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AbstractThis paper proposes a general small-signal model for the representation of dc-dc converters based on the three-state switching cell 

(3SSC) operating in continuous conduction mode (CCM). Even though such power electronic converters present distinct behaviors 

depending on the duty cycle range i.e. 0<D<0.5 and 0.5<D<1, the developed analysis effectively shows that the derived model is valid in 

either case. An approach similar to the PWM (pulse width modulation) switch is employed, being this a fair, simple, and straightforward 

technique if compared with other similar ones e.g. average state-space modeling. Dc and ac small-signal models can then be obtained in 

order to provide relevant expressions associated to the converters e.g. the static gain and several transfer functions used in the 

implementation of closed-loop control. A dc-dc buck converter is also investigated, whose model is properly represented by mathematical 

expressions that are validated by simulation tests for both operating conditions of the 3SSC. 

Keywords3SSC-based converters, dc-dc converter modeling, PWM switch model. 

I. INTRODUCTION 

Small-signal modeling of dc-dc converters is a well-known topic in literature, especially considering the application of 

linearized state-space models to obtain transfer functions that allow closed-loop operation [1]. However, this technique depends 

on a considerable amount of mathematical manipulations. For example, in the classical Ćuk, SEPIC (single-ended primary 

inductance converter), and Zeta converters, which are fourth-order systems, the inversion of 44 matrices is necessary. Besides, 

the analysis becomes quite complex as more parasitic elements are taken into account [2]. 

Other alternative solutions dedicated to small-signal modeling have also been introduced e.g. complementarity framework, 

even though it presents significant complexity [3]. Fourier series decomposition can also be used to model power converters, 

which are based on the Fourier series analysis of the PWM (pulse width modulation) signal within the mathematical 

representation of the model, thus minimizing the possibility of applying different or sophisticated control laws [4]. 

Among several distinct solutions, circuit averaging has proven to be effective for modeling purposes [5-7]. The PWM switch 

model proposed by Vorpérian for the analysis of dc-dc converters operating in CCM [8] and DCM (discontinuous conduction 

mode) [9] consists in a simple and direct approach from the point of view of electric circuits, analogously to that used in the 
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small-signal modeling of amplifiers using bipolar junction transistors (BJTs) [10, 11]. This technique has been widely applied to 

classical dc-dc converters, but it can be extended to other topologies with higher component count [12-14]. 

The classical nonisolated dc-dc converters i.e. buck, boost, buck-boost, Ćuk, SEPIC, and Zeta are widely employed in distinct 

applications [15]. However, operation at high power levels is typically not possible in practice since the load power is processed 

by a single semiconductor element in each operating stage. The 3SSC and a family of nonisolated dc-dc converters were 

proposed in [16] as an interesting alternative for this purpose, since the filter elements are designed for twice the switching 

frequency, with consequent reduction of overall dimension. Besides, the current stresses through the semiconductor elements are 

reduced and current sharing is maintained due to the autotransformer. 

3SSC-based converters are able to operate in two distinct conditions depending on the value assumed by the duty cycle: 

nonoverlapping mode (NOM – D<0.5) and overlapping mode (OM – D>0.5). The 3SSC dc-dc buck converter operating in 

CCM was thoroughly analyzed in [17], as it is demonstrated that the mathematical analysis is not the same for each 

aforementioned mode, resulting in distinct design procedures for the power stage elements of a same topology. However, the 

small-signal modeling of converters employing the 3SSC has not yet been investigated in literature. 

Within this context, this paper proposes a unified small-signal model that can be used in the representation of dc-dc converters 

derived from the 3SSC when operating in CCM. Firstly, the analysis focuses on the constitution of the 3SSC and respective 

operating modes i.e. NOM and OM. Thus the respective main theoretical waveforms can be determined in order to obtain both 

dc and ac models. The general model is then applied to a dc-dc buck converter, while the main transfer functions are presented. 

Considering both NOM and OM, such expressions are validated by means of simulation using ac sweep in PSIM® software. 

II. SMALL-SIGNAL MODELING OF DC-DC CONVERTERS BASED ON THE 3SSC IN CCM 

The 3SSC can be obtained from the dc-dc push-pull converter [16], being composed of two active switches S1 and S2; two 

diodes D1 and D2; and one autotransformer with unity turns ratio. The detailed analysis of Fig. 1 shows that it in fact comprises 

two PWM switches, which is due to the existence of two two-state switching cells (2SSCs), also referred to as canonical 

switching ones [18, 19]. 

