
Accepted Manuscript

Title: Automatic security policy enforcement in computer systems

Author: K. Adi, L. Hamza, L. Pene

PII: S0167-4048(17)30228-6

DOI: https://doi.org/10.1016/j.cose.2017.10.012

Reference: COSE 1224

To appear in: Computers & Security

Received date: 7-5-2017

Revised date: 29-9-2017

Accepted date: 29-10-2017

Please cite this article as: K. Adi, L. Hamza, L. Pene, Automatic security policy enforcement in

computer systems, Computers & Security (2017), https://doi.org/10.1016/j.cose.2017.10.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service

to our customers we are providing this early version of the manuscript. The manuscript will

undergo copyediting, typesetting, and review of the resulting proof before it is published in its

final form. Please note that during the production process errors may be discovered which could

affect the content, and all legal disclaimers that apply to the journal pertain.

Automatic Security Policy Enforcement in Computer

Systems

K. Adi, L. Hamza, and L. Pene

Computer Security Research Laboratory

Computer Science and Engineering Department

Université du Québec en Outaouais, Québec, Canada.

Vitae

Kamel Adi holds a Master degree in theoretical computer science from Pierre et Marie Curie

(Paris VI) University and a Ph. D. degree in computer security from Laval University, Quebec,

Canada. He is currently a full professor in the Department of Computer Science and Engineering

at the University of Quebec in Outaouais, Canada. Kamel Adi is also the co-director of the

Computer Security Research Laboratory at Université du Québec en Outaouais, Canada. His

research activities focus on the development and application of formal methods for solving

problems related to computer security and computer networks.

Lamia Hamza is a Ph.D. student and assistant teacher at University of Bejaia, Algeria. She

received an engineer diploma in computer sciences from the University of Setif, Algeria, and a

M.Sc. in networking and distributed systems from the University of Bejaia, Algeria. Lamia

joined the Computer Security Research Laboratory during her research internship at Université

du Québec en Outaouais, Canada. She continues to collaborate with other team members on

topics of common interest. Her current research involves computer security and formal methods.

Liviu Pene received his Master degree in computer science from Université du Québec en

Outaouais, Canada. He is currently a Ph.D. student and a member of the Computer Security

Research Laboratory team at Université du Québec en Outaouais, Canada. Liviu’s most recent

research explores subjects related to the verification and enforcement of computer and network

security policies through formal methods.

Abstract. This paper proposes a formal framework for automatic security policy enforcement in

computer systems. In this approach, systems and their interactions are formally modelled as

process algebra expressions with a new dedicated calculus inspired from the ambient calculus.

Security policies are specified with the aid of a dedicated modal logic. We demonstrate how, for

a given security policy expressed by a logical formula, our calculus allows to verify whether the

specification meets the security policy requirements. If it does not, the optimal enforcement for

Page 1 of 34

the system is automatically generated using our enforcement operator. A software prototype has

been implemented to show the practical feasibility and the effectiveness of our security policy

enforcement framework.

Keywords: computer security, formal methods, process algebra, security policy, policy

enforcement, ambient calculus, modal logic

1 Introduction

There are various solutions for securing computer systems, including operating system tools,

third party applications, hardware devices, etc. In general, the difficulty of the issue is directly

proportional with the complexity of the system. Some aspects of the security posture are

straightforward and can be easily addressed by referring to best practices, templates and white

papers. However, such documents only provide guidelines for the most common configurations,

which are rarely fit for complex and large computer system. Once the requirements have been

determined, the resulting policies are translated into available security mechanisms, implemented,

tested and certified (or at least they should be). The human factor intervenes in policy definition,

implementation and evaluation. It plays a crucial role in the more or less successful protection of

computer networks. Although human intervention is necessary in the definition of security

policies, its role in their enforcement on computer systems must be minimized and the task

should preferably be performed by an automatic process. The final aim is to reduce or even

eliminate implementation errors.

Formal methods are well positioned to address such concerns since they can be used to generate

enforcement processes that can be proven correct. The scope of the present work is mainly

focused on a security policy enforcement method based on the notions of protected boundaries

and controlled process movement. The resulting framework allows us to specify systems, express

security policies, assess policy compliance and automatically calculate necessary enforcements

for non-compliant systems. Given a process P (representing a system) and a formula Φ

(corresponding to a desired security policy), then changes (denoted by an enforcement process X)

may be required so that the resulting system (P X , read as P enforced by X) satisfies Φ. The

concepts and techniques apply to small and large networks alike, regardless of the number of

nodes and the complexity of the topology.

The remainder of this paper is organized as follows. Section 2 reviews related research work.

Section 3 summarizes our approach. The new calculus we introduce in Section 4 is suitable for

Page 2 of 34

specifying systems and policy enforcements. Section 5 details our dedicated logic for security

policy specification. The quotient operator, defined in Section 6, describes our technique for

deriving an enforcement from a given security policy and system’s specification. The technique

is illustrated through the case study depicted in Section 7. Section 8 presents a software

prototype implementing the proposed approach. Finally, Section 9 expresses our conclusions and

some directions for future work.

2 Related Work

This section reviews some of the closest related research papers and points out some of their

shortcomings with respect to our purpose. The articles mentioned here are relevant for the

elements of the framework we propose: process calculus, logic, and security policy enforcement.

One of the most successful formalisms used in the related literature to specify computer systems

is the ambient calculus, which was first introduced by Cardelli and Gordon in [1]. An ambient is

a delimited space that has a name, an interior (containing processes) and an exterior. The

calculus captures the notion of mobility by allowing processes to move between different

administrative sites. The movement of an ambient process is governed by its capabilities,

including the possibility to move inside or outside another ambient.

Several research initiatives have employed the ambient calculus to address the issues related to

modeling and validating computer systems. In [2], Adi et al. proposed a dedicated ambient-based

calculus for the specification of distributed firewall policies. Process equivalence is used to prove

the correctness of a local security policy with respect to the global security policy, but it does not

ensure the enforcement of security policies. An interesting extension of the ambient calculus was

proposed by Ferrari et al. [3]. They consider the concept of ambient monitoring and coordination

policy through guardians attached to each ambient. The role of a guardian is to monitor the

activity of processes and sub-ambients and the interaction with the external environment.

Guardians have coordination abilities and they can successfully cooperate for an effective

propagation of a policy change across an environment. A control in guardians involves specific

entities with their own semantics, which adds to the complexity of the model and makes the

verification and enforcement tasks more difficult.

A variety of logical formalisms can be used to specify security policies. In order to simplify the

model checking process, the formalism should be related to the system’s specification language.

