
 

Accepted Manuscript

REATO: REActing TO denial of service attacks in the Internet of
Things

Sabrina Sicari, Alessandra Rizzardi, Daniele Miorandi,
Alberto Coen-Porisini

PII: S1389-1286(18)30134-8
DOI: 10.1016/j.comnet.2018.03.020
Reference: COMPNW 6447

To appear in: Computer Networks

Received date: 20 October 2017
Revised date: 20 February 2018
Accepted date: 18 March 2018

Please cite this article as: Sabrina Sicari, Alessandra Rizzardi, Daniele Miorandi, Alberto Coen-Porisini,
REATO: REActing TO denial of service attacks in the Internet of Things, Computer Networks (2018),
doi: 10.1016/j.comnet.2018.03.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.comnet.2018.03.020
https://doi.org/10.1016/j.comnet.2018.03.020


ACCEPTED MANUSCRIPT

1

REATO: REActing TO denial of service
attacks in the Internet of Things

Sabrina Sicari∗‡, Alessandra Rizzardi∗, Daniele Miorandi§, Alberto Coen-Porisini∗
∗Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria,

via G. Mazzini 5 - 21100 Varese (Italy)
§U-Hopper, via R. da Sanseverino 95, 38121 Trento, Italy

‡Corresponding author
Email: {sabrina.sicari; alessandra.rizzardi; alberto.coenporisini}@uninsubria.it,

daniele.miorandi@u-hopper.com

Abstract—Denial of Service (DoS) attack represents until
now a relevant problem in Internet-based contexts. In fact,
it is both difficult to recognize and to counteract. Along
with the adoption and diffusion of Internet of Things (IoT)
applications, such an issue has become more urgent to
solve, due to the presence of heterogeneous data sources
and to the wireless nature of most communications. A
DoS attack is even more serious if not only the data
sources are under attack, but also the IoT platform
itself, which is in charge of acquiring data from multiple
data sources and, after data processing, provide useful
services to the interested users. In this paper, we present
a solution, named REATO, for actively and dynamically
detecting and facing DoS attacks within a running IoT
middleware. A real prototype has been realized in order
to validate the proposed method, by assessing different
relevant parameters.

Keywords—Internet of Things, Security, Denial of Ser-
vice, Attacks, Middleware, Prototype

I. INTRODUCTION

Many vulnerabilities affect applications based on the
Internet of Things (IoT) paradigm. This is mainly due to
the wireless nature of the communications taking place
among the involved entities, which can be represented
by heterogeneous devices, such as sensors, actuators,
RFID, NFC, and so on. As a consequence, an IoT-based
system can be object of various kinds of attacks to the
network resources, to the integrity and confidentiality
of the transmitted data, or to the privacy of the users or
companies that exploit IoT services.

Note that security is one of the main obstacles to-
wards the wide adoption and diffusion of IoT appli-
cations [1]. Until now, little attention has been paid
towards the identification and counteraction of specific
kinds of attacks pursued in IoT contexts, but several
solutions are available for wireless sensor networks
(WSNs) [2] and mobile ad hoc networks (MANETs)
[3], as presented in the state of the art section. However,
such approaches should be revised with respect to the
dynamicity and heterogeneity of the IoT environment.

In order to guarantee proper levels of security, an
IoT system should provide authentication systems for:

(i) the entities that send data to the IoT platform; (ii)
the entities that require information to the IoT platform
in the form of services; then it should also provide
encryption mechanisms for ciphering the transmitted
data and, to do this, adopt an effective key management
system. Finally, policies able to regulate the access to
the available resources should be defined and enforced.

However, besides such countermeasures would im-
prove the resilience of the IoT system, particular atten-
tion must be directed against Denial of Service (DoS)
attack, which is widely considered to be an important
security issue [4]. There are various kinds of DoS
attack, such as flooding the network with useless traffic,
resource power exhaustion, and jamming the signal [5].
In fact, they aim at making devices or network resources
unavailable by preventing the communications and/or
compromising the traffic or wasting resources and, thus,
blocking the access to the services provided by the IoT
platform. Note that generally no variation is made on
the transmitted data by such a kind of attack.

DoS attacks can be initialized from a remote place by
means of proper tools and commands. In the IoT, the
situation worsens if not only data sources are attacked
but if also the IoT platform itself is picked on. If
the IoT platform, that acts as a distributed server, is
saturated, for example, with external requests, then it
cannot respond to legitimate ones in a reasonable time
(i.e., because communications are slowed by the attack).
On the other side, storage and computational resources
of both devices and IoT platform will be consumed, thus
generating further damages [6].

Hence, it is fundamental both to promptly detect
DoS attacks and to be able to recover the network’s
functionalities in a short time. In this paper, we pro-
pose a technique, named REATO, for recognizing and
counteracting DoS attacks in the IoT context by means
of a working middleware that receives open data feeds
from remote sources in real time. DoS attacks are then
simulated within the presented IoT platform in order
to prove the effectiveness of the proposed solution by
means of a real prototype. Relevant parameters are
assessed in the experiments, in order to reveal the



ACCEPTED MANUSCRIPT

2

potentialities of the presented approach.
The paper is organized as follows. Section II

presents some relevant works about DoS attack’s pre-
vention/recognition in the fields of WSNs, MANETs,
and IoT. Section III outlines the details of the IoT
platform analyzed in this paper, pointing out the related
vulnerabilities against possible DoS attacks. Section IV
proposes the solution, named REATO, for dealing with
the emerged issues; while in Section V concrete exper-
iments are described in order to validate the proposed
approach. Section VI ends the paper, giving some hints
for future developments.

II. RELATED WORK

There are very different available techniques to pre-
vent and recognize DoS attacks. They also vary on
the basis of the target environment. We present hereby
some relevant solutions in WSNs, MANETs, Service
Oriented Architecture (SOA) and IoT contexts, in order
to provide a wide overview of the existing approaches
and better clarify our innovative contribution.

The work presented in [7] is targeted to the prevention
techniques of DoS attacks in WSNs. The same authors,
in [8] propose a cooperative immune system that is
an improvement of another existing immune system,
named Co-FAIS. More in detail, it uses a fuzzy logic
that exploits multiple learning parameters in order to
improve the accuracy rate of DoS attack’s detection.

A machine learning technique, based on Self Or-
ganizing Maps (SOM), is adopted in [9]. Relevant
network parameters, such as the number of packets
generated/sent/received/dropped, the CPU and memory
usage, are considered for each node and analyzed over
the time, in order to reveal anomalies in the nodes’
behavior (for example caused by a DoS attack). Hence, a
reputation score is associated to each node belonging to
the WSN; a threshold is further determined by means of
simulations for revealing possible network impairment
and isolating compromised nodes.

