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A B S T R A C T

Hypomorphic mutations in six different genes involved in the glycosylphosphatidylinositol (GPI) biogenesis
pathway are linked to Mabry syndrome (hyperphosphatasia with mental retardation syndrome, HPMRS). This
report on the third affected family with a HPMRS phenotype caused by mutations in PIGL, confirming the
seventh GPI biogenesis gene linked to HPMRS. Two siblings presented with the main features of HPMRS; de-
velopmental delay, cognitive impairment, seizure disorder, skeletal deformities, and high alkaline phosphatase.
We identified two heterozygous mutations in the PIGL gene (P.Trp20Ter and p.Arg88Cys). PIGL mutations have
been linked to another distinctive neuroectodermal disorder: CHIME syndrome. The clinical picture of our pa-
tients expands the spectrum of PIGL-related phenotypes.

1. Introduction

Glycosylphosphatidylinositol (GPI) glycolipids play a critical role in
the post-translation modification and cell membrane anchoring
of> 150 eukaryotic proteins which ultimately affect the sorting, traf-
ficking, and dynamics of those proteins. Also, they participate in the
process of embryogenesis, neurogenesis, immune responses, and ferti-
lization. The biogenesis of mature GPI involves> 20 genes and occurs
in eukaryotes via a conserved post-translational pathway [1].

In animal studies, complete deletion of the GPI pathway results in
embryonic lethality. However, complete deletion has not been reported
in humans. Hypomorphic mutations in the genes encoding the GPI
biogenesis pathway result in partial reduction of GPI-anchored pro-
teins, which leads to phenotypically heterogeneous clinical presenta-
tions, with global developmental delay a common feature. This element
supports the notion that GPI-anchored proteins play a vital role in
neurogenesis [2,3].

PIGL encodes the endoplasmic phosphatidylinositol glycan anchor
biosynthesis class L, which is involved in the second step of GPI bio-
synthesis: the de-n-acetylation of n-acetylglucosaminyl-phosphatidyli-
nositol (GluNAc-PI), generating glucosaminyl-phosphatidylinositol
(GlcN-PI) on the cytoplasmic side of the endoplasmic reticulum [4].

Mutations in PIGL have been linked to two rare distinctive

syndromes: CHIME syndrome (Zunich neuroectodermal syndrome) and
Mabry syndrome (hyperphosphatasia with mental retardation syn-
drome, HPMRS) [5,6].

2. Clinical data

The proband is a 10-year-old West African male who is the first
offspring of a non-consanguineous couple. He was delivered sponta-
neously at term after an uneventful pregnancy weighing 2665 g (5th
percentile) with a head circumference of 32 cm (5th percentile) and
Apgar score of 9. At the age of 6months, he presented with myoclonic
seizures that were partially controlled with medications. By the age of
12months, he had surgical correction of inguinal hernia, hydrocele,
and strabismus. His developmental milestones were globally delayed,
including cognitive, language, gross and fine motor functions, with no
major improvement despite intensive rehabilitation. His first available
baseline physical examination was documented at 4 years of age.
Growth parameters were normal with weight, height and head cir-
cumference on the 75th percentile. The facial features were coarsely
dysmorphic, including prominent forehead, high arched eyebrows and
sparse on the outer third, nystagmus, mild telecanthus, uplifted ear
lobes, and open mouth with intermittent drooling. In addition, he had
mild pectus excavatum and clinodactyly involving the fifth digits, 4th
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and 5th toes bilaterally. (Fig. 1, hand X-ray). No skin abnormalities
were noted. Other features included reducible umbilical hernia, mild
hepatomegaly, and ataxic gait. Audiology and heart evaluations were
normal. Brain MRI showed symmetrical bilateral patchy signal ab-
normalities in the periventricular zones in the parietal, occipital and
frontal regions, white matter loss, and thin corpus callosum. Liver en-
zymes showed mildly elevated transaminases with significantly ele-
vated ALP 968 U/L (normal: 135–320 U/L). Vitamin E and alpha-feto-
protein were normal. All metabolic tests were unremarkable, including
but not limited to purines/pyrimidines, glycosaminoglycans, creatine
panel, carbohydrate transferrin, homocysteine, sterol profiles, and
creatine kinase. Array CGH and Coffin-Siris molecular testing were
normal.