In [4, 5] Cardelli and Gordon defined the ambient logic as a modal logic for expressing

Page 3 of 34

properties of processes described by the mobile ambient calculus. It allows expressing properties

that hold at particular locations by using spatial modalities. The ambient logic has been further

developed by Hirschkoff et al. [6] who demonstrate that it is a very expressive formalism and an

intensional logic.

The subject of enforcing security policies, and enforcements on programs in particular, has also

been tackled by several researchers. Static enforcement can be accomplished through techniques

such as model checking [7], type systems [8, 9] and proof-carrying code (PPC) [10]. Schneider

[11] initiated the research on runtime-enforceable security policies through security automata

simulations. He defined a specific class of enforcement mechanisms, the EM (Execution

Monitoring) class. The result was further enhanced by Schneider, Hamlen, et al. [12, 13] through

the addition of a class enforceable properties by program rewriting. This can be done by

transformation of formulas and processes, as demonstrated by Langar et al in [14] and by Sui et

al in [15]. Among other notable research in this space we include the works of Bauer et al. [16,

17], Clarkson [18], Basin [19], and Khoury [20].

3 Our Approach

A common observation in the related research literature is that the existing approaches have

limited applicability. Although researchers have made great strides in the past few years, most

approaches adopt an informal manner for specifying input information of both system and policy

representation. This impacts the accuracy of the specification. In practical terms, we need to

make sure that none of the network components or system’s interactions are missing. Access to

network shares, for instance, implies the definition of components (users, shared volumes,

communication channels, access control lists, etc.) and interactions (allowed operations such as

file retrieval and submission, system response in case of insufficient access permissions, etc.).

The absence of the aforementioned components or insufficient granularity in describing

interactions would make the specification incomplete. It is therefore important to develop formal

methods that allow appropriate representations of computer systems and their behavior. The

technique we propose in this paper addresses the issue of policy compliance for computer

networks through formal specification and assessment of the system’s security configuration.

The approach allows the automatic generation of enforcement processes that have the ability to

rewrite a system specification to make it satisfy a security policy.

Page 4 of 34

The computer network analyzed is specified with our dedicated calculus, which is designed to

easily capture the behaviors of the various network components. The security policy is specified

using a dedicated logic. Policy compliance can be verified in terms of system and policy

specifications. If a policy change is required, our quotient operator allows us to compute the

enforcements for the non-compliant components of the system. Figure 1 provides an outline of

our approach. The major steps involved are the following:

– the system is specified using the calculus defined in section 4; the result is a process P

which models, at an abstract level, the system;

– the security policy is specified as a formula Φ with the aid of the logic defined in

section 5;

– the system’s specification P is evaluated for compliance with the formula Φ; if P does

not satisfy Φ, an enforcement process X has to be calculated so that the resulting enforced system

P X satisfies Φ.

Our Framework for Policy Enforcement (FPE) contains a sensible amount of original

contributions. The concept of ambients of Cardelli and Gordon has been fundamentally changed.

There are marked differences in our new algebra, such as the direction of movement, ambient

protection through keys, and modalities for capabilities. Our logic involves capability and

protected location primitives and the quotient operator is, to our knowledge, the first method for

automatic enforcement calculation that involves ambients. Finally, the application is developed

from scratch for the specific purpose of implementing the enforcement calculation algorithm.

4 Security Enforcement Calculus

In this section we define the syntax and the semantics of a calculus suited for specifying, at an

abstract level, a given network with the behaviors of network components, including network

protections.

4.1 Syntax

Let be a set of domain names and let be the set of keys used to access protected

domains. Let be a set of process actions and let be a set of communication channels.

The syntax of our specification calculus is presented in Table 1. This syntax defines the building

blocks needed for specifying secured computer systems. System’s security is mainly achieved

through access control mechanisms. We define two process constants, 0 and 1, representing

respectively a process deadlock (or blocking) and successful termination. We use the following

Page 5 of 34

operators: “.” denotes the sequence operator, “|γ” denotes parallel composition, “+” stands for

nondeterministic choice, “!” denotes the infinite replication operator, and “ ” represents the

enforcement operator. The expression P Q describes a process P enforced by a process Q.

Let be the set of all processes that can be expressed by our calculus. Processes can be

enclosed in protected ambients. An ambient is a named domain and its name n is used for

identifying the ambient and for locating the domain resources. Domains are uniquely identified,

meaning that there cannot be two distinct ambients sharing the same name. In our approach an

ambient is always protected by an access key k used for controlling access to resources. The

appropriate key must be used for entering an ambient. We define a partial order on the set of

keys . Let (, ≥) be a partial ordered set, and let k, k′ in . The expression k ≥ k′ means that

k is comparable to k′, but more powerful, as it can open at least any ambient k′ can open. We

denote by δ the public key which is the ()glb . The partial order on keys is introduced to allow

the specification of different levels of privileges and to better reflect the hierarchy of passwords

in a computer system: superuser password, user password, guest password, etc.. Moreover, the

partial ordering on the set of keys allows for more concise specifications. For example, a single

key can be used to cross several protected domains (e.g.: rule 4.15 in Table 4) if it is stronger

than the protection keys used in these domains.

The public key allows modeling domains with unrestricted access. The notion of ambient

protection by keys offers an effective mechanism for the enforcement of access control policies.

This is comparable to a distributed Policy Decision Point - Policy Enforcement Point. Hence, in

our framework, the enforcement of an access control policy is translated into a key-based

protection mechanism: a process can move into a domain and use its resources only if it is in

possession of the right key. We think that the use of such a mechanism is sufficient to allow the

enforcement of a large class of safety properties.

An ambient also possesses an interface i specifying a set of communication channels used for

interaction with the rest of its environment. Two ambients can communicate only if their

interfaces share at least a common channel. General process interactions are expressed through a

communication function, γ, which is a partial function of   that satisfies the two

following conditions:

1. , a b :),(=),(abba  (communtativity)

Page 6 of 34

 2. , , a b c :)),(,(=)),,((cbacba  (associativity)

There are two types of actions: regular and enforcing. The regular actions enable the execution of

process capabilities. The enforcing actions are used for modifying process behaviour. We

consider the following particular regular actions in order to define process capabilities: k

n
mov

(movement) and k

n
prot (protection). Movement represents the ability of a process to circulate

in and out of ambients, provided it uses the appropriate key. For instance, the process .mov
k

n
P

will enter an ambient n protected by the access key k′ such that k ≥ k′ and then will behave like P.