In [10], a message observation mechanism (MoM)
to detect and defence WSNs against the DoS attack
has been designed. It is based on the spatio-temporal
correlation and utilizes the similarity function to identify
the content attack as well as its frequency. Moreover,
MoM adopts re-key and re-route countermeasures in
order to effectively isolate the malicious nodes.

Code dissemination is the process of propagating
program images or related commands to sensor nodes
in a WSN. This task is used to provide bug fixes
or new functionalities after the WSN itself has been
deployed. [11] presents a new approach for guarantee-
ing confidentiality as well as robustness against DoS
attacks in multi-hop code dissemination protocols. In
fact, in a multi-hop scenario, a sensor node is required
to broadcast its program image when requested by
its neighbours; however, an adversary could repeat-
edly send program image requests to its neighbours,
making them re-broadcast the same program image

until the residual energy of the request recipients is
totally depleted. Moreover, without an adequate authen-
tication mechanism, an adversary could also capture
or impersonate a sensor node and inject a malicious
program image into the WSN and, finally, controlling
it. To cope with such issues, the authors proposed to
use session keys derived from hashing data packets
to encrypt the data packets themselves and to manage
the re-keying process, without requiring further energy-
expensive mechanisms. Moreover, they defined a tech-
nique, based on a mathematical model, which is able
to evaluate the amount of code update requests. The
proposed solution performs such an analysis taking into
account the distance level of the nodes in the WSN
with respect to the data collection point (i.e., the sink).
The load of code update requests at a certain nodes’
distance level will be considered as the threshold value
for actuating proper countermeasures against a DoS
attack.

[12] focuses on an emerging kind of attack, named
path-based DoS (PDoS). It happens when an adversary
inside or outside the network compromises a set of
sensor nodes or aggregator nodes by flooding a multi-
hop end-to-end routing path towards the sink with
replayed or injected packets. Such a behavior causes
an excessive power consumption for the involved nodes
that leads to a quick death of a part of the WSN. In
order to face the presented issue, the authors propose
a recovery strategy both for compromised nodes and
databases; the solution is based on the use of mobile
agents, which are able to detect PDoS attacks.

In order to mitigate DoS attacks in a hierarchical
WSN, in [13] a secure and self-enforcing scheme has
been implemented. For ensuring a correct authentication
of the involved entities (i.e., sensor nodes, cluster heads)
and making the sink available only for legitimated ones,
it exploits: (i) pseudo-random functions associated to
each node before deployment; (ii) a derivative key
established by the sink with the cluster heads and further
derivative keys established by the cluster heads with
sensor nodes.

Some works focus on the authentication issue. For
example, [14] reviews the state of art of user au-
thentication schemes for WSNs in terms of security
(i.e., resilience towards many kinds of attacks) and
computational overhead. Such an analysis revealed that
mitigating DoS attacks still remains a big challenge in
the field of WSNs, mainly due to the limited resources
owned by the sensor nodes, which expose them to
insidious threats.

In [15], a flooding authentication mechanism, based
on the so-called “Information Asymmetry” model, has
been proposed for WSN, in order to overcome DoS
attacks. Here, the sink owns a global key pool; while
each sensor node is only associated with a small number
of keys belonging to the key pool. Therefore, the “asym-
metry” is achieved in the sense that the key distribution
between the sender (i.e., the sink) and the receivers (i.e.,
the sensor nodes) is asymmetric. Such a mechanism is



ACCEPTED MANUSCRIPT

3

coupled with: (i) multiple MACs (Message Authenti-
cation Codes), which are appended to each packet for
sensor nodes’ message authentication; (ii) the Bloom
filter-based Message Authentication Protocol (BMAP)
for recognizing false negative among the legitimate
control messages.

As regard MANETs, several works make use of
proper packets’ authentication schemes in order to coun-
teract various kinds of attack (e.g., wormhole, man-
in-the-middle, DoS, impersonation). As an example,
[16] proposes the HEAP protocol, which authenticates
packets hop-by-hop by using a modified HMAC-based
(Hash Message Authentication Code) algorithm along
with a pair-wise secret hash key and drops any packets
originated from outsiders.

Instead, even in MANETs, [17] introduces a detection
technique against Distributed DoS (DDoS) attack. In
order to classify the legitimate and the malicious packets
and find abnormalities during the pre-attack phase,
it statistical analyzes feature extraction, reduction of
entropy, clustering technique and feature ranking.

Also with regard to DDoS attack, but in WSN’s field,
the work in [18] points out a solution based on dynamic
source routing (DSR), that uses the analysis of the
residual energy of sensor nodes as a factor for detection
and prevention of DDoS attack itself.

Otherwise, very few solutions have been proposed
until now in the IoT context. Among them, [19] presents
a survey on DoS attacks that may be targeted to IoT
environments, along with the evaluation of existing
systems that try to detect and mitigate them.

In [20] and [21], strategies for preventing DDoS
attack in IoT networks is proposed. The former exploits
SOA as a system model and uses the Learning Automata
(LA) concepts; while the latter makes use of an agent.
The main drawback of such approaches is that they only
serve for preventing the attack, but no countermeasures
is provided to react against a successful one. Instead,
the work in [22] presents a practical approach for
countering the CyberSlam DDoS attacks in a SOA
environment.

Also concerning SOA, the authors of [23] and [24]
propose an intrusion tolerant approach and a prevention
technique, respectively, for recognizing DoS attacks
which exploit XML vulnerabilities (i.e., XML-based
Denial of Service (XDoS)). Such solutions consist of
monitoring activities (e.g., detection of malicious ser-
vice requests, XML headers ad body validation, un-
expected CPU consumptions), intrusion diagnosis and
recovery.

Whereas, [25] presents a DoS detection architecture
for 6LoWPAN protocol, widely adopted in IoT commu-
nications, which integrates an intrusion detection system
(IDS) into the network framework developed within the
EU FP7 project Ebbits [26].

In [27], the possible impacts of a specific class-
amplified reflection DDoS attacks (AR-DDoS) against
IoT are assessed. Such an approach is used to empiri-
cally examine the possible effects caused by a running

attack over a controlled environment that includes IoT
devices.