Evaluation of the patient's younger 4-year-old brother revealed a
very similar presentation. He had unremarkable antenatal and perinatal
history. His developmental milestones were globally delayed. He de-
veloped his first onset of partially controlled tonic-clonic seizures at the
age of 4months. Strabismus was surgically corrected at the age of
1 year. On examination, he was inattentive with coarse facial features
including high hairlines, hypertelorism, epicanthal folds, horizontal
nystagmus, depressed nasal bridge, delayed teeth eruption, everted and
partially bifid lower lip, folded ears, and irregular hypopigmented skin
margins surrounding the eyes and the nose. His head circumference was
51 cm (75th percentile). Systemic examination revealed spastic lower
limbs, bilateral brachydactyly, severe clinodactyly of both fifth fingers
and toes and dry eczematous skin. No chest deformity or organomegaly
was noted. His ALP was 454 U/L.

3. Molecular data

A commercially available multigene panel for intellectual disability
(GeneDx) was performed in the proband and revealed two variants in
PIGL gene, a nonsense (c.60G > A; p.Trp20Ter; W20X) pathogenic
variant and missense (c.262C > T; p.Arg88Cys; R88C) variant. Neither
variant was observed in approximately 65,000 individuals of European
and African American ancestry in the NHLBI Exome Sequencing
Project. The first variant was interpreted as pathogenic as it causes loss
of normal protein function through truncation or nonsense-mediated
mRNA decay. For the second variant, in silico analysis predicted it as
likely damaging the protein structure and function. Parental analyses

were done by Sanger sequencing and confirmed in trans mutations.
Targeted genetic testing for the brother detected the same variants.

4. Discussion

In 1970, Mabry et al. described a unique syndrome comprised of
severe cognitive impairment, seizures, various neurologic deficits, and
elevated serum ALP [6]. This syndrome was acronymed HPMRS-
1(OMIM: 239300) [7] and linked to mutations in the PIGV gene, which
is involved in the early steps of GPI anchor assembly [8]. Subsequently,
other pathogenic defects in genes involved in either GPI anchor as-
sembly or maturation were linked to the same phenotype. [Table 1].

The PIGL gene is responsible for the second step of GPI biosynthesis.
Mutations in this gene were initially reported in seven cases presenting
with CHIME syndrome. CHIME (OMIM: 280000, ocular Colobomas,
Heart defect, Ichthyosis, Mental Retardation, and abnormal Ears or
Epilepsy) was first described clinically by Zunich et al. in 1983, acro-
nymed by Shashi et al. in 1995, and linked to PIGL mutations by Ng
et al. in 2012. All patients presented the main features of CHIME syn-
drome plus a variable combination of facial dysmorphism such as
brachycephaly, flat and broad nasal root, short philtrum, hypertelorism,
cloudy corneas, overfolded helices, wide mouth, full lips, cleft palate,
and abnormal dentation. Mildly elevated alkaline phosphatase was re-
ported in only one patient who presented with a clinical phenotype of
CHIME syndrome (not molecularly confirmed) in the setting of acute
lymphocytic leukemia [5,9–12].

Recently, in addition to its association with CHIME syndrome,
mutations in PIGL have been linked to HPMRS in two cases [13,14]. We
are reporting the third family with a HPMRS phenotype secondary to
PIGL mutations supported by the clinical presentations of cognitive
delay, seizures, skeletal deformities, and elevated ALP. Our patients had
some overlapping features between CHIME and HPMRS, particularly in
the characteristic facial features, seizures, and global developmental
delay. However, the absence of coloboma, heart defect and hearing
impairment, in addition to the distinctive skeletal phenotype of short
terminal phalanges and the high ALP made the presentation more
suggestive of HPMRS.

The phenotypic difference between HPMRS and CHIME syndromes
could be related to the type of PIGL mutation. All the reported cases
with a HPMRS phenotype, including our patients, presented at least one

Fig. 1. X-ray hands showed deformity of the middle phalanx of the 5th finger bilaterally with the lateral aspect of the phalanx being shorter than the medial aspect.