Protection refers to an access key change, and is always applied from within an ambient. The

process .P
k

n
prot within an ambient n protected by k′ will modify its parent ambient’s key to k

and then continue executing as P. We use the modalities “•a”, “▲a”, and “▼a” to depict

enforcing actions. They preserve, prevent or to enforce the execution of some action a,

respectively. The •a modality used within an enforcement process ensures that the first action a

of a process a.P is preserved and executes as scheduled. The opposite effect is achieved through

▲a, which triggers the removal of the action a from the same process. The ▼a modality allows

us to insert the action a as the first executable action of a process P, effectively transforming it

into a.P. Movement actions can be used to describe a system behaviour, so they can be part of a

system specification. They are also used for transporting enforcements to the desired location, so

movements can also be part of enforcement processes. The action modalities can only exist

during the enforcement phase, so they cannot be part of a system specification.

Movement between two ambients can be defined by specifying sets of intermediary ambients.

Consider a move of a process to an ambient m from a current location. Let s be the set of

intermediary ambients between the origin and destination ambient. We denote by
,

k

s m
mov the

sequence of movements to m through the intermediary ambients in s. More formally:

,

, \{ },

=

= (.), if 0

k k

m m

k k k

s m s s s ms s i ii

s














mov mov

mov mov mov

Moreover, in order to keep the specification light, we will denote
n


mov by movn.

4.2 Semantics

Page 7 of 34

The operational semantics of our calculus is defined by two main components: the structural

congruence, denoted by “≡” and the reduction relation, denoted by “→”. Table 2 presents a

structural congruence on processes, which is introduced to streamline the definition of the

reduction relation in Table 4. The first twelve cases (2.1 - 2.12) reflect common algebraic

properties, such as reflexivity, symmetry, transitivity, and commutativity. Cases (2.13 - 2.15)

show different equivalences when a blocking process is involved. Indeed, the effect of a blocking

process on a sequence is obvious. If there is a choice between a non-blocking process and a

deadlock, the choice defaults to continuing the execution. Therefore, the non-blocking process

will execute. The enforcement of a deadlock, used to enforce the ff policy, will however block

the whole targeted process. The successful termination process, covered by (2.16 - 2.19), is a

neutral element for sequence, parallelism, enforcement, and choice. The cases (2.20 - 2.31)

highlight some fundamental properties of our syntactic operators: commutativity, distributivity,

idempotence, etc.. We use “→∗” as a transitive closure of “→”. Note that enforcement, unlike

parallelism, is not symmetrical. Whenever an enforcement is applied to a process, the right hand

term has to terminate before the left hand term starts executing.

Table 3 defines the predicate “_↓”, which is used in the definition the reduction relation. P↓

means that P has the option to terminate successfully. The cases (3.2) and (3.3) are obvious: if

one of processes P and Q has the option to terminate successfully, then so does the choice of the

two. Cases (3.4) and (3.5) concern the sequence and parallelism operators. An expression P.Q or

P|Q has the option to terminate successfully if both P and Q do so. The case (3.6) states that the

ambient boundaries have no influence on a process’s option to terminate successfully.

The reduction relation in Table 4 captures all possible process evolutions. Rules (4.1 - 4.5, 4.7,

4.8) capture the standard operational semantics of our process algebra. Rule (4.6) allows an

evolution of the process representing the system only if the enforcement process has the

opportunity to terminate. Our syntax allows a complete control over process behaviour with the

aid of enforcement processes. Given a process a.P, an enforcement can allow a to run as

scheduled (4.10) or remove it (4.11). The use of the remove modality is shown in the following

example:

.() . ()
k

k k n

n n
  

mov
m ov P Q m ov R P Q R

Page 8 of 34

Alternately, an enforcement process can insert a completely new action to be executed as the first

action of a process (4.12). A combination of removal and insertion is useful, for example, when

the network topology changes due to a link being added or failing. In such a case, security

policies need to be updated to reflect the affected communication interfaces and alternate paths.

They will in turn be implemented through enforcement processes that prescribe the

corresponding movement capabilities.

The actual mechanisms for movement inside, out, and across ambients are captured by rules

(4.13) to (4.15). The example below illustrates both (4.13) and (4.14).

,

. | [|] | [. |] [| |] | | []
k k

k k i k k j k i k jn m

n n m m n m       


  


mov mov

mov P Q R mov S T P Q R S T

Ambient access keys can be modified as well, whenever required by a policy change, in order to

lower or elevate the ambient’s protection level (4.16).

Definition 1 (Normal form). A process P is in its normal form, denoted by P⇓, iff there is no

action a  so that
a

 P P .

We extend the structural congruence relation as follows:

() (2.32)

 P Q P Q P

5 Logic for Security Policy Specification

In this section, we define a dedicated logic suited to specify security policies for computer

systems described with our calculus. The intent is to have a formalism that allows us to specify

safety properties. An example of such a property could be the prohibition for a computer to

communicate with another host located inside or outside of its domain. Since the properties can

be significantly more complex, the logic must be expressive enough to specify any safety

property. The proposed logic is inspired from the work of Cardelli and Gordon [4, 5]. It allows

manipulation of spatial and temporal modalities, i.e. the current place (location) in the system

and the order of execution of various actions.

5.1 Syntax

We define a modal logic with standard propositional connectives for negation and disjunction (¬,

∨), and a capability operator (〈 〉). Furthermore, we define spatial connectives (|, []). The syntax

of our logic is summarized in Table 5. The set of logical formulas specified in our logic is

denoted by . We define some standard macros, as follows:

() f f tt                  

Page 9 of 34

5.2 Semantics

Let  ,   , n , i and k . The semantics of our logic is given by the

meaning function [[_]]: 2 defined inductively on the structure of formulas. Table 6

shows the logic’s semantics. We say that a process P satisfies the formula Φ and we note P

if [[]]P . The formula tt is satisfied by all processes, except for the blocking process (which

satisfies ff). The negative form of the policy ¬Φ is satisfied by processes that are not part of the

semantics of the policy Φ. A process satisfies the formula Φ∨Ψ if it satisfies either the formula Φ

or the formula Ψ. If P satisfies Φ, then the formula 〈a〉Φ is satisfied by a.P. A process P|Q

satisfies the formula Φ|Ψ if process P satisfies Φ and process Q satisfies Ψ. The protected

location logical formula reflects the case when a specific behaviour is required inside an ambient.

Both the ambient’s parameters (name, key, and interface) and the logic formula inside the

ambient need to be satisfied by the process.

Lemma 1. Let Φ and Ψ be two logical formulas and let P be a process. Then:

[[]] [[]] [[]]      P P

Proof. The proof is trivial.

It is worth mentioning that since both the logic and the calculus are endowed with spatial

operators, it is easy to produce modular specifications.