In [28], a scheme, named Data Authentication and
En-route Filtering (DAEF), has been described for
WSNs in the context of IoT. Signature shares are
generated and distributed to the sensor nodes on the
basis of a verifiable secret sharing cryptography and of
an efficient ID-based signature algorithm, agreed with
the sink in an initial phase of network deployment.
The final aim is to defend the network against node
compromise attacks as well as DoS attacks by reacting
in the following way: an event report is generated from
any part of the network in case of detected attack and
broadcast to all the interested nodes. More in detail,
the event report may be collectively generated, digitally
signed, and forwarded to one or more of the nodes
belonging to the network through multipath routing. In
this way, the network should be able to activate proper
countermeasures.

Summarizing, a lot of work has already been done
in WSNs’ field in order to face DoS attack; while
the research is not mature enough in the IoT context.
In fact, the proposed approaches have a limited target
of application. What mainly lacks is a prevention and
detection technique for DoS attacks which is integrated
into a general-purpose IoT platform, able to exploit the
system’s functionalities in order to protect the legitimate
connected devices as well as the platform itself. This is
the aim of our work, as explained in the next sections.

III. IOT PLATFORM AND DOS ATTACK

In order to provide an effective solution, able to
recognize and recover an IoT system in case of DoS
attack, we should start with the definition of a proper
IoT architecture along with the involved entities. Such
an architecture has been defined by the authors in [29]
and represents a flexible and cross-domain middleware,
named NetwOrked Smart object (NOS), tailored to the
IoT environment.

NOSs are able to manage, in a distributed manner, the
data provided by heterogeneous sources and evaluate, by
means of proper algorithms [30], the security and data
quality of the information, in order to allow the users to
be aware of the levels of reliability and trustworthiness
of the services gathered by NOSs themselves. NOSs
also provide a lightweight and secure information ex-
change process, based on an authenticated publish and
subscribe mechanism [31], using the MQTT protocol.
Finally, an enforcement framework monitors the behav-
ior of NOSs in order to guarantee the correct application
of the established policies [32].

In the next sections, the architectural components of
NOSs will be described, along with some details about
their design and implementation. Moreover, the weak-
nesses against DoS attack of the presented platform will
be clearly pointed out.



ACCEPTED MANUSCRIPT

4

A. Networked Smart Object Architecture

Two main entities compose a typical IoT system:
(i) the nodes, conceived as heterogeneous data sources
(e.g., RFID, NFC, actuators, sensors, social networks,
etc.) which generate data for the IoT platform; (ii) the
users, who interact with the IoT system through services
making use of such IoT-generated data, typically access-
ing them by means of a mobile device (e.g., smartphone,
tablet) connected to the Internet (e.g., through WiFi, 3G,
or Bluetooth technologies).

Therefore, proper interfaces for the communications
of NOSs with the data sources (i.e., the nodes) and with
the users have been defined.

In the former case, HTTP protocol is adopted for
collecting the data from the IoT devices and for allowing
sources’ registration. In fact, NOSs deal both with
registered and non-registered sources. The registration
is not mandatory, but it provides various advantages in
terms of security, since registered sources may spec-
ify an encryption scheme for their interactions with
NOSs, thus increasing the level of protection of their
communications (encryption keys’ distribution is made
by the algorithms presented in [33]). The information
related to the registered sources are put in the storage
unit, named Sources. Instead, for each incoming data,
both from registered and non-registered sources, the
following information are gathered: (i) the kind of data
source, which describes the type of node; (ii) the com-
munication mode, that is, the way in which the data are
collected (e.g., discrete or streaming communication);
(iii) the data schema, which represents the content type
(e.g., number, text) and the format of the received data;
(iv) the data itself; (v) the reception timestamp.

Since the received data are of different types and
formats, NOSs initially put them in the Raw Data
storage unit. In such a collection, data are periodically
processed, in a batch way, by the Data Normalization
and Analyzers phases, in order to obtain a uniform
representation and add useful metadata regarding the
security (i.e., level of confidentiality, integrity, privacy
and robustness of the authentication mechanism) and
data quality (i.e., level of accuracy, precision, timeliness
and completeness) assessment. Such an assessment is
based on a set of rules stored in a proper format in
another storage unit, named Config, and are detailed
in [30]; it allows users who access the IoT data to
directly filter by themselves the data processed by
NOSs, according to their personal preferences.

While, in the latter case, Message Queue Telemetry
Transport (MQTT) protocol1 is used for disseminating
the information to the interested users. To this end, a
topic is assigned by NOSs to each processed data. In
order to manage the access to resources on the basis
of the assigned topics and on the active policies, the
original MQTT protocol has been further extended with
AUPS (AUthenticated Publish&Subscribe system) [31],

1IBM and Eurotech, Mqtt v3.1 protocol specification, http://public.
dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

and integrated with the enforcement framework [32].
It also concerns the adoption of a new component,
named Key Topics Manager (KTM), which is in charge
of managing temporary keys for topics access control.
Note that the keys are not fixed, but they come with an
expiration timestamp, in order to improve the system’s
resilience towards malicious attacks (e.g., man in the
middle attacks, replay attacks, password discovery).
Figure 1 summarizes the NOS’s components just in-
troduced.

Fig. 1: NOS architecture

NOSs modules interact among themselves through
RESTful interfaces; they have been implemented in a
real prototype, which is openly accessible at https:
//bitbucket.org/alessandrarizzardi/nos.git. Node.JS2 plat-
form has been used for developing NOSs’ core opera-
tions, MongoDB3 has been adopted for the data man-
agement, and Mosquitto4 has been chosen for realizing
the open-source MQTT broker. To know more details
about the implementation, we refer to [30].

2http://nodejs.org/
3http://www.mongodb.org/
4Mosquitto, An open source mqtt v3.1/v3.1.1 broker, http://

mosquitto.org



ACCEPTED MANUSCRIPT

5

B. Vulnerabilities towards DoS attack

Once the IoT platform has been presented, we can
proceed to practically reveal its vulnerabilities towards
DoS attack. Note that possible countermeasures for
reacting against other kinds of attack, such as data
integrity violation, packet sniffing, password attack,
have been just considered for NOSs in [30]; while, in
this work, we want to focus on DoS effects only.

We remark that the main scope of a DoS attack is to
deny the legitimate users/sources to access the desired
resources. In the IoT context, this means that users are
no longer able to exploit the services offered by the IoT
platform. Such a task is normally caused by flooding the
network with useless traffic so that legitimate packets
will not be received by the legitimate recipients or,
in another case, by depleting the network resources
until the system is no longer able to provide useful
information.

