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Abstract Internet of Things is a platform where every day devices become smarter, every day pro-

cessing becomes intelligent, and every day communication becomes informative. While the Internet

of Things is still seeking its own shape, its effects have already stared in making incredible strides as

a universal solution media for the connected scenario. Architecture specific study does always pave

the conformation of related field. The lack of overall architectural knowledge is presently resisting

the researchers to get through the scope of Internet of Things centric approaches. This literature

surveys Internet of Things oriented architectures that are capable enough to improve the under-

standing of related tool, technology, and methodology to facilitate developer’s requirements.

Directly or indirectly, the presented architectures propose to solve real-life problems by building

and deployment of powerful Internet of Things notions. Further, research challenges have been

investigated to incorporate the lacuna inside the current trends of architectures to motivate the aca-

demics and industries get involved into seeking the possible way outs to apt the exact power of

Internet of Things. A main contribution of this survey paper is that it summarizes the current

state-of-the-art of Internet of Things architectures in various domains systematically.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Internet of Things (IoT) refers to the stringent connectedness
between digital and physical world (Atzori et al., 2010;
Sterling, 2005; Internet Reports, 2005). Various researchers

have described IoT in multitude forms:

– ‘‘a dynamic global network infrastructure with self-
configuring capabilities based on standard and interoperable

communication protocols where physical and virtual ’Things’
have identities, physical attributes, and virtual personalities
and use intelligent interfaces, and are seamlessly integrated

into the information network” (Kranenburg, 2008).
– ‘‘3A concept: anytime, anywhere and any media, resulting
into sustained ratio between radio and man around 1:1”

(Srivastava, 2006).
– ‘‘Things having identities and virtual personalities operating
in smart spaces using intelligent interfaces to connect and
communicate within social, environmental, and user contexts”

(Networked Enterprise & RFID & Micro & Nanosystems,
2008). The semantic meaning of ‘‘Internet of Things” is pre-
sented as ‘‘a world-wide network of interconnected objects

uniquely addressable, based on standard communication
protocols”.
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We will consider the definition provided by the ITU:

– ‘‘A global infrastructure for the information society enabling
advanced services by interconnecting (physical and virtual)
things based on, existing and evolving, interoperable informa-

tion and communication technologies” (ITU work on
Internet of things, 2015).

As per Gartner, 25 billion devices will be connected to the
internet by 2020 and those connections will facilitate the used
data to analyze, preplan, manage, and make intelligent deci-

sions autonomously. The US National Intelligence Council
(NIC) has embarked IoT as one of the six ‘‘Disruptive Civil
Technologies” (National Intelligence Council, 2008). In this
context, we can see that service several sectors, such as: trans-

portation, smart city, smart domotics, smart health, e-
governance, assisted living, e-education, retail, logistics, agri-
culture, automation, industrial manufacturing, and business/

process management etc., are already getting benefited from
various architectural forms of IoT (Gubbia et al., 2013;
Miorandi et al., 2012; Giusto et al., 2010).

IoT architecture may be treated as a system which can be
physical, virtual, or a hybrid of the two, consisting of a collec-
tion of numerous active physical things, sensors, actuators,
I/O Interfaces
(sensors, 

actuators, etc.)

Audio/Video
Interfaces

HDMI

3.5mm audio

RCA video

Storage Interfaces

SD

MMC

SDIO

UART

SPI

CAN

I2C

ce components.
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Table 1 Comparison of the existing IoT supported hardware platforms.

Parameters Arduino Uno Arduino

Yun

Intel

Galileo Gen

2

Intel

Edison

Beagle

Bone Black

Electric

Imp 003

Raspberry Pi

B+

ARM

mbed

NXP

LPC1768

Processor ATMega328P ATmega32u4,

and Atheros

AR9331

Intel�
QuarkTM

SoC X1000

Intel�
QuarkTM

SoC

X1000

Sitara

AM3358BZCZ100

ARM

Cortex

M4F

Broadcom

BCM2835

SoC based

ARM11

76JZF

ARM

Cortex

M3

GPU - - - - PowerVR

SGX530

@520 MHz

- VideoCore

IV�
Multimedia@

250 MHz

-

Operating

voltage

5V 5V, 3V 5V 3.3V 3.3V 3.3V 5V 5V

Clock speed

(MHz)

16 16,400 400 100 1 GHz 320 700 96

Bus width (bits) 8 8 32 32 32 32 32 32

System memory 2kB 2.5 kB,

64 MB

256 MB 1 GB 512 MB 120 KB 512 MB 32 KB

Flash memory 32 kB 32kB, 16 MB 8 MB 4 GB 4 GB 4 Mb - 512 KB

EEPROM 1 kB 1 kB 8 kB - - - - -

communication

supported

IEEE 802.11

b/g/n,

IEEE

802.15.4,

433RF, BLE

4.0, Ethernet,

Serial

IEEE 802.11

b/g/n,IEEE

802.15.4,

433RF, BLE

4.0,

Ethernet,

Serial

IEEE 802.11

b/g/n,IEEE

802.15.4,

433RF, BLE

4.0,

Ethernet,

Serial

IEEE

802.11 b/

g/n,IEEE

802.15.4,

433RF,

BLE 4.0,

Ethernet,

Serial

IEEE 802.11 b/g/

n,

433RF, IEEE

802.15.4, BLE 4.0,

Ethernet,

Serial

IEEE

802.11 b/

g/n,IEEE

802.15.4,

433RF,

BLE 4.0,

Ethernet,

Serial

IEEE 802.11

b/g/n,IEEE

802.15.4,

433RF, BLE

4.0,

Ethernet,

Serial

IEEE

802.11 b/

g/n,IEEE

802.15.4,

433RF,

BLE 4.0,

Ethernet,

Serial

Development

environments

Arduino

IDE

Arduino

IDE

ArduinoIDE Arduino

IDE,

Eclipse,

Intel XDK

Debian,

Android,

Ubuntu,

Cloud9 IDE

Electric

Imp IDE

NOOBS C/C++

SDK,

Online

Compiler

Programming

language

Wiring Wiring Wiring,

Wyliodrin

Wiring, C,

C++,

Node.JS,

HTML5

C, C++, Python,

Perl, Ruby, Java,

Node.js

Squirrel Python, C, C

++, Java,

Scratch, Ruby

C, C++

I/O

Connectivity

SPI, I2C,

UART,

GPIO

SPI, I2C,

UART, GPIO

SPI, I2C,

UART,

GPIO

SPI, I2C,

UART,

I2S, GPIO

SPI, UART, I2C,

McASP, GPIO

SPI, I2C,

UART,

GPIO

SPI, DSI,

UART, SDIO,

CSI, GPIO

SPI, I2C,

CAN,

GPIO
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cloud services, specific IoT protocols, communication layers,

users, developers, and enterprise layer. Particular architectures
do act as a pivot component of IoT specific infrastructure
while facilitating the systematic approach toward dissimilar

components resulting solutions to related issues. A well defined
form of IoT architecture is currently available for knowledge
purpose:

– ‘‘a dynamic global network infrastructure with self-configur-
ing capabilities based on standard and interoperable commu-
nication protocols where physical and virtual ’Things’ have

identities, physical attributes, and virtual personalities and
use intelligent interfaces, and are seamlessly integrated into
the information network” (Kranenburg, 2008).

1.1. IoT functional blocks

An IoT system is comprised of a number of functional blocks
to facilitate various utilities to the system such as, sensing,
Please cite this article in press as: Ray, P.P. A survey on Internet of Things archite
(2016), http://dx.doi.org/10.1016/j.jksuci.2016.10.003
identification, actuation, communication, and management

(Sebastian and Ray, 2015a). Fig. 1. presents these functional
blocks as described below.

� Device: An IoT system is based on devices that provide
sensing, actuation, control, and monitoring activities. IoT
devices can exchange data with other connected devices
and application, or collect data from other devices and pro-

cess the data either locally or send the data to centralized
servers or cloud based applications back-ends for process-
ing the data, or perform some tasks locally and other tasks

within IoT infrastructure based on temporal and space con-
straints (i.e. memory, processing capabilities, communica-
tion latencies, and speeds, and deadlines). An IoT device

may consist of several interfaces for communications to
other devices, both wired and wireless. These include (i) I/
O interfaces for sensors, (ii) interfaces for Internet connec-

tivity, (iii) memory and storage interfaces, and (iv) audio/
video interfaces. IoT devices can also be of varied types,
for instance, wearable sensors, smart watches, LED lights,
automobiles and industrial machines. Almost all IoT
ctures. Journal of King Saud University – Computer and Information Sciences
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Table 2 Comparison of the existing communication technologies.

Parameters WiFi WiMAX LR-WPAN Mobile

communication

Bluetooth LoRa

Standard IEEE 802.11 a/c/b/

d/g/n

IEEE 802.16 IEEE 802.15.4

(ZigBee)

2G-GSM, CDMA

3G-UMTS,

CDMA2000

4G-LTE

IEEE

802.15.1

LoRaWAN

R1.0

Frequency band 5–60 GHz 2–66 GHz 868/915 MHz,

2.4 GHz

865 MHz, 2.4 GHz 2.4 GHz 868/900 MHz

Data rate 1 Mb/s–6.75 Gb/s 1 Mb/s–1 Gb/s

(Fixed)

50–100 Mb/s

(mobile)

40–250 Kb/s 2G: 50–100 kb/s

3G: 200 kb/s

4G: 0.1–1 Gb/s

1–24 Mb/s 0.3–50 Kb/s

Transmission

range

20–100 m <50Km 10–20 m Entire cellular area 8–10 m <30 Km

Energy

consumption

High Medium Low Medium Bluetooth:

Medium

BLE: Very

Low

Very Low

Cost High High Low Medium Low High
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devices generate data in some form of the other which when

processed by data analytics systems generate leads to useful
information to guide further actions locally or remotely,
For instance, sensor data generated by a soil moisture mon-
itoring device in a garden, when processed can help in deter-

mining the optimum watering schedules.
� Communication: The communication block performs the
communication between devices and remote servers. IoT

communication protocols generally work in data link layer,
network layer, transport layer, and application layer.

� Services: An IoT system serves various types of functions

such as services for device modeling, device control, data
publishing, data analytics, and device discovery.

� Management: Management block provides different func-

tions to govern an IoT system to seek the underlying gover-
nance of IoT system.

� Security: Security functional block secures the IoT system
by providing functions such as, authentication, authoriza-

tion, privacy, message integrity, content integrity, and data
security.

� Application: Application layer is the most important in

terms of users as it acts as an interface that provides neces-
sary modules to control, and monitor various aspects of the
IoT system. Applications allow users to visualize, and ana-

lyze the system status at present stage of action, sometimes
prediction of futuristic prospects.

1.2. Utilities of IoT

IoT may be characterized as the holder of key utility factors as
given below (Sebastian and Ray, 2015a).

(1) Dynamic and self adapting: IoT devices and systems
should have the capability to dynamically adapt with

the changing contexts and take actions based on their
operating conditions, user’s context, or sensed environ-
ment. For example, consider a surveillance system com-

prising of a number of surveillance cameras. The
surveillance cameras can adapt their modes (to normal
Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
(2016), http://dx.doi.org/10.1016/j.jksuci.2016.10.003
or infra-red night modes) based on whether it is day

or night. Cameras could switch from lower resolution
to higher resolution modes when any motion is detected
and alert nearby cameras to do the same. In this exam-
ple, the surveillance system is adapting itself based on

the context and changing (e.g., dynamic) conditions.
(2) Self-configuring: IoT devices may have self-configuring

capability, allowing a large number of devices to work

together to provide certain functionality (such as
weather monitoring). These devices have the ability to
configure themselves (in association with IoT infrastruc-

ture), setup the networking, and fetch latest software
upgrades with minimal manual or user intervention.

(3) Interoperable communication protocols: IoT devices

may support a number of interoperable communication
protocols and can communicate with other devices and
also with the infrastructure.

(4) Unique identity: Each of IoT device has a unique iden-

tity and unique identifier (such as IP address or URI).
IoT systems may have intelligent interfaces which adapt
based on the context, allow communicating with users

and environmental contexts. IoT device interfaces allow
users to query the devices, monitor their status, and con-
trol them remotely, in association with the control, con-

figuration and management infrastructure.
(5) Integrated into information network: IoT devices are

usually integrated into the information network that
allows them to communicate and exchange data with

other devices and systems. IoT devices can be dynami-
cally discovered in the network, by other devices and/
or network, and have the capability to describe them-

selves (and their characteristics) to other devices or user
applications. For example, a weather monitoring node
can describe its monitoring capabilities to another con-

nected node so that they can communicate and exchange
data. Integration into the information network helps in
making IoT systems ”smarter” due to the collective

intelligence of the individual devices in collaboration
with the infrastructure. Thus, the data from a large num-
ber of concerned weather monitoring IoT nodes can be
aggregated and analyzed to predict the weather.
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Table 3 Comparison of the IoT cloud platforms may be used for agricultural domains: a case study.