5.3 Elimination of the form ¬Φ

We need to propagate the negation operator inside the formulas in order to limit its scope to

atomic actions. This transformation will be of great help to simplify the definition of the quotient

operator given in Table 8 in the next section. Table 7 presents a rewriting system that allows the

calculation of such transformations. It is easy to verify that all applied transformations lead to

equivalent logical formulas. The following example demonstrates how the rewriting system can

be applied to push the negation operator down to atomic actions.

(7.4)

(7.4)

(7.1)

() () ()

() (()))

() ()

k k k k k

n m n n m

k k k k

n n m m

k k k k k

n n m n m

tt tt tt

tt tt tt

tt tt f f

 

 

 

           

           

            

mov mov mov mov mov

mov mov mov mov

mov mov mov mov mov

6 Security Policy Enforcement

Once the system and the security policy have been specified with our algebraic calculus and

logic, the next important step is to extract automatically an enforcement process that imposes the

Page 10 of 34

behavior of the system’s model as stated by the policy. The main intent of this approach is to

automatically identify the enforcement components that allow to impose a given policy on a

system.

This can be viewed as an alternative representation of the interface equation problem [21–24].

The idea is to derive a quotient process from two given processes. The derived quotient process

represents, then, the missing part for the two processes to be equivalent. In this paper, the

quotient is defined in terms of a process and a logical formula. Therefore, the equation we need

to solve has the form:

P X

where P is the formal description of a system and Φ is the security policy to be enforced.

In the equation shown above, X can be expressed as a quotient. The solution X of this equation is

the enforcement we look for:

=


X
P

We have shown in Table 2 that enforcements don’t have any effect on a deadlock process. Also,

it is obvious that there is no need for an enforcement if a process already satisfies the policy. For

all other situations, the quotient operator 



 is formally defined in Table 8. Several examples of

process enforcements are also provided in this section.

All processes, except the blocking process, satisfy the formula tt (8.1), so there is nothing to

enforce (i.e. the value of the quotient is 1). Since no valid process can satisfy ff, the generated

enforcement at (8.2) is 0, which has the effect of blocking the system. Rules (8.3 - 8.7) refer to

policies that require a particular action. Consequently, the targeted action of the process is

preserved, added or removed. The rule (8.3) applies when the process starts by the action

specified in the formula. The enforcement process must then keep the action in place, therefore

the action •a is generated for the enforcement process.

The rule (8.6) is quite similar, with •b preserving in this case an action which is different from

the action a prohibited by the policy. If the desired action is different, as in (8.4), that particular

action needs to be enforced. This means that the non-compliant action b needs to be neutralized

first, followed by the insertion of the new action a. A fitting example would be the use of a new

access key k′′ for a movement action instead of the obsolete key k. Let = . .1
k k

n m


mov movP and

Page 11 of 34

let =
k

n
tt

 
 mov . Notice that the formula specifies that the movement action needs to use the

new key. The enforcement in this case is given by the expression:

= = . . .1 . .
.1

k k k k k k

n n n n n nk

m

tt      


 X mov mov mov mov mov mov

P mov

Therefore, = . .1
k k

m m

  
P X mov mov .

The rule (8.5) follows the same reasoning, but in this case we seek satisfaction of the

complementary action. The rule (8.7) applies to the enforcement of a policy on the process 1.

The rule (8.8) concerns the enforcement of a disjunction of two formulas forming the policy.

Either


P
 or



P
 will produce a compliant process, when enforced on P. In the case of the

indeterminate choice (8.9), the formula can be applied to either P or Q. Let = .
k

n
P mov P ,

= .
k

m


Q mov Q and let =

k

n
tt  mov . The enforcement for P + Q is:

= . . . = .1 .
k k k k k k

n m n n m n

tt tt  
   

  
mov mov mov mov mov mov

P Q P Q

Ambient enforcement, with and without access key changes, is defined in rules (8.10) and (8.11).

The rule (8.10) allows the enforcement process to go inside an ambient and apply the

enforcement. The modification of the ambient protection key is given through rule (8.11).

Targeted enforcement is also supported by our enforcement operator, as shown by (8.12). The

ambient name permits the delivery of dedicated enforcements on different locations within the

process. Let Φ = tt, =
k

m
tt


 mov , = .

k

m

 
P mov P , and = .

k

n
Q mov Q . The enforcement X for the

formula [] | []
k i k j

n m
 

  on the process [] | []
k j k i

m n

    
P Q is calculated as follows:

[] | [] [] []
= |

[] | [] [.] [.]

k i k j k i k k j

n m n m m

k j k i k k i k k j

m n n n m m

tt tt




 
    

           

 

 

mov

P Q mov Q mov P

The results of the two new quotients obtained are:

[]
= . . = . .1

[.] .

[]
= . . . = . . .

[.]

k i

k k k kn

n n n nk k i k

n n n

k k j

k k k k k km m

m m m m m mk k j

m m

tt tt

tt tt

P P

     

  

  

         

   

 

 

 

mov prot mov prot
mov Q mov Q

mov
mov mov mov mov mov mov

mov

Therefore value of the enforcement is: = . .1 | . .
k k k k k

n n m m m
X



       
mov prot mov mov mov

Page 12 of 34

Theorem 1 (Enforcement Correctness). Let , \ {0}  P , and let =


X
P

. Then:

P X

Proof sketch

The proof is done by a structural induction on the logical formula Φ representing the policy. We

show that for any process P representing a system, the generated enforcement X is able to rewrite

P such that the enforced process P X always belongs to the semantics of Φ. To conduct the

proof, we verify that the proposition holds for the constants tt and ff and prove that if the

proposition holds for formulas Ψ1 and Ψ2 then it holds νΨ1 and Ψ1 μ Ψ2, where ν and μ are

modalities and operators of the logic.

The proven theorem is crucial for the validation of our approach. It demonstrates that the

enforcement will always produce the correct result.

7 Case Study

In this section, we illustrate our technique with the example of the network depicted in Fig. 2.

The example demonstrates the use of FPE for specifying and enforcing a security policy on the

system. We show that the generated enforcement policy produces the expected changes.

7.1 System Specification

The subject of the case study is a simplified version of a library system as depicted in Fig. 2. In

order to make the example easy to comprehend, the number of computer systems has been kept

to a minimum: one for a library guest and four for the library. We identified two logical zones:

the Internet logical zone containing the Guest system and the Library logical zone containing the

library’s own computer systems. The Library zone initially contains one computer system for the

library’s portal server (Portal), two for the reservation and fine payments (Borrowing and

Fines) and one for online resources (Resources).

Each computer system is represented by a non-blocking process running in a protected ambient.

