus,
raphe nuclei, amygdala, olfactory bulb, neocortex, and
hypothalamus.52 Interestingly, many clinical studies have
shown that non-motor symptoms may antedate the onset
of typical motor signs in PD, stressing the need for
understanding the molecular pathways that might trigger
the neurodegenerative process.53

The cellular pathological hallmark for PD is the
presence of small eosinophilic inclusions known as
Lewy bodies in all the affected brain areas. Lewy bodies
are composed of unbranched a-synuclein filaments and
ubiquitin, and most likely result from ineffective protein
degradation. Post-mortem analysis of brain from PD
patients has shown that a-synuclein inclusions emerge in
a predictable order in different parts of the brain and may
be linked to the progressive stages of this disease.52

Although the etiopathogenesis of PD is not yet clarified,
animal models have provided a better understanding of
the cellular and molecular mechanisms underlying the
progressive neurodegenerative process. In the fifties,
pharmacological models based on the administration of
monoamine-depleting drugs had an important role in
demonstrating the relationship between dopamine deple-
tion and Parkinson-like motor symptoms as well as the
efficacy of L-dopa therapy. Nevertheless, reserpine and
haloperidol models had serious limitations in mimicking
PD pathogenesis since drug-treated animals exhibited
transient striatal dopamine depletion not associated with
the typical neurodegeneration in substantia nigra.54

However, the pivotal role played by these models in
assessing the therapeutic efficacy of drugs still in current
clinical use cannot be undermined.

The so-called neurotoxin-based models of PD are the
most effective in reproducing irreversible dopaminergic
neuron death and striatal dopamine deficit in nonhuman
primates and rodents. MPTP (1-methyl-4-phenyl-1,2,3,6-
terahydropyridine), 6-OHDA (6-hydroxy-dopamine), and
rotenone are so far the most widely used compounds.
They are particularly attractive for inducing cytotoxicity by
oxidative stress mechanisms, as brain from PD patients
show decreased levels of reduced glutathione and
oxidative modifications to DNA, lipids, and proteins.55,56

Interestingly, MPTP was accidently discovered during
the investigations of the potential factors that led young
addicts to develop PD-like symptoms. MPTP was found to
be the heroin contaminant responsible for parkinsonism in
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these subjects.57 MPTP can be administered systemically
since it is highly lipophilic and freely crosses the blood
brain barrier. Astrocytes and endothelia convert MPTP into
the active neurotoxic MPP+ (1-methyl-4-phenylpyridi-
nium), which is taken up by dopaminergic neurons through
the dopamine transporter. MPP+ interacts with the
mitochondrial complexes I-III-IV, inhibiting the electron
transport chain and inducing ATP depletion and oxidative
stress.58 MPP+ is also linked to impairment of glutamate
uptake by astrocytes and neuronal apoptosis.59,60

MPTP administration to nonhuman primates is the
experimental model that more closely resembles the
pathological features of PD, including nigrostriatal dopa-
mine depletion and extrastriatal dopamine, noradrenaline,
and serotonin changes observed in PD patients.61 In this
model, the motor symptoms are closely similar to those
observed in man (akinesia, bradykinesia, rigidity, and
postural abnormalities) except for rest tremor. The
symptoms are also reversible by all dopaminergic drugs
known to be effective in PD. This model has been
extensively used to investigate new pharmacological
treatments for PD, as well as strategies to avoid
treatment-related dyskinesia.62 No typical Lewy bodies
are observed in a MPTP primate model, but a-synuclein
immunoreactivity is enhanced in the nigrostriatal system
and in many brain areas.63 The relevant role for
neuroinflammation in PD pathology, specifically IFN-c
and TNF-a inducing early microglial activation that
precedes neuronal death, has been recently highlighted
in this model.64 In mice, MPTP also induces nigrostriatal
dopaminergic degeneration, making it a widely used
model. More recently, Prediger et al. showed that
intranasal infusion of MPTP in rodents causes motor
impairments and olfactory and cognitive deficits that
resemble the different stages of PD.65,66