IoT cloud platforms Real time

data capture

Data visualization Cloud

service Type

Data

analytics

Developer cost

Xively (https://xively.com/) Yes Yes Public (IoTaaS) No Free

ThingSpeak (https://thingspeak.com/) Yes Yes (Matlab) Public Yes Free

Plotly (https://plot.ly/) Yes Yes (IPython,

Matlab, Rstudio)

Public Yes Free

Carriots (https://www.carriots.com/) Yes Yes Private (PaaS) No Limited up to: 10 devices

Exosite (https://exosite.com/) Yes Yes IoTSaaS Yes 2 devices

GroveStreams (https://grovestreams.com/) Yes Yes Private Yes Limited up to:

20 stream, 10,000

transaction, 5 SMS, 500 Email

ThingWorx (www:thingworx.com/) Yes Yes Private (IaaS) Yes Pay per use

Nimbits (www.nimbits.com/) Yes Yes Hybrid No Free

Connecterra (www.Connecterra.io/) Yes Yes Private Yes Pay per use

Axeda (www.axeda.com) Yes Yes Private Yes Pay per use

Yaler (https://yaler.net) Yes Yes Private (CaaS) Yes Pay per use

AMEE (www.amee.com) Yes Yes Private Yes Pay per use

Aekessa (www.arkessa.com) Yes Yes Private (CaaS) Yes Pay per use

Paraimpu (https://www.paraimpu.com/) Yes Yes Hybrid No Limited up to: 4 things,

500 data items/thing

Phytech (http://www.phytech.com/) Yes Yes Private Yes Pay per use

Application Domains of IoT 
Cloud Platforms

Application
Development

Deployment
Management

Visualization
System

Management

Device 
ManagementResearch

Heterogeneity
Management

Monitoring
Management

Data Management

Analytics

Figure 2 Application domains of IoT cloud platforms.
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(6) Context-awareness: Based on the sensed informa-

tion about the physical and environmental parame-
ters, the sensor nodes gain knowledge about the
surrounding context. The decisions that the sensor

nodes take thereafter are context-aware (Yang et al.,
2014).
Please cite this article in press as: Ray, P.P. A survey on Internet of Things archite
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(7) Intelligent decision making capability: IoT multi-hop in

nature. In a large area, this feature enhances the energy
efficiency of the overall network, and hence, the network
lifetime increases. Using this feature, multiple sensor

nodes collaborate among themselves, and collectively
take the final decision.
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1.3. IoT supported technologies

This section discusses various IoT technologies such as, hard-
ware platforms, and wireless communication technologies used
in different agricultural applications. Different IoT cloud ser-

vice providers that are being popularly used in current market
are also studied.

1.4. Hard ware platforms

Table 1 presents the existing hardware platforms classified
according to key parameters such as: Processor, GPU, Operat-
ing Voltage, Clock Speed, Bus Width, System Memory, Flash

Memory, EEPROM, Communication Supported, Develop-
ment Environments, Programming Language, and I/O Con-
nectivity. The comparative study shows how these platforms

are encouraging the growth of IoT by utilizing constraint
behavior.

1.5. Wireless communication standards

Communication Protocols form the backbone of IoT systems
and enable network connectivity and coupling to applications.
Communication protocols allow devices to exchange data over

the network. The protocols define the data exchange formats,
data encoding, addressing schemes for devices and routing of
packets from source to destination. Other functions of the pro-

tocols include sequence control, flow control, and retransmis-
sion of lost packets. Table 2 compares different wireless
communication technologies with respect to various

parameters.

1.5.1. 802.11 – WiFi

IEEE 802.11 is a collection of Wireless Local Area Network

(WLAN) communication standards. For example, 802.11a
operates in the 5 GHz band, 802.11b and 802.11 g operate in
the 2.4 GHz band, 802.11n operates in the 2.4/5 GHz bands,

802.11ac operates in the 5 GHz band and 802.11ad operates
in the 60 GHz band. Theses standards provide data rates from
1 Mb/s to 6.75 Gb/s. WiFi provides communication range in
the order of 20 m (indoor) to 100 m (outdoor).

1.5.2. 802.16 – WiMax

IEEE 802.16 is a collection of wireless broadband standards.

WiMAX (Worldwide Interoperability for Microwave Access)
standards provide data rates from 1.5 Mb/s to 1 Gb/s. The
recent update (802.16 m) provides data rate of 100 Mb/s for
mobile stations and 1 Gb/s for fixed stations. The specifica-

tions are readily available on the IEEE 802.16 working group
website (IEEE 802.16, 2014).

1.5.3. 802.15.4 – LR-WPAN

IEEE 802.15.4 is a collection of Low-Rate Wireless Personal
Area Networks (LR-WPAN) standards. These standards form
the basis of specifications for high level communications proto-

cols such as ZigBee. LR-WPAN standards provide data rates
from 40 Kb/s to 250 Kb/s. These standards provide low-cost
and low-speed communication to power constrained devices.

It operates at 868/915 MHz and 2.4 GHz frequencies at low
and high data rates, respectively. The specifications of
Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
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802.15.4 standards are available on the IEEE802.15 working
group website (IEEE 802.15, 2014).

1.5.4. 2G/3G/4G – mobile communication

There are different generations of mobile communication stan-
dards including second generation (2G including GSM and
CDMA), third generation (3G-including UMTS ad

CDMA2000) and fourth generation (4G-including LTE). IoT
devices based on these standards can communicate over cellu-
lar networks. Data rates for these standards range from

9.6 Kb/s (2G) to 100 Mb/s (4G) and are available from the
3GPP websites.

1.5.5. 802.15.1 – BlueTooth

Bluetooth is based on the IEEE 802.15.1 standard. It is a low
power, low cost wireless communication technology suitable
for data transmission between mobile devices over a short

range (8–10 m). The Bluetooth standard defines a personal
area network (PAN) communication. It operates in 2.4 GHz
band. The data rate in various versions of the Bluetooth ranges

from 1 Mb/s to 24 Mb/s. The ultra low power, low cost version
of this standard is named as Bluetooth Low Energy (BLE or
Bluetooth Smart). Earlier, in 2010 BLE was merged with Blue-

tooth standard v4.0.

1.5.6. LoRaWAN R1.0 – LoRa

LoRaWAN is a recently developed long range communication

protocol designed by the LoRaTM Alliance which is an open
and non-profit association. It defines Low Power Wide Area
Networks (LPWAN) standard to enable IoT. Mainly its aim
is to guarantee interoperability between various operators in

one open global standard. LoRaWAN data rates range from
0.3 kb/s to 50 kb/s. LoRa operates in 868 and 900 MHz ISM
bands. According to Postscapes, LoRa communicates between

the connected nodes within 20 miles range, in unobstructed
environments. Battery life for the attached node is normally
very long, up to 10 years.

1.6. Cloud solutions

IoT cloud solutions pave the facilities like real time data cap-

ture, visualization, data analytics, decision making, and device
management related tasks through remote cloud servers while
implying ‘‘pay-as-you-go” notion. Various cloud service provi-
ders are gradually becoming popular in the several application

domains such as agriculture. Table 3 presents comparative
study between agriculture specific IoT cloud service providers
as a case study. Following sub section describes how IoT

clouds may be placed appropriately according to their applica-
bility in several domains of importance.

1.7. Application domains

IoT cloud platforms are designed to be meant for particular
application specific domains such as, application develop-

ment, device management, system management, heterogeneity
management, data management, analytics, deployment, mon-
itoring, visualization, and finally research purpose (see
Fig. 2). It is obvious that there are many more platforms cur-

rently present in the market, most popular 26 of these are
tures. Journal of King Saud University – Computer and Information Sciences
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IoT Domain Tree
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Figure 3 Application domains of IoT cloud platforms.
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chosen. Further, based on applicability and suitability prefer-
ences in several domains the IoT cloud platforms have been

revisited. 10 different domains are selected based on which
most of IoT cloud platforms are currently evolving into the
IT market. Management wise few technological sectors are

envisioned where these platforms do best fit into such as:
Device, System, Heterogeneity, Data, Deployment, and
Monitoring. Similarly, Analytics, Research and Visualization

fields are chosen where rest of the platforms may be
accommodated.
Please cite this article in press as: Ray, P.P. A survey on Internet of Things archite
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1.8. Contributions

The exponential growth of low cost mobile devices and MEMS
technology have pushed up the growth of IoT and allied tech-

nologies in a multitude form. It is expected that actual repre-
sentation of IoT is going to blink around 2025. The
graphical notion representing the growth is devised by Interna-
tional Telecommunication Union (ITU) on its meeting held in

March, 2015 in Geneva. The full fledged exploration of
wearable technology, cognitive computing, and artificial
ctures. Journal of King Saud University – Computer and Information Sciences
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intelligence seem to come very later on the graph, presented in
this occasion.

Available architectures explore multiple opportunities to

seek the advantageous part of IoT while encouraging the
developer and user groups to get application specific solutions.
But, the central issue of these architectures is the lack of full

interoperability of interconnected things in abstraction level.
This leads to invoke many proclaimed problems, such as:
degraded smartness of high degree, less adaptability, limited

anonymity, poor behavior of the system, reduced trust, pri-
vacy, and security. IoT architectures do pose several network
oriented problems due to its limitation of homogeneity
approach. Several institutions, standardization bodies, and

researchers are currently engaged with the development of
bringing uniformity in the architectures to fulfill the required
technological needs. This paper presents a precise picture of

the present state-of-the-art in the IoT architectures based on
129 research papers selected for this purpose. More specifi-
cally, this article:

– Educates the reader with a state-of-the-art description of
domain specific IoT architectures;

– Presents the trends in several sectors of practices;
– Identifies research problems that researchers shall face in
near future;

– Provides future directions.

The remainder of the paper is organized as follows. Sec-
tion 2 presents domain specific state-of-the-art in IoT. Section 3

presents the open research issues associated to IoT architec-
tures and futuristic road map showing Io<*> (Internet of
*) concept, on which researchers should focus more in near

future.
2. Survey on domain specific IoT architectures

This section prescribes the works done so far by the scientists
around the globe (Intel research). Various domain specific
architectures based on the broad areas, such as: RFID

(Marrocco et al., 2009), service oriented architecture, wireless
sensor network, supply chain management, industry, health-
care, smart city, logistics, connected living, big data, cloud
computing, social computing, and security are described in this

section. The selection of theses domains depends upon current
scenario of IoT applicability. It is has been tried to incorporate
as much directions into this article, but due to the size con-

straints, present limitations have been made. The key method-
ology behind the survey depends on few factors of importance
where earlier mentioned domains are deeply investigated based

on their respective sub domains. This survey is performed to
evaluate a number of segregated sub domains to gain and pro-
vide significant knowledge on the following: architectural
structure, applicability, associativity, deployability, and incor-

poration measure. A precise, concrete and concise conclusion
is made at the end of this article based on the surveyed percep-
tion. The overall method behind the survey describes how IoT

is applied to the sub domains using particular architectures.
Fig. 3 presents the domain tree showing all its leaves as sub
domains.
Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
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2.1. RFID

2.1.1. EPC

The term ‘‘IoT” was initially proposed to refer to uniquely

identifiable interoperable connected objects with Radio-
Frequency IDentification (RFID) technology (Ashton, 2009).
Later on researchers did relate IoT with other technologies,
such as: sensors, actuators, GPS devices, and mobile devices.

The ‘‘thing” oriented approach of the IoT is in fact attributed
by the Auto-ID Labs in early 2000s where IoT has got its orig-
inal shape. Since its inception, Auto-ID along with EPCglobal

targeted to architect the actual model of the IoT. These insti-
tutions have normally focused their works on the development
of the Electronic Product CodeTM (EPC) to necessitate and sup-

port the wide spread usage of RFID tags in modern trading
network. Industry driven standard such as the EPCglobal Net-
workTM is the outcome of this business. The primary purpose of
this kind of industry standard is mainly to get well designed so

as to have improvement over the object visibility particularly
the location and status aware objects. This is obviously not
only the single button of the shirt but from a larger point of

view, IoT should not be an infrastructure where an EPC sys-
tem shall persist just containing RFIDs as the only devices;
these are only the tip of the burg, the complete story lies far

away!