Specific keys are only defined for ambients requiring safeguards: kl and kf corresponding to

portal and borrowing systems, respectively. All other keys are set to the default value δ, which

states that there are no access restrictions. For ease of reading, we have chosen to omit δ from the

specification. This means that processes .
n


mov P and []

i
n

n

 P will be represented as movn.P and

[]
i
n

n
P , respectively. For the same reason, by abuse of notation, we will denote “|γ” by “|”, and

Page 13 of 34

suppose that all communications are well defined. Access to the library portal (provided that kl is

known) does not grant access to Borrowing, but is required as a preliminary step.

Currently, guests can browse online resources, reserve items from the library and pay fines for

late returns. Fine payments are dependant on the borrowing system, as they are linked to the

library catalogue. The workflow is straightforward. Guests initiate a session by authenticating to

the portal with credentials provided by the library. Once authenticated, they are presented with

the choices (browse or borrow) and carry on their intended tasks until they decide to close the

session. Browsing online resources does not require special permissions. Consulting the library

catalogue and borrowing items, however, involve an additional password. Paying fines does not

require special permissions, but can only be done after accessing the borrowing section. The

specification for the guest system is as follows:

1 2 3

= [.(. .(.))]
ik k gl b

g l r b f
 G mov mov G mov G mov G

1 2 3
, , 0where G G G

The library allows access to its online resources on the Resources web server through the

Portal. The web server handles reservation requests for items from its Borrowing catalogue.

Late return fines for borrowed items are processed through Fines. The specification for the

library system is:

1

= [| [| []] | []]
ik k i iifl b b lr

l b f r
L L B F R

1
, , , 0where L B F R

The whole system is composed of the library and guest systems L and G. It is therefore specified

by the process S below:

1 1 2 3

= |

= [| [| []] | []] | [.(. .(.))]
i ik k i i k kif gl b b l l br

l b f r g l r b f
 

S L G

L B F R mov mov G mov G mov G

To summarize, the signification of processes is as follows:

 – G: represents the Guest process;

 – G1: symbolizes the process used by the Guest to access online resources;

 – G2: denotes the activities required by the Guest for browsing the catalogue and

borrowing items;

 – G3: stands for the activities required by the Guest for paying fines for late returns;

Page 14 of 34

 – L: represents the Library process;

 – L1: corresponds to the Library portal access;

 – B: represents the Library’s catalogue browsing and borrowing services;

 – F: denotes to the process associated with fine payment processing;

 – R: stands for the online resources web server.

The interfaces share different channels to accommodate communication between ambients:

}{=},,{=},,,{=},{= bfibflbilrlbgligli
fblg and ir = {lr}. This enables the following:

 – guest can communicate with the portal;

 – the portal can communicate with the borrowing and resources systems;

 – the borrowing and fines systems can communicate;

 – no other communication is defined.

The library decides to finally upgrade their ageing catalogue system. The library managers

decide to reduce guest access temporarily to online resources only. For a certain period, guests

will no longer be allowed to consult the catalogue and borrow items. In order to do that, the

Borrowing system’s key kb needs to be changed to a new value kb′. The new policy for the

library system is:

'

= [| []] , '
k k i i

l b b l

l l b b b
tt tt w here k k 

The formula Φl would be satisfied if the Library process meets several conditions. First, the

process must be an ambient named l, protected by the key kl and communicating across an

interface il. Second, the ambient must contain a parallelism that involves a non-blocking process

and an ambient b. Finally, ambient b must be protected by a new key kb′ and have an interface ib.

7.2 Security Policy Enforcement

The enforcement required to make the library system compliant with the new policy is given by:

 =
l

l
X



L

The enforcement process for the library system is calculated as follows:

Page 15 of 34

1

1

1

[| []]
= =

[| [| []] | []]

| []
= .() (8.10)

| [| []] | []

[]
= .(|) (8 .12)

| [] [| []]

= .(1 | . .

k k ' i i
l b b l

l l b

l ik k i iifl b b lr

l b f r

k ' i
b b

k bl

l ik i ifb b r

b f r

k ' i
b b

k bl

l i ik ir fb b
r b f

k k k '
l b b

l b
b

tt tt
X

tt tt
by

tttt
by

L

tt



L L B F R

mov

L B F R

mov

R B F

mov mov prot

B

) (8.1, 8.11)

| []

= . . .1 (2.17, 8.1)

i
f

f

k k k '
l b b

l b
b

by

by

F

mov mov prot

We have computed the necessary enforcement corresponding to the new policies based on the

quotient operator table defined in the previous section. It is now time to verify that the

enforcements work as expected and the modified systems satisfies the new policy:
l l

L X .

We proceed by calculating the system specification for the enforced Library system by using

the reduction relation defined in Table 4:

1

1

1

= [| [| []] | []] . . .1

[| [| []] | [] . .1] (4.13)

[| [| [] .1] | []] (4.13)

ik i i k k k 'ifl b l l b br

l b f r l b
b

k
l ik i k k ' iifl l b b b lr

l b f r b
b

k
b ik k ' i iifb l b b lr

l b f r
b

k '
b

k
b l

l

by

by

 

 

 

l

mov

mov

prot

L X L B F R mov mov prot

L B F R mov prot

L B F prot R

1
[| [| []] | []] (4.16)

ik ' i iifb b lr

b f r
byL B F R

The policy satisfaction relation for Φl can then be written as:

Page 16 of 34

' '

1

' '

1

[| [| []] | []] [| []]

| [| []] | [] | [] (6.7)

ik k i i k k i iifl b b l l b b lr

l l b f r l b

k ik i k iif fb b b br

b f r b

tt tt

tt tt by

 



l
L X L B F R

L B F R

We can verify that indeed
l l

L X , since
1

| []
i
r

r
ttL R (by 6.1) and

' '

[| []] []
ik i k ifb b b b

b f b
ttB F

(by 6.7 and 6.1). Therefore, the library system has been successfully enforced to satisfy the new

policy.

8 Software Implementation

The main purpose of developing PEA (short for “Policy Enforcement Application”) was to

mechanize the method developed in this paper and to demonstrate its applicability. Given a

computer network system, no matter how complex, the application allows us to build the

network topology, generate the network specification using the calculus, specify policies with the

logic and calculate required enforcements based on the quotient operator formulas.

The application was developed in Java [25] using Eclipse [26], with Swing libraries [27] being

used for the GUI development. The architecture of our application contains different roles, a GUI

and three modules that implement the elements of FPE. One module translates topology

information into an interprocess algebra-based specification. The second module is used for

defining system security policies with logical formulas. Enforcement calculations are performed

by the third module. Since we used Eclipse, it is easy to extend the application by adding new

modules. The addition of libraries of other elements (services, other network hardware, etc.) is

also straightforward. The internationalization feature of Java allows interface components (menu

items, labels, etc.) to be defined in your language of choice. Currently, there are English and

French versions of the application. The software is available on GitHub under GPL license.