As regard NOSs, the following situations might hap-
pen:

• DoS attack to the data sources: one or more data
sources might be compromised by a malicious
entity that tries to overflow the bandwidth or
their memory buffer so that they are not able
to send valid data to NOSs. In such a situation,
the IoT platform itself is not involved, but part
of the IoT network may have to be isolated due
to possible network’s resources depletion caused
by such compromised nodes. Moreover, some
services will be affected, since NOSs will no
longer receive data from that part of the network.
Such an attack could be carried out by means of
the common strategies, such as traffic injection,
jamming, routing spoofing, and so on.

• DoS attack to NOSs: one or more NOSs might be
directly compromised by external attackers aimed
at exhausting their resources in terms of memory
occupancy (i.e., the Raw Data storage unit may
overflow), number of concurrent connections, and
computational load. Besides NOSs are not con-
ceived as constrained devices, their resources are
even precious in order to guarantee a promptly
service provision to the users. For these reasons, if
one or more NOSs receive from a malicious entity
(also masqueraded as a non-registered source) a
huge amount of useless data, thus its computa-
tional and memory resources will be employed
for useless processing tasks, preventing valid in-
formation to be provided in a reasonable time
to the interested users. Such a situation could
easily become true since NOSs deal both with
registered and non-registered sources, which are
both legitimated to connect to NOSs without the
need of performing authentication.

Obviously, the worst case happens if the IoT platform
itself (i.e., one or more NOSs) is brought down. As a
consequence, the MQTT broker will not receive valid
data, since NOS is busy in processing and analyzing of

malicious information.
Note that the IoT system’s administrators cannot

restore the functionalities of the compromised data
sources, because they are not under their control. How-
ever, the IoT system’s administrators can preserve NOSs
functionalities from violation attempts. Hence, all the
actions of prevention, recognition, and recovery in case
of DoS attack should start from NOSs’ side. The main
goal of the solution presented in the next section by
REATO is to provide an efficient mechanism able, at the
same time, to avoid, identify, and block a DoS attack
in short interval times.

IV. DOS ATTACK RECOGNITION AND RECOVERY

As emerged in the previous section, NOSs become
the principal actors for preserving the whole IoT system
from a possible DoS attack. In fact, often, data sources
are unable to directly counteract such a kind of threat,
mainly due to their limited computational resources.
Ad hoc solutions have been studied for particular set
of sources, such as WSNs and MANETs, as presented
in Section II. Now we want to propose a solution,
named REATO, aimed to protect the IoT platform and
its resources.

First of all, a scenario composed by multiple NOSs
is considered hereby. They are supposed to be deployed
in a wide area; therefore, data sources usually connect
to the closer NOS. In order to allow the data provision
by devices (i.e., sources), each NOSi exposes a public
port portNOSi for connection requests.

When a source srcj wants to send data to NOSi, it
has to made a connection request reqk via HTTP (as
explained in Section III) to the public port portNOSi

.
If the response sent by NOS is positive, then the source
can start to provide its information, also in an encrypted
way in case of registered sources. However, at the
present state, the system is very vulnerable to DoS
attack, because a malicious entity (that may be also
represented by a non-registered source) might start to
send a huge amount of invalid connection requests;
then, if the NOS accepts to establish the connection,
the malicious entity can also begin to send useless
packets. Moreover, this may happen also if the reqk
is encrypted, because a malicious request can be sent
in any form. Note that such packets will be probably
discarded, after processing, by NOS, due to their low
quality and security scores, assigned by the algorithm
used for data assessment presented in [30]. In fact, it is
able to evaluate the behavior of both registered and non-
registered data sources over the time and, thus, assessing
the trustworthiness of the incoming information and
recognize unreliable sources. If a source is considered
unreliable, then its data will be automatically discarded.
Nevertheless, NOS cannot prevent or block the waste of
resources caused by the DoS attack.

In order to cope with such an issue, some counter-
measures have to be undertaken. The first one regards
the creation of a variable number of dynamic virtual



ACCEPTED MANUSCRIPT

6

ports vportNOSi,m
on each NOS (where m is the m−th

virtual port created on NOSi). More in detail, when a
source srcj requests for a connection reqk, then the
NOS can reply with an acceptance message containing
another encrypted port’s address, which must be used
by srcj for data provision. In this way, the set of active
connections of the sources is not managed on a single
port, known by all, but are switched on different virtual
ports. Source srcj must perform another connection
request to the virtual port vportNOSi,m

before starting
normal interactions; in this way, NOSi can inform the
virtual ports about the authorized sources. The number
M of created virtual ports depends on the number of
connected data sources and on the bandwidth, and it
should be established by means of simulations and/or
real experiments (some examples are provided in Sec-
tion V). Note that, more than one data source could be
associated with the same virtual port. Also in this case,
the number of threads generated for each data source
per virtual port should be estimated by testing/real case
studies (as reported in Section V). It is worth to remark
that the physical and virtual memory of each NOS is
shared by all the active threads (i.e., depending on the
connected sources) on that NOS.

At this point, the second countermeasure consists
in binding the identifier vportNOSi,m

of each NOSs’
port to a UID, so as to obtain the following address:
UID− vportNOSi,m

, which is more complex to guess
by malicious entities. It is composed by the name of
the virtual port vportNOSi,m and a UID, so as to
obtain the following address: UID − vportNOSi,m .
The UID is a unique identifier randomly generated
and assigned to each NOS by a new IoT network
component, named Overload Balance Manager (OBM).
Such a component is conceived as a remote server
(which can run on a cloud), connected to all the NOSs
belonging to the IoT system, by means of a secure VPN
(Virtual Private Network). In this way, we assure that
the communications among the OBM and the NOSs
are private and not compromised by external entities.
In the following, the functionalities of the OBM will be
detailed.

It is important to note that, in case of registered
data sources, UID − vportNOSi,m is not sent in clear
to the requesting source, but it is sent in a ciphered
way, in order to provide a further security level to the
communication. Such a behavior cannot be carried out
for non-registered sources. Therefore, with the final aim
of protecting as much as possible NOSs from attackers,
some virtual ports are reserved for communications with
registered and non-registered sources, respectively. In
other words, the same virtual port will not be shared by
both registered and non-registered sources.

Figure 2 sketches the analyzed scenario, showing the
relations among OBM, NOSs, and the virtual ports,
which are further outlined in Figure 3.

Several problems arise in the presented scenario, in
case of DoS attack:
• The source srcj makes too many connection

Fig. 2: General scenario

requests to NOSi on the public port portNOSi ;
• The source srcj sends too many packets to NOSi

on the address UID − vportNOSi,m
.