2.1.2. uID

Unique/Universal/Ubiquitous IDentifier (uID) architecture is

another alternative in IoT, the central idea of which is just
the incorporation and development of middleware aware
(Issarny et al., 2011) deliverables. As per my intervention,

the RFID based item traceability as well as addressability is
not the notion of the IoT, further it should pave more stringent
tasks in case of different objects (Sakamura, 2006).

2.1.3. NFC and other technologies

As per Presser and Gluhak (2009), it has been perceived that
the RFID still holds the driving force for IoT. Due to low cost

and small size, RFID has dominated the marketing strategy
since its origin. However, the authors state that huge pool of
heterogeneous devices and network protocols will soon cover
up the IoT. As of them, Near Field Communications (NFC),

Wireless Sensor and Actuator Networks (WSAN), Wireless
Identification and Sensing Platforms (WISP), and RFID
together will show a new horizon toward IoT. A United

Nations (UN) report has recently informed the fact that man-
kind is approaching toward a new decade of RFID enabled
ubiquitous systems where human being shall be dwarfed by

internet oriented objects as they are going to be the majority
in number (Botterman, 2009).

Appropriate IoT based modeling may solve the situation by

storing and communicating in valuable ways (Toma et al.,
2009). In this context, RFID readers and tags (Finkenzeller,
2003) shall consist of new holistic system where each tag
may be characterized by a unique identity. These forms of tags

are appropriate for monitoring of cattle in far house and for
personification of man. RFID reader broadcasts a signal into
its periphery that activates the nearby tags to reply using its

unique key. Real-time information passing may help in
tures. Journal of King Saud University – Computer and Information Sciences
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implementation of rigorous stratification between objects of
interest (Kos et al., 2012). RFID tag acts as an ID of concern
device where it is attached in form of an adhesive sticker (Jules,

2006). Smaller versions of RFID tags are being currently
produced by many manufacturers. Hitachi has developed the
smallest version of RFID tag as: 0.15 mm � 0.15 mm � 7.5 lm
in dimension recently.

2.1.4. Beyond RFID

Consortium of CASAGRAS has envisaged the concept of IoT

to go beyond the concept of RFID in future. As per their pub-
lished report, things could benefit human being if they are sub-
merged with networks while allowing communicating with

other digital devices in the world. CASAGRAS consortium
strongly believes in two statements: (a) IoT connects physical
and/or virtual objects, and (b) proliferation of IoT into tradi-

tional networking systems (Dunkels and Vasseur, 2008). At
this point, I apprehend their thought about IoT which shall
become an institution which shall perform autonomous ser-
vices by capturing data from interoperable and transparent

networking media. Authors of Broll et al. (2009) propose to
integrate NFC around the posters or panels, which provide
valuable information about the description, cost, and schedule

about transportation system to induce digital marker with help
of mobile phones by knowing the facts, such as: ticket avail-
ability, seat availability, real-time stoppage information etc.

RFID enablement is a keen component of IoT invasion.
Which is seconded by Zhangm et al. (2011), that presents
RFID based EPC network enabled Representational State

Transferful (RESTful) i.e., software architecture for dis-
tributed hypermedia systems, IoT platform architecture to val-
idate the usage of REST in IoT domain.

2.2. Service oriented architecture

Service oriented architecture (SOA) is an approach which is
used to create architecture based on the use of system services.
Figure 4 Stratification in

Please cite this article in press as: Ray, P.P. A survey on Internet of Things archite
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The inbuilt SoA approach is currently being invoked in IoT
domain, utilizing the concept of middleware i.e., a software
layer superimposed between application and technology layer

which hides the unnecessary pertinent details from the devel-
oped hence reducing the time of product development, helping
the design workflow be simpler to ease the process of market-

ing the commercial outcomes in short time duration (Deugd
et al., 2006).

2.2.1. RFID Involvement

Researchers have developed an RFID-SN i.e., RFID enabled
Sensor Network, Buettner et al. (2008) comprising of RFID
tag, reader, and computer system for understanding system

behavior. Fosstrak one has developed a novel RFID related
application based on SoA management (Foss track). Scientists
have proposed an EPC network (Floerkemeier et al., 2007)

configured RFID reader based system by catering multiple
data related services on its application layer e.g., aggregation,
filtering, lookup and directory service, tag identifier manage-
ment, and privacy, utilizing the SoA paradigm.

2.2.2. Middleware enablement

A RFID based 3 layered middleware architecture relies on

three associative functionalities such as: tag association, the
place association, and the antenna association with user
(Welbourne et al., 2009). A holistic IoT architecture is pro-
posed that consists of heterogeneous devices, Embedded Inter-

net Systems (EIS), standard communication protocols, and
SoA paradigm which utilizes the CoAP protocol and standard
services by enabling the exchange of sensor data with an IoT

based cloud and a private cloud, while disseminating web
based human–machine interface for configuration, monitoring
and visualization of structured sensor data (Pereira et al.,

2013). The INOX platform (Clayman and Galis, 2011) advo-
cates similar approach which consists of three layers, such
as: (a) Service layer – supports and contains the services using
APIs, (b) Platform layer – contains necessary management and
the USP architecture.
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Figure 5 Home Health Hub IoT (H3IoT) platform.
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orchestration to deploy services and the virtualization tech-
nologies enriching hardware layer; and (c) Hardware layer –
contains of sensors and smart objects. Article (Pasley, 2005)

advocates to reuse inbuilt techniques while composing of hard-
ware and software together at the time of implementing a SoA
in the concern setup. A common linkage between the SoA and

a middleware has been proposed with an integrated architec-
tural approach, leveraging the advantages of the SoA through
enhancement of device functionality, communications, and

integrated services (Spiess et al., 2009). An SoA based 5 lay-
ered IoT-middleware architecture is shown in Buckl et al.
(2009), where objects do lie at the bottom and the object
abstraction, service management (provides services like:

dynamic discovery, status monitoring, and service configura-
tion of the objects. Semantic (Wahlster, 2008; Vázquez,
2009) operations such as: QoS, lock, police and context man-

agement are also performed (Hydra Middleware Project), ser-
vice composition and application layers are placed just
consecutive above of each other. Furthermore a domotic

infrastructure which is based on SoA oriented IoT, is devel-
oped in the literature where sensor and actuator based auto-
matic energy consumption logic has been implied. In this

perspective, the authors of Spiess et al. (2009) and Buckl
et al. (2009) have used two advanced computer languages, such
as: Business Process Execution Language (BPEL) (defined as:
business processes that interact with external entities through

Web Service operations (Web Service Definition Language
(WSDL)) (OASIS)) and Jolie (target application, specific set
of objects or limited geographical scenario) to implement the

SoA enabled middleware.

2.3. Wireless Sensor Network

Wireless Sensor Network (WSN) (Xia, 2009; Yaacoub et al.,
2012) is one of the key parts of IoT system. It consists of a
finite number of sensor nodes (mote) mastered by a special

purpose node (sink) by employing multi layered protocols
organization (Akyildiz et al., 2002). Primarily energy effi-
ciency, scalability, reliability, and robustness etc. parameters
are sought when designing a WSN powered system.

2.3.1. Systems

Mostly used WSN systems do incorporate IEEE 802.15.4 pro-
tocol for provisioning Wireless Personal Area Networks

(WPAN) for communication purpose (IEEE 802.15). The
top layers of inbuilt protocol stacks do necessitate IPv6
addressing facility to enhance the controlling ability of vast

number of nodes, while increasing the size of the payload in
transmitted packets along with maximized lazy time (sleep)
of nodes. It has already been demonstrated by Duquennoy

et al. (2009), that implements embedded TCP/IP stacks into
the objects e.g., TinyTCP, mIP, and IwIP, which in turn trans-
mits information to a remote server through proxy like inter-

face by employing web sockets.

2.3.2. Environment monitoring

The e-SENSE project has employed a WSN by a 3 layered log-

ical approach to provide intelligent support to the user group
by application, middleware, and connective measures (Arsénio
et al., 2014). UbiSec&Sens is another example of WSN based

supportive system which is similar to the e-SENSE but security
Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
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layer is added as extra on top of it. Functional design and
implementation of a complete WSN platform can be used
for monitoring of long-term environmental monitoring based

IoT applications (Lazarescu, 2013). The objectives of this
design satisfy numerous parameters, such as: cheap structure,
enablement of pool of sensors, fast deployment, longevity of

device, less maintenance, and high Quality of Service. WSN
based application has been devised on agriculture and forestry
where IoT plays a key role (Bo and Wang, 2011). An architec-

tural design across the middleware, hardware, and network
layer results in a unique WSN platform – ‘‘Sprouts”, which
is versatile, open source, and multi-standard in nature
(Kouche, 2012). Studies have found the challenges related to

the usage of mobile phones as spontaneous gateways of WSNs
in IoT systems, by showing the usage of a name-based Future
Internet Architecture (FIA), while delivering the information of

a temperature sensor data from an Android phone directly to
multiple applications via in-network multicast over the same
network test bed (Li et al., 2013).

2.3.3. Infrastructure Monitoring

IoT based dam safety application – Tailings Dam Monitoring
and Pre-alarm System – (TDMPAS) has been developed and

implemented which incorporates cloud services to accomplish
with the real-time monitoring of the saturated water line, water
level and dam deformation (Enji et al., 2012). TDMPAS helps

the engineers to acquire cautious alarm information remotely,
prior to actual accident which would have been occurred. Uni-
fied Sensing Platform (USP) (Gazis et al., 2013) has been

designed as the blueprint of what enables the seamless integra-
tion of multi-dissimilar objects and their efficient use by effi-
cient, reusable and context aware way. Authors also present
tures. Journal of King Saud University – Computer and Information Sciences
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the 3 layered (distribution middleware, USP, and application)
USP architecture (see Fig. 4) which stratifies publish/sub-
scribe, message queues, data distribution services etc., through

data and sensor based USP layer. Sensor and resource frame-
works perform sensor oriented usage and control operations
by efficient resource management catering contextual observa-

tion toward various top level applications.

2.3.4. Agriculture

Agriculture based IoT is envisaged by developing a prototype

platform (Zhao et al., 2010) that controls network information
integration to study the actual situation of agricultural produc-
tion while operating from a remote location. This study

employs WSN as the backbone of the implementation. A
recent work has proposed a 6 layered agriculture architecture
that incorporates WSN as a subsidiary element to enhance

multi-culture analysis, user experience, and predictive analysis
(Ray, 2015a).

2.3.5. Aquaculture

An IoT based aquaculture while providing real-time informa-
tion system called ‘‘E-Nose” has been developed to pursue the
information of water quality via mobile internet and WSN to

the users. The system performs forecasting of the change of the
trend of water quality based collected data (Ma et al., 2012).

2.3.6. Distributed sensor network

Emergent Distributed Bio-Organization (EDBO) model is con-
ceived to harness emergent phenomena in Artificial Distributed
Systems (ADS) (Eleftherakis et al., 2015). EDBO nodes are
represented by agents – ‘‘BioBots” which use two-way rela-

tionships to form an overlay network. Each BioBot is capable
to handle a limited number of relationships to other BioBots in
an autonomous environment. BioBot serves as a wrapper for

abstracting, data, functionality, and services based on user
queries. It facilitates the propagation of queries through the
network in an autonomous manner where its behavior is based

on several bio-inspired heuristic mechanisms that helps to par-
ticipate in decision making. The architecture leverages the
combination of multiple BioBot empowered by cyber physical

system (CPS) nodes positioned in distributed locations. Users
can invoke their requests upon the EDBO which is then pro-
cessed by collective decisions made by the BioBot with inter-
vention of CPS nodes.

2.4. Supply Chain Management and industry

Supply Chain Management (SCM) may be defined as the flow

of goods and services while including the movement and stor-
age of raw materials, work-in-process inventory, and finished
goods from point of origin to point of consumption.

2.4.1. SoA, RFID, and NFC Integration

SCM related visionary works (Yuan et al., 2007; Dada and
Thiesse, 2008) incorporating SoA architecture have been per-

formed where sensor based applications are made in the field
of supply chain market providing the quality based perishables
items in smarter way. Metro has implemented a commodity

based retail support to the customers by integrating RFID
technology on top of SoA enabled SCM (METRO Group
Please cite this article in press as: Ray, P.P. A survey on Internet of Things archite
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Future Store Initiative). Research has been started to gain
real-time access in SCM empowered ERP systems by involving
RFID based NFC solutions (Karpischek et al., 2009). An IoT

based real-time sharing architecture for manufacturing indus-
try has been proposed which includes SCM as the central
building block (Sun et al., 2011). For instance, Sun et al.