The interface is intuitive and easy to use. Fig. 3 displays the network topology described in our

case study, along with the associated network specification. The system’s topology is built by

simply dragging predefined elements (computers, routers, firewalls, etc.) into the main window

of the GUI. Associated details such as ambient names and keys, or processes, can be added as

properties of the elements via a context-aware box. Once the components have been inserted, a

dedicated button can be used to connect them by pointing to the ends of the link.

The network specification for the system built is displayed at the bottom of the main window.

Any change to the topology or process details is automatically applied to the specification. All

Page 17 of 34

applicable process reductions are also taken into account and are transparently performed in the

background.

Systems built with the aid of the application can be modified, copied, exported to XML files and

imported for re-utilization. Links between components can be added and removed through a

simple right-click. Parent-child ambient relations can be changed via drag-and-drop. Ambient

names, keys, interfaces, and process details are easily defined, as illustrated in Fig. 4 and Fig. 5.

PEA also allows specifying security policies by using a GUI-style method. The policy is

displayed both in logic formulas format and as an XML style structure showing the components,

as in Fig. 6.

The main window displays the topology and system specification. If the policy window, showing

the logic formulas, is also open, one can calculate the necessary enforcement to be applied to the

system. The quotient button permits the automated generation of an adequate enforcement, as

demonstrated in Fig. 7.

The application is the first step in our effort to obtain automatic enforcements for the

implementation of desired security policies. It can be employed for various network simulations:

system design, policy verification, disaster recovery scenarios, etc.

9 Conclusion

In this paper, we have developed a new formal framework for computer system specification and

security policy enforcement. The FPE framework consists of three main components. The first is

a new formalism for specifying computer systems that captures in an effective and elegant way

the system’s behaviour and topology. We define a new calculus that draws from the agility of the

mobile ambients and adds several original and powerful concepts such as access control for

domains (access keys, protection changes) and communication interfaces. It facilitates the

specification of a computer system’s current state and its evolution. The second component is a

new dedicated logic for defining security policies. The logic formulas allow expressing current

and desired security policies. The semantics of the logic links policy satisfaction to compliant

processes. Again, the system’s evolution can be followed, in this case from the point of view of

applicable constraints. The third original component is the quotient operator that allows an

automatic calculation of required enforcements. Given a process P and a security policy Φ, we

calculate =


X
P

 as a first step. If X = 1, then the process P satisfies the policy Φ. Otherwise,

Page 18 of 34

the enforcement can be applied to update the process and make it policy compliant. The formal

foundation of all components ensures that the enforcement produces a secured system, free of

incomplete specifications, arbitrary interpretations or faulty implementation of policies.

Note that our approach is different from previous works as it allows both the verification of

policy compliance and the application of corrective actions. The automated aspect of the

methodology further enhances its value. A software implementation demonstrates its

effectiveness and proves its applicability to practical problems. The versatility of FPE is

supported by the numerous potential uses. It could be a free and lightweight tool employed by

educators to simulate basic or complex network topologies, or to build and test security policies.

A detailed specification that includes all potentially vulnerable systems is a worthwhile effort.

Intrusion prevention systems of firewalls could take advantage of it by blocking exploits of

known vulnerabilities through access key changes for the affected components. This should be

done in conjunction with patch management systems, which could signal when access can be

re-enabled. Cyber attacks could be modelled to determine whether critical systems can be

reached, and under which conditions. They can be further analyzed to decide the best detection

and prevention strategy. The approach can also be beneficial for business continuity planning

while designing alternate configurations or disaster recovery scenarios. Such cases imply system

specifications adapted to the potential crisis (natural or human-triggered disasters, hardware

failure, wars, etc.). Our methodology could be used to validate whether the expectations (i.e.

security policy) can be satisfied by the available computer systems (i.e. part of the new system

specification). Further extensions of the calculus syntax, in particular, would increase the range

of applications. In its current state, the access key incorporates all conditions necessary to enter

an ambient. In practice, they correspond to more than just system credentials or access control

lists. A finer granularity would allow a more precise control over process movement. A new

action could model direct communications between a sender and a receiver that are not

neighbours (encrypted channels, quantum computing, etc). Other actions that do not relate

specifically to mobility would enrich specifications to better reflect the complex set of computer

system behaviours.

Acknowledgement

This research is supported by a research grant from the Natural Science and Engineering Council

of Canada, NSERC.

Page 19 of 34

Appendix

Theorem 1 (Enforcement Correctness). Let , \ {0}  P , and let =


X
P

. Then:

P X

Proof. The proof is done by a structural induction on the logical formula Φ representing the

policy.

 Φ = tt:

 = = 1
tt

X
P

 (by 8.1)

 1 P P (by 2.18)

 ttP (by 6.1)

 Φ = ff:

 = = 0
f f

X
P

 (by 8.2)

 0 0P (by 2.14)

 0 ff (by 6.2)

 Φ = 〈a〉Ψ:

 P = a.Q

 = = .
.

  


a
a

a
X

Q Q
 (by 8.3)

 . . .()
 

 
a

a a aQ Q
Q Q

 (by 4.10)



Q
Q

 (by hypothesis)

 .()


 a aQ
Q

 (by 6.4)

 = . , b b aP Q

 = = . .
.

  a
b a

b
X

Q Q
 (by 8.4)

 


b

b b a aQ Q
Q Q

 (by 4.11)

Page 20 of 34

 . ()
 

a aQ Q
Q Q

 (by 2.22)

 () .()
 


a

a aQ Q
Q Q

 (by 4.12)

 .()


 a aQ
Q

 (by 6.4)

 Φ = ¬〈a〉Ψ:

 P = a. Q

 = = .
.

  a
a

a
X

Q Q
 (by 8.5)

 . .
 


a

a aQ Q
Q Q

 (by 4.11)



Q
Q

 (by hypothesis)



 aQ
Q

 (by 6.4)



 aQ
Q

 (by 6.3)

 = . , b b aP Q

 = = .
.