According to [8], the PWM switch is a three-port element [20] whose terminals are: active (a), which is directly connected to 

the main switch; passive (p), which is directly connected to the diode; and common (c), which is connected to both 

semiconductors. A similar representation can then be adopted for the 3SSC. However, it is worth to mention that distinct 

operating conditions regarding the switching states of the semiconductors exist in NOM and OM, which are analyzed in detail as 

follows. 
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Fig. 1.  Representation of the 3SSC. 



  

A. Operation in NOM 

If D<0.5, the 3SSC presents the complementary operation of semiconductors S2-D1 and S1-D2 in the first and third operating 

stages as shown in Fig. 2 (a) and Fig. 2 (c), respectively, while S1 and S2 are not turned on simultaneously during the switching 

period Ts. On the other hand, the active switches remain off during the second and fourth stages. 

In order to model 3SSC-based dc-dc converters, the waveforms of the instantaneous current through the active terminal ia(t) 

and the instantaneous voltage across the common and passive terminals vcp(t) must be analyzed. Fig. 3 shows that the behavior 

of the aforementioned quantities is not the same as that observed in the PWM switch that exists in the conventional dc-dc 

topologies. In fact, current ia(t) flows through a single active switch in the first and third stages, corresponding to ia1(t) and ia2(t), 

respectively. On the other hand, it is null during the second and fourth stages. Similarly, it can be seen that vcp(t) is equal to half 

of the diode reverse voltage in the first and second stages, but null during the second and fourth ones, where both diodes are 

forward biased. Then the following conditions result for one switching period: 
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Considering that the autotransformer has unity turns ratio, the following statement is also valid: 
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where ic(t) is the instantaneous current through the common terminal and vap(t) is the instantaneous voltage across the active 
and passive terminals. 
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(a) First stage (b) Second stage 
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Fig. 2.  Operating stages in NOM. 
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Fig. 3.  Waveforms representing the operation in NOM. 



  

In this case, the average values of voltages and currents are of major interest rather than their respective instantaneous ones. 

Therefore it is important to determine them in order to assess the dc and ac small-signal models properly. According to Fig. 4, 

the behavior of vap(t) is peculiar since terminals a and p are generally connected to a voltage source or a filter capacitor, which 

typically present an intrinsic series resistance. Therefore voltage vap(t) is oscillatory as such series resistance draws a pulsating 

current, whose peak-to-peak amplitude is equal to the maximum value of ic(t). If the current ripple regarding ic(t) is neglected 

while only its respective average value Ic is considered, the ripple associated to vap(t) can then be determined as: 

 
r e cV R I   (5) 

where the value of Re depends on the path through which ic(t) flows and, consequently, on the converter topology under analysis. 
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Fig. 4.  Average values of voltages and currents associated to the small-signal model in NOM. 

Besides, if the high-frequency ripple associated to the instantaneous waveforms is neglected, it is possible to represent ia(t) 

and vcp(t) as a function of ic(t) and vap(t) i.e.: 
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where Vap is the average value of vap(t). 

Therefore the average values of ia(t) and vcp(t) i.e. Ia and Vcp can be determined from (6) and (7), respectively. 
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It is worth to mention that (8) and (9) are invariant properties of the model independently on the dc-dc converter topology 

operating in NOM. 

B. Operation in OM 

Fig. 5 shows that switches S1 and S2 are on simultaneously during the first and third stages when D>0.5. Besides, at least one 

active switch is on during any operating stage. It is then expected that the voltage and current waveforms associated to terminals 

a, p, and c are not the same as those valid for NOM. Analyzing Fig. 6, it is possible to write the following expressions: 
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Since the autotransformer presents unity turns ratio, current ic(t) and voltage vcp(t) can be represented as: 
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Fig. 5.  Operating stages in OM.  

Analogously to NOM, voltage vap(t) presents oscillatory behavior in Fig. 7 due to the existence of resistance Re in the path of 

current ic(t) as discussed before. If the high-frequency ripple associated to the instantaneous waveforms is neglected, expressions 

(14) and (15) result, which can be used to calculate Ia and Vcp in (16) and (17), respectively. 

v
cp

v
cp1

v
cp2

i
a
i
a1
i
a2

0

0

Ts.(1-D)Ts.(2D-1)/2 Ts.(1-D)
Ts/2

Ts.(2D-1)/2
Ts

 

v
ap

v
cp

i
c
i
a

0

0

Ts.(1-D)
TsTs.(2D-1)/2 Ts.(1-D) Ts.(2D-1)/2

T/2

 

(a) (b) 

Fig. 6.  Waveforms representing the operation in OM. 
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It can be seen that the invariant properties given by (16) and (17) are identical to the ones obtained in (8) and (9) for the 

operation in NOM. Therefore it can be stated that a unified small-signal model can be used to represent 3SSC-based dc-dc 

converter over the entire range of the duty cycle. 
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Fig. 7.  Average values of voltages and currents associated to the small-signal model in OM. 