(2011) is an IoT based warehouse inventory and SCM infor-
mation sharing platform system that includes: RFID based
storage, position and handheld readers, RFID tags, and simi-

lar kind of devices. Supplier, manufacturer, and dealer infor-
mation oriented servers communicate with loading and
inventory workers through the pre-installed database system
which occupies the central position in the devised system. A

3 layered (such as: perception layer, network layer, and service
layer) IoT based e-commerce architecture is devised to con-
sider active, personalized, and intelligent features to dissemi-

nate the user’s need and services (Shang et al., 2012). Article
Ilic et al. (2009) presents the impact analysis about the efficient
Supply Chain Management over the cost of perishable goods

at retail. The authors have investigated a novel way to lower
down the carbon foot prints in retails by inclusion of sensor
based systems into the perishables goods.

2.4.2. SCM as service

IoT Mashup-as-a-Service (IoTMaaS) (Janggwan et al., 2013) is
proposed to comply with heterogeneity of devices by obliging

the model driven architecture facilitating SCM for the purpose
of making harmony with stakeholders like end users, device
manufacturers, and cloud computing providers (Guinard and

Vlad, 2009). EPC global object service oriented Resource Name
Service (RNS) (Tian et al., 2012) platform provides equitable
name service for the IoT employing resource locating service,
auxiliary authentication service, and anti-counterfeiting service

to enhance open loop information sharing between numerous
IoT components in industry and related applications, espe-
cially for SCM framework. Business Operation Support Plat-

forms (BOSP) have been developed which focuses on carriers
that play lead role in IoT industry chain. The given 3 layered
architecture is made of access layer, devices management layer,

and ability formation layer; fulfilling the technicalities such as
multi network, device control, application specific jobs orienta-
tion to the system (Xiaocong and Jidong, 2010).

2.5. Health care

Recently, smart healthcare system development and dissemi-
nation has become possible by the convergence of various

IoT architectures.

2.5.1. Home health care

Authors have proposed iHome Health-IoT platform for in-

home health care services based on the IoT; illustrating a 3 lay-
ered open-platform based intelligent medicine box (iMedBox)
to pursue various medical facilities integrated with sensors,

devices, and communicate by means of WAN, GPRS, and/or
3G (Yang et al., 2014). Services like intelligent pharmaceutical
packaging (iMedPack) is enabled by RFID and actuation

capability which are enabled by functional materials, flexible,
and wearable bio-medical sensor device (Bio-Patch). Bio-
Patch takes decision when to call remote physician, emergency

center, hospital, test clinic, and supply chain medicine retailers.
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Figure 6 M2M-based distributed architecture.
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Sebastian and Ray (2015a) presents a novel IoT based archi-
tecture for finding home health status by informing residents
the critical notions of the house. Few frameworks monitor

health of elderly people by utilizing standardized technologies
is presented (Ray, 2014a,b).

Sebastian and Ray (2015b) elaborates the architecture of

IoT in sports especially based on soccer where heath care is
given the most priority. Model driven tree and generalized
domain model architectures are consecutively appeared in

Ray et al. (2013) and Rai et al. (2013) to solve heath and
related issues in real life.

Home Health Hub Internet of Things (H3IoT) is designed

to disseminate the health care of elderly people at home (see
Fig. 5) (Ray, 2014a). It is a 5-layered approach (i.e. Physiolog-
ical Sensing Layer (PSL), Local Communication Layer (LCL),
Information Processing Layer (IPL), Internet Application

Layer (IAL), and User Application Layer (UAL)) to assess
and monitor the physiological changes of elderly and take sub-
sequent actions for further health check up by doctor and acre

givers.

2.5.2. e-Health

A privacy preservation framework (Ukil et al., 2012) provides

a negotiation based architecture to find a solution for
utility-privacy trade-off in IoT data management, especially
in e-health domain. Authors also report on the usage of the

MB2 abstractions and how the implementation needs to be
evolved over time to the current design to tackle with health
issues (Blackstock et al., 2010).
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2.5.3. m-Health

An amalgamated concept of Internet of m-health Things (m-

IoT) is provided by introducing the 4G based health applica-
tions for non-invasive glucose level sensing with advanced
opto-physiological assessment technique and diabetes manage-

ment (Istepanian et al., 2011).

2.5.4. Ubiquitous health

Investigation toward a semantic data model to store and inter-

pret IoT data on a resource-based data accessing method
(UDA-IoT), to acquire and process medical data ubiquitously
to improve the accessibility to IoT data resources have been

made (Boyi et al., 2014). The presented concept is studied
around the emergency medical services scenario. Various paths
for conjugation between cloud computing and IoT for efficient

managing and processing of sensor data by wearable health
care sensors are in practice that demonstrates IoT application
on pervasive health care (Doukas and Maglogiannis, 2012).

2.5.5. Hospital management

IoT based architecture (Yu et al., 2012) of smart hospital is
implemented to improve efficacy of present hospital informa-

tion system, such as: fixed information point, inflexible net-
working mode, and related parameters. Automating Design
Methodology (ADM) system for smart rehabilitation of old
age population is devised by a group of researchers (Fan

et al., 2014). Such kind of ontology based platform creates a
rehabilitation strategy and reconfigures the medical resources
tures. Journal of King Saud University – Computer and Information Sciences
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according to patients’ specific requirements quickly and
automatically.

2.5.6. WSN integration

A WSN based remote identification system has been designed
using the Android Study of Internet of Things (HCIOT) plat-
form in ‘‘Community Health” to employ the concept of IoT

together with an improved Particle Swarm Optimization
(PSO) method to efficiently enhance physiological multi-
sensors data fusion measurement precision (Sung and

Chiang, 2012).

2.6. Smart Society

Present world can be molded into a well connected smart soci-
ety by leveraging innovative architectural concepts of IoT.
This section unfolds the research works performed to carry

the world into a smart place to live through smart city, devel-
oped logistics and smart living formulations.

2.6.1. Road condition monitoring

Road condition monitoring and alert generation (Ghose et al.,
2012) has been done using the in-vehicle Smartphone as con-
nected sensors, to an IoT platform, while providing a novel e

nergy-efficient-phone-orientation-agnostic accelerometer ana-
lytics in phone authentic road condition mapping employing
privacy concern. At the same time, the HyperCat IoT catalog
specification (Blackstock and Lea, 2014) is prescribed as the

tool to adapt an IoT platform by providing an IoT hub
focused on the highways industry called ‘‘Smart Streets” which
paves a new dimension to set an interoperable IoT ecosystem

in near future.

2.6.2. Traffic management

Investigations have been conformed (Foschini et al., 2011) to

seek the possibility of implementing Machine-to-Machine
(M2M) solutions in the field of road traffic management that
integrates IP Multimedia Subsystem (IMS) i.e., it realizes the

advanced service management platforms able to integrate dif-
ferent infrastructures and service components according to
specific application domain requirements, based service infras-

tructure. Vehicular network using IoT based middleware
(Wang et al., 2011) has been introduced to efficiently manage
on road vehicles.

2.6.3. Municipal involvement

A 3 layered M2M-based management platform (see Fig. 6)
based distributed architecture is proposed for municipality

application domain (Foschini et al., 2011). Authors have truly
utilized numerous terms to mention the architecture, such as:
GIMF: Geospatial information management framework,
Web UI: Web user interface, BAC: Bollard authorization com-

ponent, IMS PS: IMS presence server, IMS P-/I-/S-CSCF:
IMS proxy-/interrogating-/serving-call session control func-
tion, BN: Base node, SGSN: Serving GPRS support node,

BACC: Bollard actuator control component, WS: Web ser-
vices, BDC: Bollard diagnosis component, IMS AS: IMS
application server, HSS: Home subscriber server, GGSN:

Gateway GPRS support node, and DP: Diagnosis procedure.
Device, network and application layers cumulate the overall
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concept behind their approach. Session Initiation Protocol
(SIP) (extensions specified by the Internet Engineering Task
Force (IETF) and 3GPP IMS-related standards) controls the

IMS client as the session control endpoint, and participates
in session setup and management.

2.6.4. Link data for society

Peer focus has been kept on the communication and network-
ing aspects of the devices that are used for sensing and mea-
surement of the real world objects (De et al., 2012; Kortuem

et al., 2010). The presented semantically modeled linked data
architecture performs the connectivity between IoT instances
of objects to the web resources which supports the publication

of extensible and interoperable descriptions in the form of
linked data.

2.6.5. Smart city

A smart city experiment (Sancheza et al., 2014) describes the
deployment and experimentation architecture of the large scale
IoT experimentation at the ‘‘Santander city”. The same has

been presented as a three-tier architecture consisting of an
IoT device tier, an IoT gateway (GW) tier and server tier to
facilitate the SmartSantander infrastructure. The IoT node tier

consisting of IoT devices with less resource, less processing
power and less power consumable capability. The IoT gateway
node tier links the IoT devices at the edges of the network to a
core network infrastructure in a remotely programmable man-

ner. The devices in this layer are more resource oriented but
lesser than the server layer. The server tier hosts data reposi-
tory functionality. This layer is most powerful of all three, in

terms of heavy computing machineries, capability for real
world data mining, knowledge engineering, and visualization
in cloud infrastructure.

An evaluation framework for IoT platforms has recently
been devised by using the publicly available information about
the platforms’ features and supporting services for smart city
(Mazhelis and Tyrvainen, 2014). To enable the implementation

of a generalized smart city solution, an M2 M communication
platform is addressed to comply with the requirements and
design aspects of a reference as an enabler for Smart Cities

(Elmangoush et al., 2013). An IoT centric novel model of
smart city has been introduced (Ganche et al., 2013) where a
top-down architectural principle is followed to mandate the

overall uniformity. A recent publication introduces a federated
Smart City Platform (SCP) developed in the context of the
ALMANAC FP7 EU project. The article further discusses

on the lessons learned during their initial experimental applica-
tion of the SCP to a smart waste management scenario in a
European city (Bonino et al., 2015). The ALMANAC SCP is
aimed at integrating IoT, capillary networks, and metro access

to deliver smart services to the citizens of the subject area. The
key element of the employed SCP is a ‘‘middleware” that sup-
ports functionalities, such as: semantic interoperability

between heterogeneous resources, devices, services, and data
management. The proposed platform is built upon a dynamic
federation of private and public networks while supporting

End-to-End security that enables the integration of services.

2.6.6. Urban management

A novel IoT-LAB test bed (Papadopoulos et al., 2013) high-

lights the experimentations that can significantly improve the
ctures. Journal of King Saud University – Computer and Information Sciences
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Figure 7 An architecture to serve IoTMaaS.
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value of performance evaluation campaigns through the exper-
iments satisfying proof-of-concept validator. The main target
is to test the significance of the underlying architecture whether

it is suitable for smart employability or not. Urban Information
System (UIS) (Jina et al., 2014) is a platform for the realization
of IoT based smart cities enabled with smart sensors and net-

working support materialized through data management and
cloud based integration to form a transformational part of
the existing cyber physical system while employing noise map-

ping in proper fashion. Researchers have developed a unified
smart platform based on the ‘‘Google Map” to integrate a
Geo-IoT application – Remote Digital Home Control (Dayu

et al., 2010).

2.6.7. Accidental measures

An IoT based emergency management system has been pro-

posed (Zhang and Anwen, 2010) which handles the catas-
trophic events in a specialized way.

2.6.8. Smart cycling

SENSAPP (Mosser et al., 2012) is designed as a prototypical
cloud open-source service based application to store and
exploit data collected by the IoT. The coarse-grained point of

view clearly states that sensor architect and data miner
software process the IoT data collected from sensor attached
with a bi-cycle. The database and functional registry system
cope up with notification related tasks. User can easily access

and utilize the information remotely using third party software.
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2.6.9. Smart sports

A generic Internet of Things architecture for smart

sports-‘‘Internet of Things Sport” has been proposed to facil-
itate integrated interactions between sports persons, sports
objects, team owner, medical teams, and followers (Ray,

2015b).