Rotenone, a pesticide used in farming, is also highly
lipophilic and easily crosses the blood brain barrier.
Rotenone is a high-affinity inhibitor of mitochondrial
complex I, but unlike MPTP, its entrance into cells is
not dependent on a specific transporter. Rotenone
cytotoxicity is based on oxidative stress and reactive
oxygen species production.67 High doses of rotenone can
induce generalized neurodegeneration, so studies have
been directed to chronic low-dose regimen in systemic
administration of this compound in rodents. In this
condition, a-synuclein positive Lewy bodies are observed
in the nigrostriatal system.54

Unlike MPTP and rotenone, 6-OHDA does not cross
the blood-brain barrier and it must be injected into the
brain through a stereotaxic-guided surgical procedure. 6-
OHDA is taken up into the dopaminergic neurons due to
its high affinity to dopamine transporter. Once inside
neurons, 6-OHDA is readily oxidized in reactive oxygen
species leading to electron transport chain inhibition and
oxidative stress.68 6-OHDA is usually injected unilaterally
in the substantia nigra or in the striatum (retrograde
degeneration). The unilateral injection allows the evalua-
tion of neuron cell death and molecular parameters in the
lesion hemisphere compared with the intact contralateral
one. Dopamine depletion, percentage of neuronal cell

death necessary to cause motor symptoms, and beha-
vioral deficits have been assessed in this model. Neither
Lewy bodies nor olfactory deficits were observed in 6-
OHDA-treated animals.69 This model has been proven to
be useful to study glia involvement in the neurodegen-
erative process. For instance, Saura et al. showed that
glia activation by interleukin-1b before 6-OHDA injection
protects rather than stimulates neuron cell degenera-
tion.70 Conversely, microglia activated by overexpression
or aberrant expression of a-synuclein secretes inflamma-
tory cytokines and reactivates oxygen species that
contribute to neurodegeneration.71

Although most PD cases are sporadic, approximately 5
to 10% are inherited. At least 16 gene loci (PARK1-16)
have been implicated in PD, but the heritability is not fully
understood. The most common cause of familial PD is the
dominant mutation in leucine-rich repeat kinase 2
(LRRK2), an enzyme involved in the cytoskeleton
dynamics and synaptic vesicle function.72 Dominant
mutation has also been linked to many important
molecular pathways such as a-synuclein folding and
ubiquitin-dependent proteolysis. Recessive mutation has
also been involved in important mitochondrial pathways
related to oxidative stress response. Although genetically
modified rodents have been used for elucidating mole-
cular pathways involved in neuron death and for devel-
oping new therapeutic strategies, none of them displays
the significant neurodegeneration typical of PD.73

Neuroinflammation is also considered to play an
important role in PD pathogenesis since enhanced levels
of cytokines are detected in post-mortem analysis of the
nigrostriatal system, in the cerebrospinal fluid and in
plasma from PD patients.74,75 LPS infusion into the
substantia nigra induces microglia activation that pre-
cedes the degeneration of dopaminergic neurons.
Although it has been shown that activated microglia
releases TNF-a, IL-1b, nitric oxide, and reactivates
oxygen species after LPS injection, a direct cause-effect
association between these mediators and neuronal cell
death has not been established yet in this model.76

It is worth mentioning the contribution of invertebrate
models, particularly the Drosophila model, to assess the
genetic pathways related to PD-genes. This fly model has
pointed out the importance of parkin and PINK1 for
mitochondrial integrity, fission-fusion events, and turn-over
through autophagy, most likely acting in a common genetic
pathway.77,78 The a-synuclein gene is the only known gene
related to familial PD that does not have a homolog in
Drosophila.79 LRRK2 mutation also induces mitochondrial
and dopaminergic dysfunction in Drosophila.80 In this
particular model, activation of adenosine monophosphate-
activated protein kinase (AMPK), a cellular energy sensor,
exerts potent protection against dopaminergic and mito-
chondrial dysfunction in both LRRK2 and parkin mutant flies.