In the former case, being the name of the port for con-
nection requests public, every malicious device could
start an attack; while, in the latter case, the malicious en-
tity should know the address UID−vportNOSi,m

. Even
if the use of virtual ports reduces the risk of sources’
impersonation, such an address could be derived by
performing an analysis of the actual communications
among the NOS and the current connected data sources.
To this end, a comparison among the transmitted packets
could be carried out for detecting the virtual port
addresses. It is important to note that, by means of
such a method, the UID of the NOS and the name
vportNOSi,m of the virtual port could be recognized
together or separately, as explained in the following
cases.

Each NOS can react to such situations, in order to
block the DoS attack in short times, in the following
ways:
• Case 1 - too many connection requests: until

a certain threshold thrconn (to be dynamically
calculated on the basis of a proper algorithm, as
specified in the following) is exceeded, NOS can
deny other further connection requests through the
public port portNOSi

by the same requestor srcj ,
by sending back an exception, named exconn, and
dropping future requests sent by srcj ; in this way,
no further session is opened on the virtual ports;
the situation is shown in Figure 4;

• Case 2 - too many packets sent: until a
certain threshold thrpck (as for thrconn, to be
dynamically calculated by means of a proper
method, as specified in the following) is exceeded,
NOS can deny other further packets sent towards
the address UID − vportNOSi,m

by the same
requestor srcj , by sending back an exception,



ACCEPTED MANUSCRIPT

7

Fig. 3: Basic interactions

named expck, and dropping future packets sent by
srcj ; all the opened sessions on such a virtual port
are closed and also further connection requests,
performed by the same source, via the public port
portNOSi

will be prevented; in this way, NOS
avoids to process and analyze information that are
supposed to be useless. The main risk is to block
a legitimate source if the value of the threshold
thrpck is set to a wrong value; in this case,
the outcomes of the data assessment algorithm
[30] can be used for performing a second level

of evaluation about the behavior of a particular
source and determining whether ban or not it.
Such interactions are depicted in Figure 5;

• Case 3 - malicious entity knows the whole ad-
dress UID− vportNOSi,m

: if, besides its pack-
ets are dropped and no further session is allowed
by NOS, the source srcj continues to overload
the network with useless traffic on the known
address UID − vportNOSi,m

, NOS may decide
to kill all the active connections on that port and
rename it by means of a new port number; more



ACCEPTED MANUSCRIPT

8

Fig. 5: Case 2: too many packets sent

Fig. 4: Case 1: too many connection requests

in detail, an exception, named exreq−conn, is sent
to all the data sources that present an opened
session on the attacked virtual port. In this way,
they are forced to request a new connection via
the public port portNOSi

(which is always the
same), through which they will receive a new
virtual port address UID−vportNOSj,m , possibly
in a ciphered way. Therefore, NOS abruptly kills
the old connections and delete the attacked virtual
port so as the malicious entities cannot continue
to perform the attack. Obviously, the re-creation
of the right connections wastes time and resources

and may slow down the provision of certain
services; however, if the NOS is under an attack,
the depletion of resources is still in progress,
therefore such a countermeasure is acceptable.
Note that NOS stores the information related to
the source identified as malicious and, therefore,
prevents future possible interactions. Figure 6
represents the interactions just described;

• Case 4 - malicious entity knows UID: if in
the previous case (i.e., case 3) the virtual ports
can be somewhat easily replaced without signif-
icantly affecting the NOS system functionalities,
the situation is more complicated if the attacker
has recognized the UID of the NOS. In fact, it
can proceed to fill NOS with an unpredictable
amount of malicious traffic because it is able,
by knowing the UID, to derive the address of
more than one active virtual ports. Remember
that the address UID− vportNOSi,m is obtained
concatenating the identifier UID with the name
vportNOSi,m

of the virtual port, which generally
is a sequential number. The discovering of UID
may be pursued by performing a brute force
attack in order to reveal the name of one or
more active virtual ports. NOSs recognize such
a kind of event because more than one virtual
port is attacked at the same time by one or more
malicious entities (this behavior is revealed by the
threshold thrpck). In such a situation, the only
solution for the victim of the attack (i.e., the
NOS) is to move to another network location. For
these reasons, the NOS contacts the OBM in order



ACCEPTED MANUSCRIPT

9

Fig. 6: Case 3 - continuous packets sent after banning

to start up a new instance NOS′i of itself into
another network location, also by replacing the
UID with a new one. All the connected sources
srcj are disconnected from NOSi by sending an
exception, named exnos−conn and are invited to
connect to the new instance. It is worth to remark
that NOSi is aware of who is the attacker and,
therefore, its transactions are not re-directed to
NOS′i. Since NOSi is under a DoS attack, it
is not sure that all the sources will be notified
of this event; anyway they should re-connect to
another NOS or to the new instance NOS′i of the
suspended NOS. Figure 7 summarizes this case.

• Case 5 - compromised sources continue to
consume the network’s resources: besides the
countermeasures just described, it is worth to
remark that compromised sources can still waste
network resources (i.e., bandwidth, CPU, mem-
ory), for example by generating fake packets/re-
quests not directly sent to NOS, but transmitted
over the network. As a consequence, the activity
of such a part of the network is still compro-
mised and further actions must be undertaken to
block the attack. Extending the case 4 discussed
above, when NOS recognizes that its function-
alities are still at risk, then it notifies the OBM,
which instantiates a new NOS instance, as before,
but situated on physically separated networks
(e.g., on different network cards or hubs) with
respect to the previous one. In this way, the
compromised network (e.g., a WiFi channel) is
definitely isolated from the NOS system: only
connections with legitimate sources are properly

preserved; while compromised nodes are cut off.
Note that it is up to the platform operator to set
up the appropriate configuration settings in order
to exploit such a mechanism and let the OBM
to choose the better solution depending on the
current network’s state. Another important remark
regards the possibility to add another module to
NOSs, which is able to interact with the existing
hardware and perform further blocking actions at
the lower levels of the network, in response to
certain kinds of attack. However, such a module
would enforce a dependency on the underlying
hardware platform, and it is out of the scope of
the paper.