2.6.10. Home entertainment

Television is a media of entertainment at home. A group of

researchers (Kos et al., 2013) have developed a system for
generating lightning fast reports from intelligent IoT based
network communication platform, correlating the real-time

DSL access line and IPTV together. A RESTful Web Service
having unique URI address to implement applications like:
environmental perception and vehicular networks implying

physical and virtual objects. IoT enabled real-time multime-
dia often use User Data Protocol (UDP) for transmission
of data which makes huge amount of packet loss due to net-

work congestion and channel noise. To counter this (Jiang
and Meng, 2012) has developed an IoT oriented architectural
platform to solve the front end bandwidth using a novel mul-
timedia transmission protocol over UDP. An open source

solution has also been proposed (Lin, 2013) where Arduino
based hardware platform is used for proper functioning of
a smart home, which is an example of a typical cyber physical

system, consists of input, output and energy monitoring
activities. IoT cloud platform is also integrated with the
implemented setup.
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2.6.11. Smart logistics

Railways are the heart of any logistics. An IoT based intelli-

gent identification system for railway logistics has been pro-
posed for efficient logistics management (Guoa et al., 2012).

2.6.12. Smart tourism

Tourism and smart city have come together with help of IoT in
China as presented in a recent literature (Guo et al., 2014).
Architectural concept behind IoT based tourism is a novel

approach which is artistically evolved from it.

2.6.13. Smart environment

Authors (López-de-Ipiña et al., 2007) have observed the inter-

action between objects of spatial regions with pertinent mobile
devices, while enabling multi-modal human to environment
interaction for sake of advanced context-aware (location, iden-

tity, preferences) data and service discovery. This also implies
on the filtering and consumption within both indoor and
outdoor environments by fostering web as an application

programing platform where external parties may create
mash-ups while mixing the functionality offered by users.

A recent research has demonstrated a novel architectural

approach to acquire and analyze thermal comfort of a human
by means of MISSENARD Index (Ray, 2016).

2.6.14. m-Learning

A functional model is proposed to cater the needs of futuristic
mobile-learning (m-learning) through IoT (Yang et al., 2011).
While discussing, authors envisage a technology transfer
model that may be leveraged by 4 factors, such as:

(a) Creating optimal learning environment for m-learning,
(b) providing mass resources for m-learning, (c) making
individual service of m-learning, and (d) enriching

evaluation method. m-learning mode based on Internet of
Things(IOT-ML) architecture is given by the authors that
has the capabilities to perform several tasks like: preliminary

analysis, creation of learning situation, acquiring learning
resources, and evaluating the learning infrastructure by taking
rigorous feedback and push/pull based learning environment.
Figure 8 Distributed IoT/IoE applications on the fog infras
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2.7. Cloud service and management

This section provides the architectural solutions paved to
encounter cloud computing and big data problems. Cloud
computing provides platform, infrastructure, and software as

a service to the client systems for managing, accessing, and
processing purpose ordinarily in form of pay-as-you go, or free
(Islam et al., 2013; Rao et al., 2012).

2.7.1. Information exchange cloud

A recently deployed IoT broker system (Leu et al., 2013) func-
tions as an information exchange center, relaying periodic mes-

sages from heterogeneous sensor devices to IoT clients to
enhance shortest processing time (SPT) algorithm for schedul-
ing web based IoT messages by implementing priority queue
model.

2.7.2. Vehicular cloud

A newly proposed vehicular cloud platform provides vehicular
cloud data services incorporating an intelligent parking cloud

service and a vehicular data mining cloud service for vehicle
warranty analysis (He et al., 2014).

2.7.3. Cloud infrastructure

The Global ICT Standardization Forum for India (GISFI)
Sivabalan et al., 2013 while designing of IoT framework pres-
surized on well defined Reference Architecture (RA) for

enhancing interoperability between various devices and appli-
cation in multi-vendor scenario incorporating distributed
cloud infrastructure.

2.7.4. Context aware services

A data acquisition and integration platform (Chen and Chen,
2012) based on IoT is proposed where context-oriented

approaches have been used to collect sensor data from various
sensor devices. Authors have developed to a mechanism to
produce context data with help of the devised context broker,

which retrieves data from the IoT repository as a contextual
portfolio, which is annotated with semantic description. It
tructure (left), and components of fog architecture (right).

ctures. Journal of King Saud University – Computer and Information Sciences
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depicts the interrelationship between clients, thing server, thing
cluster, IoTMaaS Frontend Service, IaaS, and VMI whereas
device identifier services are keen to hold the request/response

and registry enrollment activities. CORBA component model
and service deployment are the heart of VMI which caters
the sensing, SWC and TDS retrieval (see Fig. 7).

2.7.5. IoT as a Service

IoT Platform as a Service (IoTPaaS) framework (Fei et al.,
2013) provides essential platform services for IoT solutions

by providing efficient delivery to the extend the virtual vertical
services by leveraging core computing resources and advanced
middleware (Katasonov et al., 2008) services on the cloud.

Collected sensor data is transmitted to remote IoT cloud plat-
forms through a gateway which is a layer of various network
protocols. Retail billing and related financial processes can

easily be metered with IoT PaaS by consisting a nexus of appli-
cation context management which is governed by allowing
data flow, monitored by event processing, data services, and
tenant management. An IoT based ETSI M2M (Lin et al.,

2013) architecture-compliant service platform has been devel-
oped which charters the users with the tasks of developing var-
ious M2M applications on OpenMTC (from FOKUS) to

investigate the usefulness of the service platform for IoT/
M2M. Unique addressing schemes and unified communication
mechanism are two basic issues for any IoT structure.

2.7.6. Location aware service

Domain mediators and IoT resource management services are
responsible for transferring of devices massages, monitoring of

object status, and registering into the system. The Mobility
First Future Internet Architecture (MFFIA) is an ideal platform
Figure 9 Social IoT architecture, following the three layer m

Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
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for realizing pervasive computing (location awareness) in IoT.
Particularly when it is necessary to build proper blocks of
applications in terms of identity based routing, overloaded

identities, content caching, and in network compute plane
(Li et al., 2012).

2.7.7. Cognitive service

IoT based Cognitive management framework paves the ability
of self-management functionality and knowledge acquisition
through machine learning motivated by designating objectives,

constraints, and rules (Foteinos et al., 2013). Web2.0 enabled
ubiquitous ‘‘Living Lab” platform necessitates rich and com-
plex ecosystem sensor-based information sources and mobile

services to the users (Tang et al., 2010).

2.7.8. Control service

Along with condition, advent of IoT along with cheap sensor

enabled devices, huge amount of heterogeneous sensor data
are being generated each and every moment of time. This
had led scientists to develop Service-Controlled Networking

(SCN) (Sowe et al., 2014) with cloud computing as its core,
so as to pave the practical use of the collected sensor data
and manage the IoT communities to search, find, and utilize

their sensor data on the system dashboard.

2.7.9. Sensor discovery service

Recently a ‘‘SmartLink” (Perera et al., 2014) has been pro-

posed that can be used to discover and configure sensors by
discovering in a particular location. Further, it establishes a
direct connection between the sensor hardware and cloud-
based IoT middleware using plug-in based approach.

Researchers have employed ‘‘TOSCA” cloud service to
odel made of the sensing, network, and application layer.
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systematically specify the components and configurations of
IoT applications which can be automated in heterogeneous
IoT system environments (Fei et al., 2013). In this context,

the Web Ecosystem of Physical Devices (EcoDiF) platform
(Pires et al., 2014) integrates heterogeneous physical devices
in order to provide support to real-time data control, visualiza-

tion, processing, and storage. EcoDiF uses web protocols such
as: HTTP, REST, EEML, and EMML while implementing the
underneath structure.

2.7.10. Fog computing

Fig. 8 (see Left) presents multi tenant IoT-Fog architecture
(Bonomi et al., 2014) with suitable applications A and B. Dis-

tributed application for A has one cloud and two ‘‘Fog”
(Bonomi et al., 2012) components. Similarly, the application
for B has one cloud component, one core component and a

‘‘Fog” component. Both the parts are connected by a virtual
network complying computing, storage (Virtual File System,
Virtual Block/Object Store) and networking (Network Virtual-
ization Infrastructure). Fig. 5 (see Right) is the diagrammatic

orientation of a 3 layered ‘‘Fog” architecture. Abstract layer
is specific to the computing, networking and storage activities
leveraging abstraction API which communicates with orches-

tration layer consisting of distributed massage bus structure
talks to it via probing, analyzing, planning and executing.
The top most is the service layer, designed for user purposes

culminating various applications, such as: smart healthcare,
grid, and vehicle etc.

2.7.11. Big data

IoT architectures generate different types of data in large vol-
ume at very high speed. This ‘‘Big Data” problem is suitably
encountered by a recent development (Jiang et al., 2014). It

proposes a data storage framework to store integrating both
structured and unstructured IoT dependent data. The novel
architecture combines ‘‘Hadoop” along with multiple other
databases to create a distributed file repository to store and

efficiently manage various types of data collected by sensors
and RFID readers. This architecture technically incorporates
the Big Data concept in its backbone. The 6 layered architec-
Figure 10 DTLS employed End-to End security architecture.

Please cite this article in press as: Ray, P.P. A survey on Internet of Things archite
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ture places heterogeneous devices which reside at the bottom
whereas database systems, such as: Hadoop, NoSQL, and
Relational database cover the next higher layer. Data and file

repositories are placed on top of it, leveraging multi tenant and
version management, object mapping along with database con-
nectivity. Resource configuration nodule layer configures var-

ious resource accessories and meta models. Service
management layer provides service generation activities
besides RESTful API and URIs. The top most layer is the

application layer which caters the direct user experience with
the contents collected by devices and represented in knowledge
oriented manner to the users.

2.7.12. Data filtering

Now the problem is how to manage the data generated from
large number of sensors in and IoT based system? The answer

is provided by a group of researchers by means of addressing
the contextual parameters along with the particular data for
which the analytics if necessary (Narendra et al., 2015).
Authors propose an architecture that aggregates data filtering,

transforming, and integration approach together. They present
a warehouse-based data model for specifying the data needed
at particular points of granularity and frequency that drive

data storage and representation which is aligned with the
defined Semantic Sensor Network (SSN) Ontology.

2.8. Social computing

These sections present different aspects of social computing
currently being sought by IoT. Social IoT is a novel area of

research that seeks to indentify and harness the qualitative
and behavioral values from robotic things while implementa-
tion social rules upon them.

2.8.1. SIOT

Social Internet of Things-SIoT (Girau et al., 2013; Atzori
et al., 2012) is proposed to seek various functionalities, such

as: registration for a new social object to the platform, manag-
ing the system creation of new relationships, and creation of
devices groups. This is innovative approach to integrated
IoT with societal elements. Similar comprehension is seen

through an open service framework for the Internet of Things
which facilitates the IoT-related mass market by establishing a
global IoT ecosystem with use of IoT devices and software

(Kim and Lee, 2014). Atzori et al. (2011) has designed an
architecture of social network of intelligent objects-Social
Internet of Things (SIoT), where objects establish social rela-

tionships among each other by enabling the capability of dis-
covery, selection, and particular services.

2.8.2. Societal data service

An open community-oriented platform has been investigated
to support Sensor Data-as-a-Service (SDaaS) featuring inter-
operability and reusability of heterogeneous sensor data and

data services (Zhang et al., 2013). The concept behind virtual
sensors and virtual devices are also identified to stream data
continuously or discretely by scalable and context aware
reconfigurable sensor data and services. A three layer architec-

tural model for IoT is presented in Buckl et al. (2009) (see
Fig. 9). It consists of: (a) the sensing layer, which is devoted
ctures. Journal of King Saud University – Computer and Information Sciences
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to the data acquisition and node collaboration in short range
and local networks; (b) the network layer, which is aimed at

transferring data across different networks; and (c) the appli-
cation layer, where the IoT applications are deployed together
with the middleware functionalities. The Component Sub-

layer includes the important tools to implement the core func-
tionality of the SIoT system. The ID management is aimed at
assigning an ID used to universally identify all the possible cat-

egories of objects. The profiling is targeted at configuring man-
ual and semi-automatic information about the objects. The
Owner Control (OC) module enables the definition of the

activities that can be performed by the object. The relationship
management (RM) is a key module since the objects do not
have the intelligence of humans in selecting the friendships.
Main task of this component is to allow objects to begin,

update, and terminate their relationships with other objects.
The Service Discovery (SD) is aimed at finding objects that
can provide the required service in the same way humans seek

for friendships and for any information in the social network-
ing services. The service composition (SC) module enables the
interaction between objects. The main potential in deploying

SIoT is its capability to foster such an information retrieval.
Leveraging on the object relationships, the service discovery
procedure finds the desired service, which is then activated

by means of this component. The Trustworthiness Manage-
ment (TM) component is aimed at understanding how the
information provided by other members shall be processed.
Reliability is built on the basis of the behavior of the object

and is strictly related to the relationship management module.
Trustworthiness can be estimated by using notions well-known
in the literature which are crucial in social networks. The third

sub-layer is the Interface Sub-layer that is located where the
third party interfaces to objects, humans, and services are
located.
Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
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2.9. Security

Security issue has always been an area where network related
researchers are continuously striving to get through. IoT is

not out of its scope. In this section a few relevant works are
presented to cope up with architectural issues in IoT based
security.