Animal models of Huntington’s disease

HD is an autosomal dominant inherited neurodege-
nerative disorder characterized by progressive motor,
cognitive, and psychiatric symptoms, leading inevitably to
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death.81,82 Choreoatetosis, dementia, and an autosomal
dominant inheritance is classically regarded as ‘the
Huntington’s triad.’ A polyglutamine expansion in the
amino-terminal region of the huntingtin (HTT) protein is
the cause of HD, and the length of the polyglutamine
repeat is inversely correlated with the age of disease
onset and directly correlated with the severity of
symptoms.83 Although it is well established that the
mutated HTT is responsible for triggering HD, the
mechanisms underlying mutant HTT pathogenicity are
still largely unknown. There is no data explaining why the
mutant protein, which is expressed throughout the body
results in the selective death of striatal medium sized
spiny neurons. Cleavage of polyglutamine expanded HTT
leads to the release of amino-terminal fragments contain-
ing the polyglutamine repeats, which can aggregate in
neurites, cytoplasm, and nuclei. However, it is still
controversial whether mutated HTT aggregates are
cytotoxic or may reflect successful sequestration of toxic
soluble HTT oligomers.84,85 Importantly, loss of striatal
and cortical neurons strongly correlate with HD symptom
severity.86

Unlike the majority of AD and PD cases, which are
sporadic, HD is an inherited neurologic disease caused by
a single gene mutation, which made it feasible to develop
animal models using genetic manipulations that closely
recapitulate HD pathology. These models include trans-
genic mice, such as R6/2 and N171-82Q, expressing the
amino-terminal region of human mutant HTT87-89; trans-
genic mice, such as yeast artificial chromosome mice
(YAC128) and bacterial artificial chromosome mice
(BACHD), expressing full-length human mutant HTT90,91;
and knock-in mice, such as HdhQ97/Q97, HdhQ111/Q111 and
HdhQ150/Q150, generated by replacing the first exon of the
murine HTT gene by the first exon of the human HTT gene
containing expanded CAG repeats.92-94

R6/2 mice display a robust phenotype, including motor
deficits, such as lack of motor coordination, abnormal gait
and hypoactivity, and learning impairment, with age of
onset of about four weeks.89,95,96 Aggregate formation is
very pronounced in R6/2 mice, with intranuclear inclu-
sions similar to those observed in biopsy material from
HD patients and occurring prior to the development of
symptoms.87,97 These transgenic mice exhibit severe
neurological symptoms and early death at 3-6 months of
age.89 The rapid onset and pronounced phenotype has
made this a useful model for drug testing.98,99 However,
despite of having a robust phenotype, R6/2 mice do not
represent an accurate model of HD, as this model only
expresses the amino-terminal region of the HTT protein,
which is mainly composed of polyglutamines. Thus, R6/2
may be considered a model of polyglutamine diseases,
such as autosomal-dominant spinocerebellar ataxias
(e.g., SCA3 or Machado-Joseph disease) and X-linked
spinobulbar muscular atrophy (Kennedy disease), rather
than a specific HD mouse model. In that sense, the R6/2
mice can be useful to model common features of
polyglutamine diseases including abnormal protein con-
formation promoted by polyglutamine expansion, which
appears to be central to the pathogenesis. Although the

clinical features and pattern of neuronal degeneration
differ, all polyglutamine expansion diseases are ultimately
fatal disorders that typically begin in adulthood and
progress over 10 to 30 years.

YAC128 and BACHD transgenic mice, which exhibit
128 and 97 polyglutamine, respectively, in the amino-
terminal region of the full-length mutant human HTT,
present milder deficits than R6/2.100 It has been shown
that BACHD displays a stronger phenotype than that of
YAC128 when both mice were tested under the same
behavioral protocol.101 Moreover, the same study also
demonstrates that HdhQ111/Q111 displays a very mild
phenotype, exhibiting less behavioral abnormalities than
R6/2, BACHD, and YAC128 mice.101 The knock-in
mouse model of HD displays milder phenotype than R6/
2 even when expressing 150 polyglutamines, as in the
case of HdhQ150/Q150. HdhQ150/Q150 exhibits late-onset
behavioral changes, including motor task deficit and gait
abnormalities.93,102 Thus, as observed in HD patients,
HD mouse models with more repeats (HdhQ111/Q111

versus HdhQ150/Q150) show stronger phenotype. That is
also the case for transgenic mice, as YAC46 and YAC72
mice show no clear behavioral abnormalities, while
YAC128 mice display marked phenotype.103