R. Altassan et al. Molecular Genetics and Metabolism Reports 15 (2018) 46–49

47



PIGL mutation leading to complete loss of the protein's function
[13,14]. On the other hand, all reported cases of CHIME shared the
same p.Leu176Pro mutation in a compound heterozygous state with
another pathogenic variant. Homozygous p.Leu176Pro mutations have
never been reported. The p.Leu176Pro alteration has been shown to
preserve some of the protein's function, thus allowing a milder phe-
notype [10,12].

The craniofacial features that our patients share with the first re-
ported case of HPMRS secondary to PIGL mutation include hyperte-
lorism, high palate, strabismus, ear anomalies, and the skeletal defor-
mities of the hands. However, the additional minor facial traits
described by Fujiwara et al. were lacking in our patients [13]. Inter-
estingly, the coarse facial features observed in our patients were pre-
viously reported in patients with HPMRS where there was initial sus-
picion of a lysosomal storage disorder [7]. All of the HPMRS types share
the phenotype of global developmental delay, seizure disorder, and
high ALP [15]. The hypoplastic terminal phalanges were reported in
HPMRS type 1 and 2 only. This skeletal finding could lead to suspicion
of Coffin-Siris syndrome given the neurological findings in both syn-
dromes [Table 1] [16–28].

The elevated ALP in HPMRS is the nonspecific ALPL isoform (liver/
bone/kidney). Defects in GPI biogenesis affect the expression of the
anchored proteins, including ALP. The exact mechanism of ALP eleva-
tion in HPMRS is not well-explained. Experimental studies on mutant
CHO cells showed that defects in the genes involved in the later steps of
the pathway efficiently secrete ALP into the medium and consequently
give high ALP levels. In comparison, mutations in the early steps will
degrade the ALP in the cells and result in normal ALP levels.
Additionally, GPI transamidase, which is activated through binding
with a mannose-containing GPI intermediate before the enzyme com-
plex processes the precursor proteins for release, plays a major role in
expressing the proteins [29]. This could explain the elevated ALP levels
in mutations involved in some of the late steps of GPI anchor synthesis
including PIGV (fifth step) and PIGO (eighth step). However, elevated
ALP levels were not observed in other late steps of GPI synthesis in-
cluding PIGN in the sixth step and PIGT in the tenth step. On the other
hand, mutations in the final step of GPI-anchor fatty acid remodeling,
mainly in PGAP2 and PGAP3, resulted in an elevated ALP level [30].
Mutation in PIGL, which involves the second step of GPI synthesis, is
another exception for the hypothesized theory. Further studies are
needed to understand the factors affecting the expression of GPI-an-
chored proteins.

ALP is essential for dephosphorylation of the circulating pyridoxal
5-phosphate to pyridoxal. Defects in anchoring ALP could predispose to
B6-responsive seizures in HPMRS in a similar manner as in hypopho-
sphatasia (OMIM: 241500) secondary to ALPL (alkaline phosphatase,
liver/bone/kidney) mutations as both might affect the function of the
ALP enzyme. Pyridoxine supplements in two patients with HPMRS, one
with PIGO mutations and one with unknown underlying gene muta-
tions, showed a good clinical and electroencephalographic response
[31,32].

Most of the GPI biogenesis syndromes are diagnosed by whole
exome/genome sequencing due to the rarity of those disorders, the
heterogeneity in the clinical phenotypes, and the lack of clear bio-
chemical markers. Even if very rare (< 0.5% of developmental dis-
orders), including ALP as a simple, sensitive screening test in patients
presenting with unexplained developmental delay would allow de-
tecting this sub-type of GPI biogenesis disorders [14]. Further studies
are emerging to correlate elevated ALP to GPI biogenesis disorders and
to potential therapies for those disorders i.e. the role of pyridoxine for
seizure control.

In conclusion, our clinical, biochemical and molecular findings
support the previous reports of HPMRS caused by PIGL mutations. PIGL
should be considered in the differential diagnosis of the known PIG
classes (PIGV, PIGO, and PIGW) and the post-GPI attachment to proteins
genes (PGAP2, PGAP3) that are currently linked to HPMRS.Ta
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