2.9.1. Object security

Vucinic et al. propose an architecture that leverages the secu-
rity concepts both from content-centric and traditional

connection-oriented approaches (Vu�cini’c et al., 2014). It relies
on secure channels established by means of (D)TLS for key
exchange, without inclusion of the ‘‘state” among communi-
cating entities. Object-based Security Architecture (OSCAR)

supports facilities such as: caching and multicast, and does
not affect the radio duty-cycling operation of constrained
objects while providing a mechanism to protect from replay

attacks by coupling DTLS scheme with the CoAP. Authors
evaluate OSCAR in two cases: (a) 802.15.4 Low Power
enabled Lossy Networks (LLN), and (b) Machine-to-

Machine (M2M) communication for two different hardware
platforms and MAC layers on a real test bed using the
Cooja emulator. The architecture has been evaluated under a

smart city paradigm.

2.9.2. End-to-End security

An End-to-End two way authentication security architecture

for the IoT, using the Datagram Transport Layer Security
(DTLS) protocol has been evaluated (Kothmay et al., 2012).
The proposed security architecture (see Fig. 10) is based on

the most widely used public key cryptography technique
(RSA), and works on top of standard low power communica-
tures. Journal of King Saud University – Computer and Information Sciences
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tion stacks. Internet is connected by IPv6 in the near future,
and parts of it run the 6LoWPAN. The transport layer in
6LoWPAN is UDP which can be considered unreliable; the
routing layer is RPL, or Hydro. Hydro is used for routing,

because of its similarity to RPL and its availability as part of
the TinyOS 2.x distribution. IEEE 802.15.4 is used for the
physical and MAC layer. Based on this protocol stack DTLS

is chosen as the key security protocol. This places it in the
Please cite this article in press as: Ray, P.P. A survey on Internet of Things archite
(2016), http://dx.doi.org/10.1016/j.jksuci.2016.10.003
application layer on top of the UDP transport layer. The pre-
scribed architecture elaborates the underlying data and com-
munication flow between subscriber, gateway, access control
server, and internet enabled certificate authority.

2.9.3. Cyber-physical-social security

A cyber-physical-social based security architecture (IPM) is

proposed to deal with Information, Physical, and Management
ctures. Journal of King Saud University – Computer and Information Sciences
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security perspectives (Ning and Liu, 2012). The IPM architec-

ture is empowered by the Unit IoT and Ubiquitous IoT (U2IoT)
architecture. U2IoT acts as the core of IPM provisioning three
key supports, such as: establishing information security model

to describe the mapping relations among U2IoT, security
layer, and security requirement in which social layer and addi-
tional intelligence and compatibility properties are infused into

IPM; referring physical security to the external context and
inherent infrastructure are inspired by artificial immune algo-
rithms; and suggesting recommended security strategies for
social management control.

2.9.4. Hierarchical security

Authors propose hierarchical security architecture to protect

against inherent openness, heterogeneity, and terminal vulner-
ability. The proposed architecture aims to improve the effi-
ciency, reliability, and controllability of the entire security
system. Authors investigate several types of attacks and threats

that may diffuse the architecture. To oppose vulnerability, a
coarse-grained security cell is designed that along with a
refined secure subject protects the IoT enabled system in the

form of information, data, control, and behavior. The 3-
layered architecture devises a vertical division that narrows
down the complexity of the cross-layer security interaction,

and the transverse division based on data flow while clearing
the processing logic of the security mechanism (Zhang and
Qu, 2013).

2.9.5. Multimedia traffic security

An efficient Media-aware Traffic Security Architecture
(MTSA) is proposed that facilitates various multimedia appli-

cations in the Internet of Things (Zhou and Chao, 2011).
MTSA sacrifices unconditional secrecy to facilitate a normal-
ized multimedia security solution for all genres of sensors in
IoT. In particular, MTSA employs a visual secrecy measure

which degrades proportionally to the number of shares in a
Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
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possession of an eavesdropper. MTSA is enabled with per-

ceived multimedia distortion (Zhao et al., 2009; Kundur
et al., 2008) techniques. The MTSA reduces the complexity
of multimedia computations and decreases the size of the

shares (see Fig. 11). MTSA is inherited from a context-aware
multimedia service based security framework (Zhou et al.,
2010).

2.9.6. Light wight security

A recent article presents comprehensive and lightweight secu-
rity architecture to secure the IoT throughout the lifecycle of

a device – ‘‘HIMMO”. HIMMO relies on the lightweight
scheme as its building block. It is not only efficient resource-
wise, but also enables advanced IoT protocols and deploy-

ments. HIMMO based security architecture can be easily inte-
grated in existing communication protocols such as IEEE
802.15.4, or OMA LWM2M while providing a number of
advantages such as: performance and operation. HIMMO is

featured by a few advancements such as: full collusion resis-
tance, device and back-end authentication and verification,
pair-wise key agreement, support for multiple TTPs and key

escrow, or protection against DoS attacks (Morchon et al.,
2016).

2.9.7. Defense

A novel architectural approach-IoTNetWar (see Fig. 12) has
been proposed of inculcating advanced network based tech-
nologies into the defense (Ray, 2015a). This is a 4-layered

(i.e. Physical Sensing Layer, Gateway Communication Layer,
C4ISR Management Layer, and Application Layer) invasion
designed to assimilate IoT based integrated military commu-

nication, intellectual intelligence, and C4ISR command
under one roof. C4ISR Layer is the most crucial of all that
specifically monitors the interactions between defense head
quarter with its data center through voice collaborative

support.
tures. Journal of King Saud University – Computer and Information Sciences
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Table 4 Conglomeration of domain specific architectures.

Domains Architecture references

RFID (Marrocco

et al., 2009)

EPC (Auto-Id Labs; The

EPCglobal Architecture

Framework, 2009; Ashton,

2009)

uID (Sakamura, 2006; Issarny et al.,

2011)

NFC and Other Technologies

(Presser and Gluhak, 2009;

Botterman, 2009; Toma et al., 2009;

Finkenzeller, 2003; Jules, 2006; Kos

et al., 2012)

Beyond RFID (Dunkels and Vasseur, 2008; Broll et al.,

2009; Zhangm et al., 2011)

Service Oriented

Architecture (Deugd

et al., 2006)

RFID Involvement (Buettner

et al., 2008; Foss track;

Floerkemeier et al., 2007)

Middleware Enablement (Wahlster, 2008; Vázquez, 2009; Pasley, 2005; Spiess et al., 2009; Buckl et al., 2009; OASIS; Middleware Project;

Welbourne et al., 2009; Pereira et al., 2013; Clayman and Galis, 2011)

Wireless Sensor

Network

(Middleware

Project; Xia, 2009;

Yaacoub et al.,

2012)

Systems (IEEE 802.15;

Duquennoy et al., 2009)

Environment Monitoring (e-Sense;

Ubi e-Sense; Lazarescu, 2013; Bo and

Wang, 2011; Kouche, 2012; Li et al.,

2013; Arsénio et al., 2014)

Infrastructure

Monitoring (Enji

et al., 2012; Gazis

et al., 2013)

Agriculture

(Zhao et al.,

2010, Ray,

2017)

Aquaculture (Ma et al., 2012) Distributed Sensor

Network

(Eleftherakis et al.,

2015)

Supply Chain

Management and

Industry

SoA, RFID, and NFC Integration (Yuan et al., 2007; Group Future Store Initiative;

Karpischek et al., 2009; Broll et al., 2009; Ilic et al., 2009; Dada and Thiesse, 2008; Sun et al.,

2011; Shang et al., 2012; Metro)

SCM as Service (Guinard and Vlad, 2009; Xiaocong and Jidong, 2010;

Janggwan et al., 2013; Tian et al., 2012)

Health Care Home Health Care (Sebastian

and Ray, 2015a,b; Ray, 2014a,

b; Ray et al., 2013; Rai et al.,

2013; Yang et al., 2014)

e-Health (Ukil

et al., 2012;

Blackstock

et al., 2010)

m-Health

(Istepanian et al.,

2011)

Ubiquitous

Health (Boyi

et al., 2014;

Doukas and

Maglogiannis,

2012)

Hospital Management (Yu et al., 2012; Fan et al.,

2014)

WSN Integration

(Sung and Chiang,

2012)

Smart Society Road Condition Monitoring Traffic Management (Foschini et al.,

2011; Wang et al., 2011)

Municipal

Involvement

(Foschini et al.,

2011)

Link data for

Society (De

et al., 2012;

Kortuem et al.,

2010)

Smart City (Sancheza et al., 2014;

Mazhelis and Tyrvainen, 2014;

Elmangoush et al., 2013; Ganche

et al., 2013; Bonino et al., 2015)

Urban Management

(Papadopoulos et al.,

2013; Jina et al., 2014;

Dayu et al., 2010)

Accidental Measures (Zhang

and Anwen, 2010)

Smart Cycling

(Mosser et al.,

2012) Smart

Sports (Ray,

2015b)

Home

Entertainment

(Lin, 2013; Kos

et al., 2013; Jiang

and Meng, 2012)

Smart Logistics

(Guoa et al., 2012)

Smart Tourism

(Guo et al.,

2014)

Smart Environment (López-de-

Ipiña et al., 2007)

m-Learning (Yang

et al., 2011)

Cloud Service and

Management (Islam

et al., 2013; Rao

et al., 2012)

Information Exchange Cloud

(Leu et al., 2013)

Vehicular Cloud (He et al., 2014) Cloud Infrastructure (Sivabalan

et al., 2013)

Context Aware Services (Chen and Chen, 2012)

Location Aware Service (Li

et al., 2012)

IoT as a Service (Katasonov et al.,

2008; Fei et al., 2013; Lin et al., 2013)

Cognitive Service (Foteinos et al.,

2013; Tang et al., 2010)

Control Service (Sowe et al., 2014)

Sensor Discovery Service

(Perera et al., 2014; Fei et al.,

2013; Pires et al., 2014;

EEML; EMML)

Fog Computing (Bonomi et al., 2012,

2014)

Big Data (Jiang et al., 2014; URI) Data Filtering (SSN; Narendra et al., 2015)

Social Computing SIOT (Girau et al., 2013; Kim and Lee, 2014; Atzori et al., 2011, 2012) Societal Data Service (Buckl et al., 2009; Zhang et al., 2013)

Security Object Security (Vu�cini’c

et al., 2014; Cooja)

End-to-End Security (Kothmay et al.,

2012; RPL;Tiny OS; Hydro)

Cyber-Physical-Social Security (Ning

and Liu, 2012)

Hierarchical Security (Zhang and Qu, 2013)

Multimedia Traffic Security (Zhou and Chao, 2011; Zhao et al., 2009;

Kundur et al., 2008; Zhou et al., 2010)

Light Wight Security (Morchon et al., 2016) Defense (Ray, 2015a)
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2.10. Observation

In earlier sub sections, several domain specific IoT based archi-
tectural works have been discussed. While reviewing different
areas of implementations, it is found that smart city related

practices are dominant over other segments. Fig. 13 illustrates
the graphical representation of the rate of practice versus
domains of IoT architectures. On the basis of 130 research
papers included in this survey, the graph has been plotted;

where RFID and health related architectural studies are get-
ting equally popular around at 11%. SoA based architectural
research is gradually coming forwards faster than RFID and

health sectors, making its mark at 12.5%. WSN being a com-
mon area of practice has secured 13.3% among all. As men-
tioned in earlier section, smart city and related applications

are gaining popularity in recent days. The result shows that
16.5% of overall research has been performed collectively
toward the development for in smart society only. Indeed the

smart society approach touches the highest point on the plot.
Cloud computing based research and practices seem to be just
beyond of WSN i.e., 14%. SCM and industrial approaches are
subsequently marking its position in IoT specific world. SCM

secures 8.6% on the graph. Security and privacy issues are very
important by its own virtue; hence researchers are coming up
with novel architectural concepts to facilitate the IoT. 7%

investigations are made on its behalf. Social computing based
research is still at nascent stage. Very few and specific explo-
rations have been made on this ground. It has attained only

4.7%. The graphical representation of current trends in IoT
based architectural research shows that more facilitation to
be incurred in several domains, such as: e-learning, defense
(Ray, 2015a), rural management, and robotics (Ray,

submitted for publication) are yet to be touched (not shown
on the graph). Table 4 combines all discussed architectures
in earlier section as a tabular form. The representation of this

table conglomerates different types of architectural frame-
works as per their sub-domain. This will help the researchers
to go into the depth of what is described in this paper as the

sub-domains or domains as a whole, that need to be searched
and paved in future.