C. DC and AC Models 

Analyzing (16) and (17) or (8) and (9), it is possible to define the following ratio: 
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where D’=1-D is the complementary duty cycle, and Vc1p is the average value of the voltage across terminals c1 and p as shown 

in Fig. 8. 

It is then possible to establish an analogy between expression (19) and a transformer, whose turns ratio depends on the duty 

cycle. The dc model shown in Fig. 8 can then be used, which is similar to the representation valid for dc-dc converters based on 

the canonical cell. 

 

Fig. 8.  Dc model used to represent 3SSC-based dc-dc converters in CCM. 



  

Now, in order to derive the ac model, one must consider that the average values of the previously defined parameters (D, Ia, 

Ic, Vap, Vcp) are influenced by their respective small-signal perturbations ( ,  ,  ,,   a c ap cpd i i v v ). Therefore, expressions (16) and 

(17) become (20) and (21), respectively. 

    ˆˆ ˆ
a a c cI i D d I i      (20) 

         ˆ ˆˆˆ ˆ 1cp cp ap ap c c eV v D d V v I i R D d           
 

 (21) 

Differentiating both sides of (20) and (21), and also neglecting the terms where the product of two perturbations exists, it is 

possible to write: 

 
a c ci D i I d     (22) 

  1cp ap e c Dv D v D R D i d V          (23) 

where: 

 ( ')D ap c eV V I R D D       (24) 

and ia, ic, d, vap, vcp correspond to the derivatives of ,  ,  ,,   a c ap cpd i i v v , respectively. 

Considering that terms 
cI d  and 

Dd V  in (22) and (23) can be treated as a current source and a voltage source,  respectively, 

both perturbed by the duty cycle, the ac model shown in Fig. 9 can finally be obtained. If all perturbations are neglected, it is 

worth to mention that the same representation in Fig. 8 results. 

 

Fig. 9.  Ac model used to represent 3SSC-based dc-dc converters in CCM. 

III. SMALL-SIGNAL ANALYSIS OF THE BUCK CONVERTER EMPLOYING THE 3SSC 

The 3SSC buck converter using the cell type B is shown in Fig. 10 (a), where all semiconductor elements are considered 

ideal. However, the intrinsic series resistance of the filter inductor RL and the equivalent series resistance of the output filter 

capacitor RSE are represented in the circuit. By using the ac model represented in Fig. 9, it can be seen that it is quite simple to 

include parasitic elements as desired. 

The static gain of the converter can be determined from Fig. 10 (b) considering the following assumptions: the duty cycle is 

constant and equal to D; the output filter capacitor is open; the inductor is represented only by its respective resistance RL; the 

average input voltage is equal to Vi. The circuit analysis leads to: 

 o o

i L o

V D R

V R R





 (25) 

where Vo is the average output voltage. 

If RL=0 in (25), it can be seen that the static gain is the same as that regarding a conventional buck converter operating in 

CCM. 



  

Besides, analyzing Fig. 10 (b) and using distinct techniques and properties associated to electric circuits, it is possible to 

derive distinct transfer functions involving several variables e.g. the input voltage vi(s), input current ii(s), output voltage vo(s), 

output current io(s), duty cycle d(s), and inductor current iL(s).  

For instance, in order to determine the input-to-output transfer function vo(s)/vi(s), the duty cycle is assumed constant and 

equal to D, while the input voltage is perturbed. After simplifying the resulting circuit and some mathematical manipulation, the 

following expressions results: 
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Analogously, it is possible to obtain the control-to-output transfer function vo(s)/d(s) if the input voltage is constant and equal 

to Vi, while the duty cycle is perturbed, resulting in: 
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Other relevant transfer functions can also be obtained from the analysis of the ac model as follows: 
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Fig. 10.  3SSC buck converter employing cell B: (a) power stage and (b) ac model. 

The careful analysis of expressions (25) to (31) shows that the static gain and the aforementioned transfer functions are 

exactly identical to the ones valid for the conventional dc-dc buck converter in CCM. It is also expected that the proposed model 

applied to the family of converters described in [16] provides the very same results as those regarding other classical dc-dc 

converter topologies. 