The situations just detailed revealed the possible
vulnerabilities of the NOSs’ system and how a DoS
attack can be carried out and blocked, thus preserving
the IoT system to be shut down. Note that more than
one NOS may be attacked at the same time, but a
chain of attacks is not possible, because no interaction
is performed among different NOSs. This is due to the
introduction of the OBM, which is responsible for the
monitoring of the resources used by each NOS and,
therefore, to react in case it verifies or it is informed by
a NOS to be in a critical state. To this end, a notification
system has been set up, in order to allow OBM to be
aware, possibly in real-time, of the state of NOSs. Such
a system allows NOS to periodically send to the OBM
the following state information:
• Number nActiveConnNOSi

of active connec-
tions;

• Number nFreeConnNOSi
of available connec-

tions;



ACCEPTED MANUSCRIPT

10

Fig. 7: Case 4 - continuous packets sent by knowing the UID of the NOS

• Number nReqNOSi,srcj of requests/packets re-
ceived from each connected source;

• Number nBadReqNOSi,srcj of invalid requests/-
packets (e.g., unknown type of data, bad request-
s/packets) received from each connected source;

• Average response time to requests
respT imeNOSi

;
• CPU usage uCPUNOSi

;
• Memory usage uStorageNOSi .
Such parameters, exchanged through a proper secure

interface between each NOS and the OBM, can be
analyzed and continuously monitored by the OBM itself
in order to undertake further actions in order to keep the
system in a healthy state. They would also help systems
engineers to evaluate the efficiency of the system and/or
to perform proper tasks, when needed, to optimize the
network structure or prevent possible threats at the lower
layers of the protocol stack.

In this paper, nActiveConnNOSi , nReqNOSi,srcj
and nBadReqNOSi,srcj are used by NOSs to determine
the above-mentioned parameters: thrpck and thrconn.
Due to the importance, for a DoS detection system,
to adapt to changes in network’s condition, we cater
for a mechanism able to dynamically changethrpck and
thrconn at runtime. In particular, we used the algorithms
and methods described in [34]. It is worth to remark
that other valid methods are available in literature and
it would be interesting, in the next future, to assess
the applicability and performance of other approaches
to the NOS case. More in detail, the work in [34]
proposes a simple statistical-based analysis to monitor
the traffic across the network’s ports. Such a method is
particularly effective in our case because it considers the
comparison among the number of connections/packet-
s/requests coming from the different ports of each NOS;

such a comparison is useful to determine how large is
the deviation of a certain port status from the known
patterns of other ports. Traffic is continuously captured
step by step from very short time periods (e.g., seconds)
to relatively longer ones (e.g., hours). In this way,
connections/packets/requests (i.e., nActiveConnNOSi

,
nReqNOSi,srcj and nBadReqNOSi,srcj ) fluctuations
are analysed over time. Then, the algorithm calculates
the values for thrpck and thrconn on the basis of the
average of number of connections/packets/requests at
a certain time scale. Such averages are conceived as
the baseline regions to identify if one or more sources,
belonging to the network, falls outside this region. Note
that many variants and optimization could be added to
such an approach, which however certainly represents a
valid starting point.

Furthermore, the role of the OBM could be extended
beyond REATO, in the next future, as to become a
real balancer for better managing the load among the
various NOSs, as may be suggested by the above-
mentioned parameters. For example, part of the traffic
on one NOS could be migrated to another one by com-
municating to the interested data sources the address
UID− vportNOSi,m of the virtual port that resides on
the other NOS.

V. VALIDATION AND EXPERIMENTS

In this section we want to demonstrate the feasibility
of the proposed solution, as presented in Section IV.
The test-bed is composed by a NOS that runs on
Raspberry Pi platform, by an OBM, and by a variable
number of data sources, which virtually run on a per-
sonal computer that receives data in real time from the
meteorological station placed in the town of Campo-
denno (Trentino, Italy). Meteorological information can



ACCEPTED MANUSCRIPT

11

be accessed through the Trentino Open Data portal5

and include: temperature, humidity, wind, energy con-
sumption and air quality. WiFi connections are adopted
for communications among the personal computer and
the Raspberry Pi platform (i.e., the NOS). Another
WiFi connection is used for the communications with
the MQTT broker and with the OBM. Note that the
presence of only one NOS does not compromise the
relevance of the experiments because, as said in Section
IV, no interaction is performed among different NOSs
and so a chain of DoS attacks is not possible. Therefore,
we safely conduct the analysis by means of one running
NOS.

In the following examples, NOS fetches the data at
10 packet per second. Such a frequency, along with the
number of connected data sources, obviously influences
the memory occupancy as well as the computational
effort. However, such a parameter is fixed in order to
put in light the behavior of NOS in terms of CPU
load, latency, and attack recovery time, with respect to
other relevant variable parameters, such as the number
of virtual ports and the outcomes in presence of a DoS
attack or not, as described in the next sections. Instead,
malicious sources send 25 requests/packets per second.

The two testing scenarios, respectively, have: (i) 10
registered data sources and 4 non-registered ones; (ii)
50 registered data sources and 20 non-registered ones.
The number M of virtual ports varies depending on
the number of connections/requests to be managed at
a certain time. Such a configuration is set to 50 and
Figure 8 shows the variation in the number of virtual
ports during the system’s execution. Note that connec-
tions/requests are equally split on the generated virtual
ports, besides separating registered and non-registered
sources. Furthermore, we suppose that the DoS attack
is carried out by a variable number of data sources (i.e.,
from 1 to 15 malicious nodes in the two scenarios).
Finally, simulations have been measured over a period
of 24 hours. Table I summarizes the parameters used in
the test-bed.

Fig. 8: Number of virtual ports during the time

5http://dati.trentino.it/dataset/raw-data-in-near-realtime-stazione-cmd001

TABLE I: Test-bed parameters

Parameter Value
Registered sources 10, 50
Non-registered sources 4, 20
Malicious sources from 3 to 15
Number of connections/requests to be managed by a single virtual port 50, 100
Data rate 10 pck/sec
Malicious sources’ data rate 25 pck/sec
Observation time 24 h

A. Computing effort

It is very interesting to analyze how the CPU load
on the NOS changes in three different situations: (i)
a normal situation without the presence of any attack;
(ii) a case of DoS attack where NOS does not activate
REATO; (iii) a case of DoS attack where NOS activates
REATO. Figure 9 shows the distribution of the CPU
load on the analyzed NOS in the four cases presented in
Section IV, with and without the activation of REATO,
with a variable number of data sources and malicious
nodes. As we expected, the CPU load increases from
the first case to the last one, but without reaching
worrying values when REATO is used. Therefore, NOS
is supposed to behave in the correct manner in recog-
nizing the recovering from the attack. It is worth to
remark that computational effort is stable during system
running and compliant with the results obtained in our
previous work on NOS, such as [31] and [32]. When
REATO is not used, performance is similar for the four
cases because, practically, the malicious source acts
in different manner but with the same outcomes (i.e.,
wasting NOS’s resources); in general, the CPU load
increases until reaching the 100% because a typical DoS
attack causes the network to collapse. An important
consideration must be highlighted with regards to the
scalability of the presented system. In fact, we can see
from the figure also how NOS platform reacts in pres-
ence of more sources and increasing malicious nodes.
While additional studies, covering larger deployments,
are needed, the results suggest that REATO can actually
scale rather well: with 14 sources, CPU load is below
50%; increasing the number of sources to 50 sources,
the CPU load is still below 65%.