3. Open research issues and future direction

Although the architectures described in earlier section make
IoT concept practically feasible, a large research effort is still

required in this direction. This section reviews technical prob-
lems associated with current IoT architectures. Later on, a
novel concept Io<*> or (Internet of *) is presented so as to
meet all necessary parts that are missing in existing

architectures.

3.1. Technical challenges

It is broadly accepted that the IoT technologies and applica-
tions are still in their infancy (Xu, 2011). There are still many
research challenges for industrial use such as technology, stan-

dardization, security and privacy (Atzori et al., 2010). Future
efforts are needed to address these challenges and examine
the characteristics of different industries to ensure a good fit

of IoT devices in the human centric environments. A sufficient
understanding of industrial characteristics and requirements
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on factors such as cost, security, privacy, and risk are indeed
required before the IoT will be widely accepted and deployed
in all the domains (Gershenfeld et al., 2004). Let discuss a

few problems in this regard:

(i) Design of Service oriented Architecture (SoA) for IoT is

a big challenge where service-based objects may face
problems from performance and cost related issues.
SoA needs to handle a large number of devices con-

nected to the system which phrases scalability issues.
At this moment, challenges like: data transfer, process-
ing, and management become a matter of burden over-
headed by service provisioning (Vermesan et al., 2009).

(ii) IoT is a very complicated heterogeneous network plat-
form. This, in turn enhances the complexity among var-
ious types devices through various communication

technologies showing the rude behavior of network to
be fraudulent, delayed, and non-standardized.
Bandyopadhyay and Sen (2011) has clearly pointed

out the management of connected objects by facilitating
through collaborative work between different things
e.g., hardware components and/or software services,

and administering them after providing addressing,
identification, and optimization at the architectural
and protocol levels is a serious research challenge.

(iii) If we look from the viewpoint of network services, it

seems clear that there is always a lack of a Service
Description Language (SDL). Otherwise, it would make
the service development, deployment, and resource inte-

gration difficult by extending the product dissemination
time causing loss in market. Hence, a commonly
accepted SDL should be constructed so as the powerful

service discovery methods and object naming services be
implemented (Vermesan et al., 2009). Novel SDL may
be developed to cope with product dissemination after

validating the requite SDL specific architecture.
(iv) As of now, IoT is degenerated on a traditional network

oriented ICT environment. It is always affected by what-
ever connected to it. Here, a need of unified information

infrastructure is to be sought. Huge number of con-
nected devices shall produce real-time data flow which
must be governed by high band width frequency path.

Hence, a uniform architectural base is to be created to
cater the infrastructure needs sophistically.

(v) The originated data may be too much large in size that

current database management system may not handle in
real-time manner. Proper solutions need to be idealized.
IoT based data would be generated in a rapid speed. The
collected data at receivers end shall be stored in efficient

way which current RAID technology is incapable of.
Here, an IoT based data service centric architecture need
to be revised to handle this problem.

(vi) Different devices attached to the IoT will put down data
of variety in type, size and formation. These variations
should be occupied with the futuristic technology which

may involve multi-varied architectural notion for its
ideal indentation. Researcher should come forward with
novel Big IoT Data specific design where data can effi-

ciently handled.
(vii) Data is a raw fact that generally does not conform to

non-relevant handouts. Here in case of IoT, data play
the massive role in decision making. The value of data
tures. Journal of King Saud University – Computer and Information Sciences
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is only achievable after filtering process is performed on

the pool of data. This meaningful information can only
be obtained by orientation of mining, analysis, and
understand it. Big data problem is sufficient for handling

similar regression. Relevant architectural framework is
in evident that can hale data mining, analytics, and
hence decision making services. Big Data approach
could be aggregated herewith.

(viii) In addition, industries must seek the challenges of hard-
ware software coexistence around IoT. Variety of
devices combined with variety of communication proto-

cols through TCP/IP or advanced software stacks would
surely manipulate web services which shall be deployed
by various middleware solutions (Wang et al., 2013).

Particular architecture leveraging the facilitation of
heterogeneous protocols shall be devised.

(ix) The IoT is envisaged to include an incredibly high num-
ber of nodes. All the attached devices and data shall be

retrievable; here in such context, the unique identity is a
must for efficient point-to-point network configuration.
IPv4 protocol identifies each node through a 4-byte

address. As it is well known that the availability of
IPv4 numbered addresses is decreasing rapidly by reach-
ing zero in next few years, new addressing policies shall

be countered where IPv6 is a strong contender. This is
an area where utmost care is needed to pursue device
naming and identification capability, where appropriate-

ness of architectural proficiency is a must.
(x) Standardization is another clot which may precisely be

operated for growth of IoT. Standardization in IoT sig-
nifies to lower down the initial barriers for the service

providers and active users, improvising the interoper-
ability issues between different applications or systems
and to perceive better competition among the developed

products or services in the application level. Security
standards, communication standards and identification
standards need to be evolved with the spread of IoT

technologies while designing emerging technologies at
a horizontal equivalence. In addition, fellow researchers
shall document industry-specific guidelines and specify
required architectural standards for efficient implemen-

tation of IoT.
(xi) From the viewpoint of service, lack of a commonly

accepted service description language makes the service

development and integration of resources of physical
objects into value-added services difficult. The devel-
oped services could be incompatible with different com-

munication and implementation environments (Atzori
et al., 2010). In addition, powerful service discovery
methods and object naming services need to be devel-

oped to spread the IoT technology (Sundmaeker et al.,
2010). Scientists should pave novel architectures to cater
with these difficulties.

(xii) The widespread applicability of IoT and associated tech-

nologies shall largely depend on the network cum infor-
mation security and data privacy protection. Being
highly complex and heterogeneous in nature, IoT always

faces severe security and privacy threats. Deployment,
mobility, and complexity are the main challenges that
restrict IoT to be damn safe (Roman et al., 2011). As

per Roman et al. (2011), Li (2013), Ting and Ip (2013),
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privacy protection in IoT environment is more vulnera-

ble than in traditional ICT network due to the large
number of presences of attack vectors on IoT entities.
Say for an example, IoT based health care monitoring

system will collect patient’s data (e.g., heart rate, pulse,
body temperature, respiration etc.) and later on send the
information directly to the doctor’s office or hospital via
network. As the time of data transfer over the network,

if patient’s data is stolen or misplaced serious risk may
arise which can cause even death to the user. In such sit-
uation, it is noticed that most of the architectures do not

include privacy, and security aspects into the respective
concept which is drawback that needs to be clarified.
Though, existing network security technologies enable

IoT to get protected from such threats, more work still
needs to be considered. A reliable, effective and power-
ful security protection mechanism for IoT is on the top
most priority at the moment. Authors Xu et al. (2014)

have depicted following topics where research should
be carried on: (a) Definition of security and privacy from
the social, legal, and culture point of view, (b) trust and

reputation management, (c) end-to-end encryption, (d)
privacy of communication and user data, and (e) secu-
rity on services and applications. It is further understood

that although existing network security technologies
provide a basis for privacy and security in IoT, more
work still need to be performed. A reliable security pro-

tection mechanism for IoT needs to be researched from
the following aspects: (a)The definition of security and
privacy from the viewpoint of social, legal and culture;
(b) trust and reputation mechanism; (c) communication

security such as end-to-end encryption; (d) privacy of
communication and user data; (e) security on services
and applications (Xu et al., 2014).

3.2. Direction toward Io<*>

This section prescribes typical application specific
approaches, which are absent in the aforementioned review
work or have not been touched at all by the research commu-

nities. The Io<*> refers to Internet of Any architecture
(where, ‘*’ is normally assumed to be ‘all’ in computing).
Architectures are continuously gaining importance and soon
it will hold the underneath foundation of IoT. From a view-

point of an architect/developer, the first and foremost job
while designing a novel philosophy, far ahead of implement-
ing in practice, is to establish a fundamental model which

shows the layered components and how they are connected
to each other. Research should be made possible to elaborate
new thing based framework to complement the following par-

ticulars such as: mining, sports, tourism, governance, social,
robotics, automation, and defense. As IoT is still in its nas-
cent stage, we should be motivated to Io<*> where any
architecture could be well suited. Smart healthcare, domotics,

transportation, environment and agriculture are currently
being sought in terms of IoT. Academics are constantly in
the process to successfully cope up with the necessary plat-

forms to solve these problems in near future. Io<*> concept
shall revolutionize the way we see through the IoT technolo-
gies by combing the untouched areas with the cumulated
ctures. Journal of King Saud University – Computer and Information Sciences
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ones. This shall hold the horizontal, vertical, and diagonal
crisscross among all the core components of the IoT to the
generalized applications. Io<*> is completely a hypothetical

concept that must be tracked on. Analog, digital, and hybrid
objects shall be the ‘things’ part. Not only solid but also liq-
uid, semi-liquid, and crystallized type of materials may be the

part of it. Integrated chips (IC), system on lab, lab on chip,
FPGA, ASIC, and flexible electronics elements shall minia-
turize the distance between digital and pure digital mecha-

nism. Standard OSI network model is to be revisited for
advanced layer based Io<*>. All the network protocols
shall appropriately be utilized on its layers. 6LowPAN (Hui
et al., 2009), CoAP, MQTT, websockets, XMPP, SOAP,

RESTful, and IPv6 are to be integrated in a novel way where
scripted web based pages would talk to the <*> portion by
leveraging NoSQL, SPARQL, Graph database, parallel

database, Hadoop, Hbase, RDF, OWL oriented set ups.
On top of it, data analytics, risk analysis, graphical visualiza-
tion, resource management, service coordinator, task man-

ager, APP based Plug-in enabler, API moderator, storage
monitor, and predictive analyzer shall be mounted to impro-
vise Io<*>-as-a-Service (Io<*>aaS). Unlimited applica-

tions are to be roofed up the layer to mitigate the user
experience to a new height. Smart transportation, logistics,
assisted driving, mobile ticketing, environment monitoring,
augmented maps, health track, data collection, identification

and sensing, comfortable home, smart plant, intelligent
museum, social networking, theft monitoring, loss apprehen-
sion, historical queries, smart taxi, smart city, governance,

and enhanced game environment etc. shall be cherished by
human being. Mining sites are to be covered up by
Io<*>; besides, sports, travel and tourism, and defense

mechanisms are to be connected by. AES, 3-DES, RSA,
and SHA-3 algorithms need to be revised to get fitted into
the resource constrained <*>. Multimedia may be lid onto

Io<*> by apprehending streaming algorithms where as dis-
crete messages be appended after payloads of transmitted
packets. ‘‘Sensor Model Language” (SensorML) shall be
revisited to provide a robust and semantically-tied means of

defining processes and processing components, associated
with the pre-measurement and post-measurement transforma-
tion of observations (Open geospatial). The main objective of

SensorML will be to enable the interoperability by using
ontologies and semantic mediation. This could be done at
the syntactic level and semantic level consecutively; resulting

sensors and processes be better understood, utilized, and
shared by machines, in complex workflows, and between
intelligent sensor web nodes respectively. As of now most
of the digital and hybrid devices of traditional network come

along contemporary ‘‘Operating Systems” (OS). Very few OS
are released in market for IoT invasion. IoT operating sys-
tems such as Contiki-OS, RIOT-OS are the most prevalent

versions available in the market, though they lack in hard-
ware interoperability and semantic means. In this perspective,
more work shall be carried to develop new variants of univer-

sal IoT-OS. Actuator layer may be another valuable part of
Io<*> which has never been seen in any literature till date.
In relation to the sensor, actuators are going to increase in

exponential rate. The need of a central monitoring and con-
trolling environment is required, Io<*> shall occupy the
gap.
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4. Conclusion

The Internet has proved its existence in our lives, from interac-
tions at a virtual level to social relationships. The IoT has

added a new potential into internet by enabling communica-
tions between objects and human, making a smarter and intel-
ligent planet. This has led the vision of ‘‘anytime, anywhere,

anyway, anything” communications practically in true sense.
To this end, it is observed that the IoT should be considered

as the core part of the existing internet relying on its future
direction, which is obvious to be exceptionally different from

the current phase of internet what we see and use in our lives.
Hence, the architectural concept comes in the picture. Archi-
tecture is a framework of technology enabled things to inter-

connect and interact with similar or dissimilar objects by
imposing human to be a layer on it. In fact, it is clear that
the current IoT paradigm, which is supportive toward M2M

communications, is now getting limited by a number of
factors.