  

Finally, it is worth to mention that expression (27) is necessary for the implementation of voltage mode control, as the output 

voltage remains constant if the load comes to vary. Similarly, expressions (30) and (31) are required by average current mode 

control, where two control loops exist. 

IV. MODEL VALIDATION 

It is possible to validate the small-signal model by using two approaches: (a) performing ac sweep with dedicated simulation 

software and (b) analyzing the dynamic response of the output when a disturbance is applied to the input [21]. The gain and 

phase Bode plots associated to expressions (26) to (31) can be obtained using ac sweep in PSIM® software and considering the 

3SSC dc-dc buck converter shown in Fig. 10 (a). An arbitrary operating point has been chosen according to the specifications 

given in Table I, which corresponds to OM. 

According to the plots in Fig. 11 to Fig. 16, the theoretical curves that represent the model and the ones obtained by 

simulation corresponding to the converter operation are nearly identical. Since the model is valid for the entire range of the duty 

cycle, it is able to represent the converter adequately. 
 

Table I. Design specifications of the 3SSC buck converter in OM (D>0.5). 

Parameter Value 

Input voltage Vi=200 V 

Output voltage Vo=150 V 

Output power Po=1 kW 

Load resistance Ro=22.5 Ω 

Switching frequency fs=30 kHz 

Duty cycle  D=0.75 

Output filter capacitance C=2.40 µF 

Filter inductance L=312 µH 

Equivalent series resistance of the 

output filter capacitor 
RSE=10 mΩ 

Series resistance of the filter 

inductor  
RL=1 mΩ 

Inductor current ripple ∆IL=1.33 A 

Output voltage ripple ∆V=1.5 V 

 



  
 

Fig. 11.  Bode plots for vo(s)/vi(s) and D=0.75. 

 

Fig. 12.  Bode plots for vo(s)/d(s) and D=0.75. 

 

Fig. 13.  Bode plots for Zi(s)=vi(s)/ii(s) and D=0.75. 

 

Fig. 14.  Bode plots for Zo(s)=vo(s)/io(s) and D=0.75. 



  
 

Fig. 15.  Bode plots for vo(s)/iL(s) and D=0.75. 

 

Fig. 16.  Bode plots for iL(s)/d(s) and D=0.75. 

Now, let us analyze the dynamic behavior of the model compared with the converter performance considering the input-to-

output and control-to-output transfer functions and the specifications given in Table I. Fig. 17 shows that the average model is 

able to represent the converter start-up from t=0 properly, where there are no initial conditions for the filter inductor and filter 

capacitor. The duty cycle remains constant at 0.75 during 30 ms, although the input voltage decreases from 200 V to 150 V at 

t=10 ms, thus causing the output voltage to be reduced from 150 V to 112.5 V as defined by the static gain in (25). Once again, 

the input voltage varies from 150 V to 250 V at t=20 ms, as the output voltage increases from 112.5 V to 187.5 V in both the 

converter and the model. 

Analogously, the model is evaluated regarding the behavior of vo(s)/d(s), where the input voltage remains constant at Vi=200 

V. The duty cycle is reduced from 0.75 to 0.25 at t=10 ms, and increased from 0.25 to 0.5 at t=20 ms, where it can be seen that 

the output voltage varies as expected in both cases. Therefore it is reasonable to state that the proposed approach is able to 

represent the converter in both NOM and OM. 

  



   
Fig. 17.  Dynamic behavior of the converter and small-signal model for vo(s)/vi(s) when the input voltage is perturbed. 

 

Fig. 18.  Dynamic behavior of the converter and small-signal model for vo(s)/d(s) when the duty cycle is perturbed. 

V. CONCLUSION 

The small-signal modeling approach proposed for dc-dc converters based on the 3SSC in CCM has proven to be a simple and 

straightforward technique, considering that the analysis is strictly carried out from the point of view of electric circuits. It has 

been show that it is able to represent the topologies operating in both operating modes i.e. NOM and OM, which can be typically 

found in 3SSC-based structures. 

A 3SSC dc-dc buck converter has been analyzed in detail, whose model has been properly validated comparing the Bode 

plots of the theoretical model with the ones obtained by simulation. It is worth to mention that the derived transfer functions are 

strictly important for the closed-loop operation of the converters. Besides, it has been proven that the resulting expressions are 

exactly the same ones valid for the conventional buck converter operating in CCM. 

Finally, it can be stated that the aforementioned modeling technique can easily be extended to other 3SSC converters, thus 

allowing the development of their respective small-signal models with few mathematical manipulations if compared to the 

average state-space technique. 
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