An interesting aspect is related to the evolution of
thrconn and thrpck when REATO is executed in cases
one and two, respectively. The variation of such thresh-
olds is documented in Figure 10.

B. Latency

Another fundamental metric to be considered is the
latency introduced by the adoption of REATO with
respect to the previous version of NOS [29] (i.e., with
such a security extension disabled) in three settings:
a normal situation, and in presence of an attack with
and without REATO. For this evaluation, we considered
the case three described in Section IV, with a variable
number of sources and malicious nodes.

Note that latency is computed as the distribution of
the elapsed time from the data reception to NOS until
it is sent to the MQTT broker. Therefore, such a metric



ACCEPTED MANUSCRIPT

12

Fig. 9: CPU load: whiskers-box diagram for a NOS with and without REATO

Fig. 10: Thresholds thrpck and thrconn during the
system’s execution with REATO

is useful for determining the efficiency of the service
provision by NOS to the interested users.

Figure 11 shows the distribution of the latency for the
analyzed NOS, which, as the CPU load, results rather
stable over the time. The analysis reveals that REATO
greatly helps to maintain the latency times (in presence
of DoS attack) near those of a normal situation (i.e.,
without the presence of DoS attack); while, in presence
of a DoS attack, and without the activation of REATO,
the performances are expected to get worse over the
time, since no countermeasure is undertaken in order to
block the attack. More in detail, by using REATO, with

14 sources (10 registered, 4 non-registered), the latency
is below 15 ms; while, with 70 sources (50 registered,
20 non-registered), the latency is below 30 ms.

C. Attack recovery time

A last significant metric to be considered is the time
required by the NOS with REATO to recover after a
DoS attack. Such an evaluation is mainly relevant for
cases three and four in Section IV. Figure 12 shows
the distribution of the measured times, with different
number of sources and malicious nodes. The difference
in recovery times with respect to the number of sources
is rather evident. It is worth to remark that, in case three,
NOS has to kill the active connections on the attacked
virtual port and re-create a new one; while, in case four,
NOS has to be disconnected by the OBM and a new
instance is enabled in another network location.

As said at the beginning of this section, many variable
parameters have be evaluated to have a global view and
an accurate estimation of the system behavior. However,
the test-bed developed in this paper has demonstrated
to be a valuable starting point in establishing a new
solution in the defence from DoS attack in an IoT
scenario.

VI. CONCLUSIONS

The paper has presented a method, named REATO,
for detecting and counteracting a DoS attack against
the IoT middleware, named NOS. The work started
from the need to find a solution able to defend an
IoT system towards DoS attacks, considering all the
possible situations that can occur (i.e., attacks to the
data sources and attacks to the IoT platform itself).
The designed solution, tailored to NOS architecture, has
been validated by means of a real test-bed, composed
by a NOS prototype installed on a Raspberry Pi that
receives open data feeds in real time by a variable
set of sources. Performance indices like computing
effort, latency, and recovery time have been evaluated in



ACCEPTED MANUSCRIPT

13

Fig. 11: Latency: whiskers-box diagram for a NOS with and without REATO

Fig. 12: Attack recovery time: whiskers-box diagram for a NOS with REATO

presence of malicious nodes. As a future development
of the presented work, we aim at testing the described
scenario in a more complex environment, composed
of multiple NOSs and a huge number of data sources
and malicious entities, in order to carry out further
experiments about the performance of REATO into the
whole system.

REFERENCES

[1] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini,
“Security, privacy and trust in Internet of Things: The road
ahead,” Computer Networks, vol. 76, pp. 146–164, 2015.

[2] V. Zlomislić, K. Fertalj, and V. Sruk, “Denial of service attacks,
defences and research challenges,” Cluster Computing, pp. 1–
11, 2017.

[3] S. Mavoungou, G. Kaddoum, M. Taha, and G. Matar, “Survey
on threats and attacks on mobile networks,” IEEE Access,
vol. 4, pp. 4543–4572, 2016.

[4] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense
mechanisms against distributed denial of service (ddos) flood-
ing attacks,” IEEE communications surveys & tutorials, vol. 15,
no. 4, pp. 2046–2069, 2013.

[5] S. Likmabam and R. Aaseri, “A review on detection and
mitigation technique of distributed denial of services attack.”

[6] E. Bertino and N. Islam, “Botnets and internet of things
security,” Computer, vol. 50, no. 2, pp. 76–79, 2017.

[7] A. Patil and R. Gaikwad, “Comparative analysis of the preven-



ACCEPTED MANUSCRIPT

14

tion techniques of denial of service attacks in wireless sensor
network,” Procedia Computer Science, vol. 48, pp. 387–393,
2015.

[8] S. Patil and S. Chaudhari, “Dos attack prevention technique in
wireless sensor networks,” Procedia Computer Science, vol. 79,
pp. 715–721, 2016.

[9] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini,
“Gone: Dealing with node behavior,” in Consumer Electronics-
Berlin (ICCE-Berlin), 2015 IEEE 5th International Conference
on. IEEE, 2015, pp. 358–362.

[10] Y.-y. Zhang, X.-z. Li, and Y.-a. Liu, “The detection and defence
of dos attack for wireless sensor network,” The journal of china
universities of posts and telecommunications, vol. 19, pp. 52–
56, 2012.

[11] H. Tan, D. Ostry, J. Zic, and S. Jha, “A confidential and dos-
resistant multi-hop code dissemination protocol for wireless
sensor networks,” Computers & Security, vol. 32, pp. 36–55,
2013.

[12] B. Li and L. Batten, “Using mobile agents to recover from
node and database compromise in path-based dos attacks in
wireless sensor networks,” Journal of Network and Computer
Applications, vol. 32, no. 2, pp. 377–387, 2009.