  


a
b

b
X

Q Q
 (by 8.5)

 . . .()
 

 
b

b b bQ Q
Q Q

(by 4.10)



Q
Q

 (by hypothesis)

 .()


 b bQ
Q

 (by 6.4)

 .()


   b a b aQ
Q

 (by 6.4)

 .()


 b aQ
Q

 (by 6.3)

 = [] |
k i

n
  


 and = [] |

k i

n 
P P Q :

Page 21 of 34

[] | []

= = |
[] | []

k i k i

n n

k i k i

n n
Q





   
 

 

 
X

P P Q
 (by 8.12)

[] []
([] (|)) | ((|))

[] []

[] []
((([])) (([]))) |

[] []

k i k i

k i n n

n k i k i

n n

k i k i

k i k in n

n nk i k i

n n

P

  



   

   

 

 

 
 

 

 
  

 

P X P Q
P Q P Q

P
P Q Q P

 (by 2.31)

[] []

((()) (()))
[] []

k i k i

n n

k i k i

n n

   
 

 


 
Q Q

Q P P Q
 (by 2.28)

[]

[] []
[]

k i

k i k in

n nk i

n







 


P

P
 (by induction)

By the quotient operator and the reduction relation, we have:

[] []
= . and [] [] ,

[] []

k i k i

k k i k in n

n n nk i k i

n n

 
 

  
 

 
mov R P S R S

P P
 (9.1)

Since domains are uniquely identified, we have:

 .
n

 
 mov T T

Q
 (9.2)

[]

([]) = []
[]

k i

k i k in

n nk i

n

  






P S

P Q Q
(9.2.1)

By (9.2), there is no possible reduction for (9.2.1). We then have:

 ([])
k i

n




S

Q
(9.2.2)

By (9.2.1) and(9.2.2) we have:

[] []

([]) []
[] []

k i k i

k i k in n

n nk i k i

n n

P
  

 
 

 
 

P
P Q P

 (9.3)

 ([])
k i

n




P
Q

 (by 9.2)

 [] []
k i k i

n n


 P P

Q
 (by 2.32)

[] []

([]) []
[] []

k i k i

k i k in n

n nk i k i

n n

  
 

 
 

 
P P

Q P P
(9.4)

Since domains are uniquely identified, we have:

Page 22 of 34

 []
k i

n
 Q U U

By the quotient operator, (9.1) and (9.5), we have:

[]

()
[]

k i

n

k i

n





 


Q

P
 (by 2.32)

[]

()
[]

k i

n

k i

n

  






Q Q

P Q Q
 (9.5)

Since domains are uniquely identified, we have:

[]

[]
(())

[]

k i

n

k i

n

k i

n



 




 





Q V V
Q

Q
Q P

 (by 9.1, 2.32)

[]

()
[]

k i

n

k i

n

  






Q Q

Q P Q
 (9.6)

[]

([]) | () [] |
[]

k i

k i k in

n nk i

n



 
 




  


P X P Q

P Q
 (by 9.3 −- 9.6, 6.5, 6.7)

 Φ = Φ′∨Ψ:

 = =
    

X
P P P

 (by 8.8)

 () () ()
    

  P P P
P P P P

 (by 2.29)

 and
 

 


P P
P P

 (by hypothesis)

 and
 

   


  P P
P P

 (by 6.6)

 () ()
 

 

 P P

P P
 (by 6.6)

 = []
k i

n
  :

 = []
k i

n
P Q

[]

= = .
[]

k i

kn

nk i

n

 
movX

Q Q
 (by 8.10)

Page 23 of 34

 [] . []
k

k i k k in

n n n

 


mov

movQ Q
Q Q

 (by 4.13)


Q

Q
 (by hypothesis)

 [] []
k i k i

n n


Q

Q
 (by 6.7)

 = [] ,
k i

n
k k


P Q

[]

= = . .
[]

k i

k kn

n nk i

n

 


mov protX

Q Q
 (by 8.11)

 [] . . [.]
k

k i k k k k in

n n n n n


   


mov

mov prot protQ Q
Q Q

 (by 4.13)

 [.] []
k

k k i k in

n n n

  


prot

protQ Q
Q Q

 (by 4.16)



Q
Q

 (by hypothesis)

 [] []



k i k i

n n
Q

Q
 (by 6.7)

References

[1] Cardelli, L., Gordon, A.D.: Mobile ambients. In: Foundations of Software Science and

Computation Structures: First International Conference, FOSSACS ’98, Springer-Verlag, Berlin

Germany (1998)

[2] Pene, L., Adi, K.: Calculus for distributed firewall specification and verification. In:

Proceedings of the 5th International Conference on Software Methodologies. SoMeT’06, IOS

Press (2006) 301–315

[3] Ferrari, G., Moggi, E., Pugliese, R.: Guardians for ambient-based monitoring. F-WAN:

Foundations of Wide Area Network Computing 66 (2002)

[4] Cardelli, L., Gordon, A.: Anytime, anywhere, modal logics for mobile ambients. In: In Proc.

of POPL 2000. (2000) 365:377

[5] Cardelli, L., Gordon, A.D.: Ambient logic. Mathematical Structures in Computer Science

(2006)

[6] Hirschkoff, D., Lozes, E., Sangiorgi, D.: On the expressiveness of the ambient logic. In:

Logical Methods in Computer Science. (2006)

Page 24 of 34

[7] Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)

[8] Walker, D.: A type system for expressive security policies. In: Proceedings of the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’00, New

York, NY, USA, ACM (2000) 254–267

[9] Gorla, D., Pugliese, R.: Enforcing security policies via types (2003)

[10] Necula, G.C.: Proof-carrying code, ACM Press (1997) 106–119

[11] Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1) (2000)

30–50

[12] Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforcement

mechanisms. ACM Trans. Program. Lang. Syst. 28(1) (2006) 175–205

[13] Hamlen, K.: Security Policy Enforcement by Automated Program-rewriting. PhD thesis,

Cornell University, Ithaca, NY, USA (2006) AAI3227141.

[14] Langar, M., Mejri, M., Adi, K.: Formal enforcement of security policies on concurrent

systems. Journal of Symbolic Computation 3 (2011) 997–1016

[15] Sui, G., Mejri, M.: Security enforcement by rewriting: An algebraic approach. In:

Foundations and Practice of Security, Springer International Publishing (2015) 311–321

[16] Bauer, L., Ligatti, J., Walker, D.: A language and system for composing security policies.

Technical report, Princeton University (2004)

[17] Bauer, L.: Composing security policies with polymer. In: In Proceedings of the ACM

SIGPLAN 2005 Conference on Programming Language Design and Implementation, ACM

(2005) 305–314

[18] Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 2008 21st IEEE

Computer Security Foundations Symposium. CSF ’08, Washington, DC, USA, IEEE Computer

Society (2008) 51–65

[19] Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revisited.

ACM Trans. Inf. Syst. Secur. 16(1) (2013) 3:1–3:26

[20] Khoury, R., Tawbi, N.: Equivalence-preserving corrective enforcement of security

properties. Int. J. Inf. Comput. Secur. 7(2/3/4) (2015) 113–139

[21] Shields, M.W.: Implicit system specification and the interface equation. Comput. J. 32(5)

(1989) 399–412

Page 25 of 34

[22] Khédri, R.: Concurrence, bisimulations et quation d’interface : une approche relationnelle.