In general, HD mouse models displaying more severe
phenotypes show earlier accumulation of HTT aggre-
gates and premature neuronal death.104 YAC128,
BACHD, and Knock-in HD mice with expanded poly-
glutamine repeats from 97 to 150 polyglutamines display
obvious HTT aggregates only at older ages and have a
lifespan similar to wild-type mice.90,91,93 BACHD mice
exhibit pronounced striatal and cortical atrophy, and
neurodegeneration at the age of 12 months.91 However,
very few HTT aggregates could be observed in BACHD
brain. YAC128 mice exhibit striatal atrophy at the age of
12 months, as well as cortical atrophy at the age of
18 months.90 Moreover, intranuclear inclusions and
HTT aggregates could be observed in 12- and
18-month-old YAC128 mice, respectively. HdhQ150/Q150

and HdhQ111/Q111 mice exhibit neuronal intranuclear
inclusions predominantly in the striatum, but only at older
ages, such as from 15 to 22 months.93,102,104 Thus,
although knock-in HD mouse models accurately replicate
the underlying genetic defect of HD, they do not display
the robust motor deficit and neuronal cell loss observed in
HD patients. In that sense, BACHD and YAC128 could be
regarded as better models for drug testing.

Even though HD rodent models replicate the genetic
event causing HD, most of the mouse models do not
exhibit the robust neuronal cell loss that takes place in HD
patients. This is the main drawback feature of not only HD
mouse models, but also of AD and PD models. Future
manipulations or implementations of other disease model
organisms will be necessary to overcome this problem, as
neurodegeneration is the major pathological event in HD,
AD, and PD patients.105,106 Mutant HTT appears to be
more toxic to larger animals, such as pigs and monkeys,
than to mouse HD models.107 However, despite this
advantage, the high cost and more elaborated infra-
structure necessary to keep these bigger animals that
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have a much longer life-span pose difficulties in using
these types of HD models.

Small animals, including Drosophila and C. elegans,
are also used as HD animal models. As stated before, the
short life-span and reproduction time make these animals
ideal for modeling neurodegenerative diseases and
performing a number of assays, including genetic and
drug screens. The identification of a Drosophila ortholo-
gue of human HTT suggests that many of the pathways in
which HTT normally functions might be present in fruit
flies, further supporting Drosophila as a good model to
study HD.108 Moreover, another interesting feature of
Drosophila as an HD model is that neurodegeneration
can be easily scored in the eye. Overexpressing mutant
HTT in Drosophila leads to aggregate formation, neuronal
death, and reduced longevity.109,110 In addition,
Drosophila HD models recapitulate many features of
HD in patients, including motor deficit and learning and
memory deterioration.111,112 All these features make
Drosophila a suitable model for drug testing.

C. elegans expressing polyglutamine-expanded green
fluorescent protein (GFP) in muscle cells were devel-
oped, and this mutant nematode exhibited aggregate
formation, cellular toxicity, and paralysis in an age- and
repeat length-dependent manner.113,114 C. elegans
expressing an amino-terminal fragment of human HTT
containing expanded polyglutamine in sensory and touch
mechanosensory neurons have also been devel-
oped.115,116 Degeneration displayed by these C. elegans
HD models are dependent on both age and polyglutamine
tract length.115 These C. elegans models have been used
to investigate proteins involved in aging and aggregation,
as well as drug testing.117-120 However, neuronal cell
death is not robust in these HD C. elegans models.115,116

Concluding remarks

Animal models have provided significant contribution to
the understanding of the pathophysiology of neurode-
generative diseases. Conversely, as neurodegenerative
human diseases are heterogeneous in both pathological
and clinical (or behavioral) domains, animal models only
recapitulate part of this complex scenario. Moreover,
much attention has been paid to genetic or transgenic
animal models, while most human cases of AD and PD
are sporadic, rather than familial. Together these aspects
may explain the limited contribution of animal models to
the development of effective disease-modifying thera-
peutic strategies. Therefore, there is a great challenge
ahead to develop the next generation of animal models to
effectively help treat and prevent neurodegenerative
diseases.
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Pesquisa do Estado de Minas Gerais (FAPEMIG) (grant
no. APQ-00487-11), received by Fabı́ola Mara Ribeiro;
Programa de Apoio aos Núcleos de Excelência
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