New formulations are inevitable for sustenance of IoT

which is a strong notation for the researcher to come up with.
From the above survey, it is found that publish/subscribe
based IoT is flourishing now a days and being successively
used in many applications. In this perspective, it should be

understood that people are solemnizing their thoughts in
terms of vertical silos of architectures. If this trend continues
for next few years, it is mandatory that IoT may not achieve

its goal related to flexibility, interoperability, concurrency,
scalability, and addressability issues. Crowed sourcing may
be incorporated into the architectural conciseness. Defense,

military, intelligence services, robotics etc. fields do still
undercover by IoT. Tourism, education, multimedia, gover-
nance, social aware, and context aware IoT architectures

have not been functional at all. Vertical silos must be coin-
cided with the horizontal perspective for affective measures
of the IoT.

In this article, firstly the background and definition of IoT

are given. Secondly, thorough discussions on fundamentals
behind IoT architectures are elaborated. Next, several key
domains where IoT based research works are currently going

on are visited. Afterward, detailed analyses of the research
challenges are mentioned. Resulting graph attains the state-
of-the-art research based motives on the aforementioned

domains. A novel concept-‘‘Io<*>” is also proposed that is
based on various theoretical nomenclature and external inputs.
Different from other IoT survey papers, a main contribution
of this paper is that it focuses on area specific architectures

of IoT applications and highlights the challenges and possible
research opportunities for future IoT researchers who would
work in architectural as well as in IoT as a whole.
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internationally distributed ubiquitous living lab innovation plat-

form for digital ecosystem research. In: Proceedings of Interna-

tional Conference on Management of Emergent Digital

EcoSystems, pp. 159–165.

The EPCglobal Architecture Framework, 2009. EPCglobal Final

Version 1.3, <www.epcglobalinc.org>.

Tian, Y., Liu, Y., Yan, Z., Wu, S., 2012. RNS-a public resource name

service platform for the internet of things. In: Proceedings of IEEE

International Conference on Green Computing and Communica-

tions (GreenCom), pp. 234–239.

Ting, S.L., Ip, W.H., 2013. Combating the counterfeits with web

portal technology. Enterprise Inf. Syst. 9 (7), 661–680.

Tiny OS, www.tinyos.net.

Toma, I., Simperl, E, Hench, G., 2009. A joint roadmap for semantic

technologies and the internet of things. In: Proceedings of the Third

STI Road mapping Workshop, Crete, Greece.

Ubi e-Sense, <http://www.ist-ubisecsens.org>.

Ukil, A., Bandyopadhyay, S., Joseph, J., Banahatti, V., Lodha, S.,

2012. Negotiation-based privacy preservation scheme in internet of

things platform. In: Proceedings of International Conference on

Security of Internet of Things, pp. 75–84.

URI, https://www.w3.org/Addressing.

Vázquez, I., 2009. Social Devices: Semantic Technology for the

Internet of Things, Week@ESI, Zamudio, Spain.

Vermesan, O., Friess, P., Guillemin, P., (2009), Internet of things

strategic research roadmap, The Cluster of European Research

Projects, available from http://www.internet-of-things-research.eu/

pdf/IoT Cluster Strategic Research Agenda 2009.pdf.

Vu�cini’c, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L.,

Guizzett, R., 2014. OSCAR: object security architecture for the

internet of things. arXiv:1404.7799v1.

Wahlster,W., 2008.Web 3.0: Semantic Technologies for the Internet of

Services and of Things, Lecture at the 2008 Dresden Future Forum.

Wang, M., Fan, C., Wen, Z., Li, S., 2011. Implementation of internet

of things oriented data sharing platform based on RESTful web

service. In: Proceedings of 7th International Conference on

Wireless Communications, Networking and Mobile Computing

(WiCOM), pp. 1–4.
Please cite this article in press as: Ray, P.P. A survey on Internet of Things architec
(2016), http://dx.doi.org/10.1016/j.jksuci.2016.10.003
Wang, S., Zhang, Z., Ye, Z., Wang, X., Lin, X., Chen, S., 2013.

Application of environmental Internet of Things on water quality

management of urban scenic river. Int. J. Sustainable Dev. World

Ecol. 20 (3), 216–222.

Websockets, https://w3c.github.io/websockets/.

Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer,

S., Balazinska, M., Borriello, G., 2009. Building the internet of

things using RFID: the RFID ecosystem experience. IEEE Internet

Comput. 13 (3), 48–55.

Xia, F., 2009. Wireless sensor technologies and applications. Sensors

9 (11), 8824–8830.

Xiaocong, Q., Jidong, Z., 2010. Study on the structure of ‘‘internet of

things (IOT)‘‘ business operation support platform. In: Proceedings

of 12th IEEE International Conference on Communication Tech-

nology (ICCT), pp. 1068–1071.

XMPP, www.xmpp.org.

Xu, L., 2011. Enterprise systems: state-of-the-art and future trends.

IEEE Trans. Ind. Inf. 7 (4), 630–640.

Xu, L.D., He, W., Li, S., 2014. Internet of THINGS IN

INDUSTRIES: A SURVEY. IEEE Trans. Indus. Inf. 10 (4),

2233–2243.

Yaacoub, E., Kadri, A., Dayya, A.D., 2012. Cooperative wireless

sensor networks for green internet of things. In: Proceedings of the

8h ACM Symposium on QoS and Security for Wireless and Mobile

Networks, pp. 79–80.

Yang, B., Nie, X., Shi, H., Gan, W., 2011. M-learning mode research

based on internet of things. In: Proceedings of International

Conference on Artificial Intelligence, Management Science and

Electronic Commerce (AIMSEC), pp. 5623–5627.

Yang, G., Li, X., Mäntysalo, M., Zhou, X., Pang, Z., Xu, L.D.,

Walter, S.K., Chen, Q., Zheng, L., 2014. A health-IoT platform

based on the integration of intelligent packaging, unobtrusive bio-

sensor and intelligent medicine box. IEEE Trans. Ind. Inf. 10 (4),

2180–2191.

Yu, L., Lu, Y., Zhu, X.J., 2012. Smart hospital based on internet of

things. J. Networks 7 (10), 1654–1661.

Yuan, R., Shumin, L., Baogang, Y., 2007. Value Chain Oriented

RFID System Framework and Enterprise Application. Science

Press, Beijing.

Zhang, J., Anwen, Q., 2010. The application of internet of things

(IOT) in emergency management system in China. In: Proceedings

of IEEE International Conference on Technologies for Homeland

Security (HST), pp. 139–142.

Zhang, W., Qu, B., 2013. Security architecture of the internet of

things oriented to perceptual layer. Int. J. Comput. Consumer

Control (IJ3C) 2 (2), 37.

Zhang, J., Iannucci, B., Hennessy, M., Gopal, K., Xiao, S., Kumar,

S., Pfeffer, D., Aljedia, B., Ren, Y., Griss, M., Rosenberg, S., Cao,

J., Rowe, A., 2013. Sensor data as a service – a federated platform

for mobile data-centric service development and sharing. Proc.

IEEE Int. Services Comput. (SCC), 446–453. ISBN: 978-0-7695-

5046-6.

Zhangm, X., Wen, Z., Yuexin, W., Zou, J., 2011. The implementation

and application of the internet of things platform based on the

REST architecture. In: Proceedings of International Conference on

Business Management and Electronic Information, pp. 43–45.

Zhao, H.V., Lin, W.S., Liu, K.J.R., 2009. A case study in multimedia

fingerprinting: behavior modeling and forensics for multimedia

social networks. IEEE Signal Process. Mag. 26 (1), 118–139.

Zhao, J.C., Zhang, J.F., Feng, Y., Guo, J,X., 2010. The study and

application of the IOT technology in agriculture. In: Proceedings of

3rd IEEE International Conference on Computer Science and

Information, Technology (ICCSIT), vol. 2, pp. 462–465.

Zhou, L., Chao, H.C., 2011. Multimedia traffic security architecture

for the internet of things. IEEE Network, 35–40.

Zhou, L., Naixue, X., Shu, L., Vasilakos, A., Yeo, S.S., 2010.

Context-aware multimedia service in heterogeneous networks.

IEEE Intell. Syst. 25 (2), 40–47. PP(99).
tures. Journal of King Saud University – Computer and Information Sciences

http://refhub.elsevier.com/S1319-1578(16)30079-9/h0710
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0710
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0710
http://www.w3.org/TR/soap
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0720
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0720
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0720
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0720
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0720
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0745
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0745
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0750
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0750
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0750
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0760
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0760
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0760
http://www.epcglobalinc.org
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0780
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0780
http://www.tinyos.net
http://www.ist-ubisecsens.org
https://www.w3.org/Addressing
http://www.internet-of-things-research.eu/pdf/IoT
http://www.internet-of-things-research.eu/pdf/IoT
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0830
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0830
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0830
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0830
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0830
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0835
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0835
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0835
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0835
https://w3c.github.io/websockets/
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0845
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0845
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0845
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0845
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0850
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0850
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0855
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0855
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0855
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0855
http://www.xmpp.org
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0865
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0865
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0870
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0870
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0870
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0875
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0875
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0875
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0875
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0880
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0880
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0880
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0880
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0885
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0885
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0885
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0885
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0885
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0890
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0890
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0895
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0895
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0895
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0905
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0905
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0905
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0910
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0910
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0910
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0910
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0910
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0910
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0920
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0920
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0920
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0925
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0925
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0925
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0925
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0930
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0930
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0935
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0935
http://refhub.elsevier.com/S1319-1578(16)30079-9/h0935
http://dx.doi.org/10.1016/j.jksuci.2016.10.003

	A survey on Internet of Things architectures
	1 Introduction
	1.1 IoT functional blocks
	1.2 Utilities of IoT
	1.3 IoT supported technologies
	1.4 Hard ware platforms
	1.5 Wireless communication standards
	1.5.1 802.11 – WiFi
	1.5.2 802.16 – WiMax
	1.5.3 802.15.4 – LR-WPAN
	1.5.4 2G/3G/4G – mobile communication
	1.5.5 802.15.1 – BlueTooth
	1.5.6 LoRaWAN R1.0 – LoRa

	1.6 Cloud solutions
	1.7 Application domains
	1.8 Contributions

	2 Survey on domain specific IoT architectures
	2.1 RFID
	2.1.1 EPC
	2.1.2 uID
	2.1.3 NFC and other technologies
	2.1.4 Beyond RFID

	2.2 Service oriented architecture
	2.2.1 RFID Involvement
	2.2.2 Middleware enablement

	2.3 Wireless Sensor Network
	2.3.1 Systems
	2.3.2 Environment monitoring
	2.3.3 Infrastructure Monitoring
	2.3.4 Agriculture
	2.3.5 Aquaculture
	2.3.6 Distributed sensor network

	2.4 Supply Chain Management and industry
	2.4.1 SoA, RFID, and NFC Integration
	2.4.2 SCM as service

	2.5 Health care
	2.5.1 Home health care
	2.5.2 e-Health
	2.5.3 m-Health
	2.5.4 Ubiquitous health
	2.5.5 Hospital management
	2.5.6 WSN integration

	2.6 Smart Society
	2.6.1 Road condition monitoring
	2.6.2 Traffic management
	2.6.3 Municipal involvement
	2.6.4 Link data for society
	2.6.5 Smart city
	2.6.6 Urban management
	2.6.7 Accidental measures
	2.6.8 Smart cycling
	2.6.9 Smart sports
	2.6.10 Home entertainment
	2.6.11 Smart logistics
	2.6.12 Smart tourism
	2.6.13 Smart environment
	2.6.14 m-Learning

	2.7 Cloud service and management
	2.7.1 Information exchange cloud
	2.7.2 Vehicular cloud
	2.7.3 Cloud infrastructure
	2.7.4 Context aware services
	2.7.5 IoT as a Service
	2.7.6 Location aware service
	2.7.7 Cognitive service
	2.7.8 Control service
	2.7.9 Sensor discovery service
	2.7.10 Fog computing
	2.7.11 Big data
	2.7.12 Data filtering

	2.8 Social computing
	2.8.1 SIOT
	2.8.2 Societal data service

	2.9 Security
	2.9.1 Object security
	2.9.2 End-to-End security
	2.9.3 Cyber-physical-social security
	2.9.4 Hierarchical security
	2.9.5 Multimedia traffic security
	2.9.6 Light wight security
	2.9.7 Defense

	2.10 Observation

	3 Open research issues and future direction
	3.1 Technical challenges
	3.2 Direction toward Io<*>

	4 Conclusion
	References