PhD thesis, Universit Laval (1998)

[23] Parrow, J.: Submodule construction as equation solving in ccs. Theoretical Computer

Science 29(1) (1989) 175–202

[24] M.T.Norris: The role of formal methods in system design. British Telecom Technical

Journal (1985)

[25] Gosling, J., Joy, B., Steele, G.L.: The Java Language Specification. 1st edn.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1996)

[26] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework 2.0. 2nd edn. Addison-Wesley Professional (2009)

[27] Fowler, A.: A swing architecture overview. SUN/Oracle (2004)

Fig. 1. Our approach

Fig. 2. Case study - Library network

Fig. 3. PEA: network specification

Fig. 4. PEA: ambient modification

Fig. 5. PEA: process modification

Fig. 6. PEA: library security policy

Fig. 7. PEA: library enforcement process

Page 26 of 34

Table 1. Security Enforcement Calculus Syntax

dom ain nam e

security key

process action

com m unication interface

, ::= processes

0 deadlock

| 1 successful term ination

| action

| . sequence

| | parallel com position

| enforcem ent

| choice

| ! repl

n

k

i













a

P Q

M Act

P Q

P Q

P Q

P Q

P ication

| [] am bient

::= action m odalities

preserve

| rem ove

| insert

::= process capabilities

m ovem ent

| protection

| other actions

k i

n

k

n

k

n



mov

prot

a

P

M

Act

Page 27 of 34

Table 2. Structural Congruence

γ γ

γ γ γ γ

(2.1)

(2.2)

(2.3)

R . (2.4)

. (2.5)

| | (2 .6)

| | | | (2 .7)

(2.8)

(2.9)

(2.10)

(2.11)

[] [] (2.12)
k i k i

n n
P Q



  

   

  

  

  



    

  

  

  

  

P P

P Q Q P

P Q,Q R P R

P Q .P R Q

P Q P.R Q R

P Q P R Q R

(P Q) R P (Q R)

P Q P R Q R

P Q !P !Q

P Q R P R Q

P Q P R Q R

P Q

0.P

γ

γ γ

γ γ γ

(2.13)

(2.14)

(2.15)

(2.16)

| (2 .17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

| | (2 .23)

| | | (2 .24)

(2.25)





 

 



 

 

  

  





  

 



0

P 0 0

P 0 P

1.P P P .1

P 1 P

P 1 P 1 P

P 1 P

P.(Q R) P .Q P .R

(P Q).R P .R Q .R

P Q .R (P Q) R

P Q Q P

P (Q R) (P Q) (P R)

P P P

P

γ

γ

γ γ

(2.26)

| (2 .27)

| (2 .28)

(2.29)

(2.30)

| | (2 .31)

 



 

  

  



Q Q P

!P P !P

P (Q R) (P Q) R (P R) Q

P (Q R) (P Q) (P R)

(P Q) R (P R) (Q R)

(P Q) R (P R) (Q R)

Page 28 of 34

Table 3. Termination

1

()

()

,

(.)

,

(|)

[]







 



 

 



 






k i
n

(3 .1)

P
(3 .2)

P Q

Q
(3.3)

P Q

P Q
(3.4)

P Q

P Q
(3.5)

P Q

P
(3.6)

P

Page 29 of 34

Table 4. Reduction Relation

, ,

1

. . .()

. . . .

| | . .()
 



  





   



 



 





a' '

' ' aa

a '

a a'

a '

a a'

a '

a a'

a '

a

P P P Q Q Q
(4.1) (4 .9)

aP Q

P P
(4.2) (4 .10)

P Q P a P a Q a P Q

P P
(4.3) (4 .11)

P Q P Q a P a Q P Q

P P
(4.4) (4 .12)

P Q P Q P a Q a P Q

Q Q

P Q P

(,)

[] . []

,

‡ [. |] | []

, , ,

| |
[] ‡ [.





 




  



 

  


 

         

 

'

'' k' m ovk i k k in
n n n

a '

a k' m ovk k i k in
n n n

a b' '

a b ' '
k i k k
n m n

k k
(4 .5) (4 .13)

Q
P ‡ mov Q P ‡ Q

P P Q k k
(4 .6) (4 .14)

P Q P P mov Q R P ‡ Q R

P P Q Q k k k k i j
(4 .7)

P Q P Q P m ov |] [] []

[] []
[.] []

‡ {| , }





 


 




 



km ovj k i k jn
n m

a '

a 'k i k ' i k' 'p ro tk k i k in n n
n n n

(4 .15)
Q R P ‡ Q ‡ R

P P
(4.8) (4 .16)

P P
P pro t Q P Q

w here

Page 30 of 34

Table 5. Syntax of the logic

, ::=

T rue

| N egation

| , C apability

| | ParallelC om position

| D isjunction

| [] Protectedlocation
k i

n

tt

 





 

 





  



a a

Table 6. Semantics of the logic

[[]] = \ {0} (6.1)

[[]] = 0 (6.2)

[[]] = \[[]] (6.3)

[[]] = { . : [[]]} (6.4)

[[|]] = { | : [[]] [[]]} (6.5)

[[]] = [[]] [[]] (6.6)

[[[]]] = { [] : [[]]} (6.7)
k k

n n

tt

f f

 

 

   

   

 



   

   

 

 
i i

a a P P

P Q P Q

P P

Table 7. The elimination of the ¬Φ form

(7.1)

(7.2)

(7.3)

() () (7.4)

(|) (|) (|) (|) (7.5)

() (7.6)

([]) [] (7.7)
k i k i

n n

tt f f

f f tt

tt a

tt tt

 

 

     

   

 

 

 

 

        

       

     

  

a a

Page 31 of 34

Table 8. Quotient Operator

 : (\ {0})


 


Page 32 of 34

= 1 (8.1)

= 0 (8.2)

= . (8.3)
.

= . . (8 .4)
.

= . (8.5)
.

= . (8.6)
.

= . (8.7)
1 1

= (8.8)

= (8.9)

[]
= . (8.10)

[]

[]
= .

[]

k i

kn

nk i

n

k i

kn

nk i

n

tt

f f

b a a b
P

m ov

 

 

 

 

 

   

  

 




 


 


  

  
 

 







a
a

a

a

b

a
a

a

a
b a b

b

a
a

mov prot

P

P

P P

P

P P

P P

P P P

P Q P Q

P P

P
. (8 .11)

[] | []
= | (8.12)

[] | []

k

n

k i k i

n n

k i k i

n n

k k







   



 

 
P

P Q P Q

Page 33 of 34

Page 34 of 34