[13] R. Nanda and P. V. Krishna, “Mitigating denial of service
attacks in hierarchical wireless sensor networks,” Network
security, vol. 2011, no. 10, pp. 14–18, 2011.

[14] S. Kumari, M. K. Khan, and M. Atiquzzaman, “User authen-
tication schemes for wireless sensor networks: A review,” Ad
Hoc Networks, vol. 27, pp. 159–194, 2015.

[15] J.-H. Son, H. Luo, and S.-W. Seo, “Denial of service attack-
resistant flooding authentication in wireless sensor networks,”
Computer Communications, vol. 33, no. 13, pp. 1531–1542,
2010.

[16] R. Akbani, T. Korkmaz, and G. Raju, “Heap: A packet authenti-
cation scheme for mobile ad hoc networks,” Ad Hoc Networks,
vol. 6, no. 7, pp. 1134–1150, 2008.

[17] P. Devi and A. Kannammal, “An integrated intelligent paradigm
to detect ddos attack in mobile ad hoc networks,” International
Journal of Embedded Systems, vol. 8, no. 1, pp. 69–77, 2016.

[18] R. Upadhyay, U. R. Bhatt, and H. Tripathi, “Ddos attack aware
dsr routing protocol in wsn,” Procedia Computer Science,
vol. 78, pp. 68–74, 2016.

[19] A. Aris, S. F. Oktug, and S. B. O. Yalcin, “Internet-of-things
security: Denial of service attacks,” in 2015 23nd Signal Pro-
cessing and Communications Applications Conference (SIU),
May 2015, pp. 903–906.

[20] S. Misra, P. V. Krishna, H. Agarwal, A. Saxena, and M. S.
Obaidat, “A learning automata based solution for preventing
distributed denial of service in internet of things,” in 2011
International Conference on Internet of Things and 4th Inter-
national Conference on Cyber, Physical and Social Computing,
Oct 2011, pp. 114–122.

[21] K. Sonar and H. Upadhyay, An Approach to Secure Internet of
Things Against DDoS. Springer Singapore, 2016, pp. 367–376.

[22] X. Ye and S. Singh, “A soa approach to counter ddos attacks,”
in Web Services, 2007. ICWS 2007. IEEE International Con-
ference on. IEEE, 2007, pp. 567–574.

[23] M. Ficco and M. Rak, “Intrusion tolerant approach for denial of
service attacks to web services,” in Data Compression, Com-
munications and Processing (CCP), 2011 First International
Conference on. IEEE, 2011, pp. 285–292.

[24] S. Padmanabhuni, V. Singh, K. S. Kumar, and A. Chatterjee,
“Preventing service oriented denial of service (presodos): A
proposed approach,” in Web Services, 2006. ICWS’06. Interna-
tional Conference on. IEEE, 2006, pp. 577–584.

[25] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits,
“Denial-of-service detection in 6lowpan based internet of
things,” in Wireless and Mobile Computing, Networking and

Communications (WiMob), 2013 IEEE 9th International Con-
ference on. IEEE, 2013, pp. 600–607.

[26] “EBBITS project,” http://www.ebbits-project.eu/.

[27] J. J. Costa Gondim, R. de Oliveira Albuquerque, A. Clayton
Alves Nascimento, L. J. Garcı́a Villalba, and T.-H. Kim,
“A methodological approach for assessing amplified reflection
distributed denial of service on the internet of things,” Sensors,
vol. 16, no. 11, p. 1855, 2016.

[28] H. Yu, J. He, R. Liu, and D. Ji, “On the security of data
collection and transmission from wireless sensor networks in
the context of internet of things,” International Journal of
Distributed Sensor Networks, vol. 9, no. 9, p. 806505, 2013.

[29] A. Rizzardi, D. Miorandi, S. Sicari, C. Cappiello, and A. Coen-
Porisini, “Networked smart objects: Moving data processing
closer to the source,” in 2nd EAI International Conference on
IoT as a Service, Oct 2015.

[30] S.Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-
Porisini, “A secure and quality-aware prototypical architecture
for the Internet of Things,” Information Systems, vol. 58, pp.
43–55, 2016.

[31] A. Rizzardi, S. Sicari, D. Miorandi, and A. Coen-Porisini,
“Aups: An open source authenticated publish/subscribe system
for the Internet of Things,” Information Systems, vol. 62, pp.
29–41, 2016.

[32] S. Sicari, A. Rizzardi, D. Miorandi, C.Cappiello, and A. Coen-
Porisini, “Security policy enforcement for networked smart
objects,” Computer Networks, vol. 108, pp. 133–147, 2016.

[33] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini,
“Internet of Things: Security in the keys,” in 12th ACM
International Symposium on QoS and Security for Wireless and
Mobile Networks, Malta, Nov 2016, pp. 129–133.

[34] A. Waskita, H. Suhartanto, P. Persadha, and L. T. Handoko,
“A simple statistical analysis approach for intrusion detection
system,” in IEEE Conference on Systems, Process & Control
(ICSPC). IEEE, 2013, pp. 193–197.

BIOGRAPHY

Sabrina Sicari is Associate Professor at University
of Insubria (Varese). She received degree in Electronical
Engineering, 110/110 cum laude, from University of
Catania, in 2002, where in 2006 she got Ph.D. in Com-
puter and Telecommunications Engineering, followed
by Prof. Aurelio La Corte. She is member of COMNET,
IEEE IoT, ETT, ITL editorial board.

Alessandra Rizzardi received BS/MS degree in
Computer Science 110/110 cum laude at University of



ACCEPTED MANUSCRIPT

15

Insubria (Varese), in 2011/2013. In 2016 she got Ph.D.
in Computer Science and Computational Mathematics at
the same university, under the guidance of Prof. Sabrina
Sicari. Her research activity is on WSN and IoT security
issues.

Daniele Miorandi is Executive VP R&D at U-
Hopper. He received Ph.D. in Communications Engi-
neering from University of Padova, in 2005. He co-
authored more than 120 papers in internationally ref-
ereed journals and conferences. He serves on Steering
Committee of international events, also as co-founder.
He serves on TPC of leading conferences in the net-
working and computing fields.

Alberto Coen Porisini received Dr. Eng. degree and
Ph.D. in Computer Engineering from Politecnico di
Milano in 1987 and 1992. He is Professor of Software
Engineering at Università degli Studi dell’Insubria since
2001, Dean of the School of Science from 2006 and
Dean since 2012. His research regards specification/de-
sign of real-time systems, privacy models and WSN.


