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Introduction
Big data is growing rapidly from an increasing plurality of sources, ranging from 
machine-generated content such as purchase transactions and sensor streams, to 
human-generated content such as social media and product reviews. Although much 
of these data are accessible online, their integration is inherently a complex task, 
and, in most cases, is not performed fully automatically but through manual inter-
actions [1, 2]. Typically, data must go through a process called ETL (Extract, Trans-
form, Load) [3] where they are extracted from their sources, cleaned, transformed, 
and mapped to a common data model before they are loaded into a central reposi-
tory, integrated with other data, and made available for analysis. Recently the concept 
of a data lake [4], a flat repository framework that holds a vast amount of raw data 
in their native formats including structured, semi-structured, and unstructured data, 
has emerged in the data management field. Compared with the monolithic view of 
a single data model emphasized by the ETL process, a data lake is a more dynamic 
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environment that relaxes data capturing constraints and defers data modeling and 
integration requirements to a later stage in the data lifecycle, resulting in an almost 
unlimited potential for ingesting and storing various types of data despite their 
sources and frequently changing schemas, which are often not known in advance [5]. 
In one of our earlier papers [6], we propose personal data lake (PDL), an exemplar of 
this flexible and agile storage solution. PDL ingests raw personal data scattered across 
a multitude of remote data sources and stores them in a unified repository regard-
less of their formats and structures. Although a data lake like PDL, to some extent, 
contributes towards solving the big data variety challenge, data integration remains 
an open problem. PDL allows its users to ingest raw data instances directly from the 
data sources, but the data extraction and integration workflow, without predefined 
schemas or machine-readable semantics to describe the data, is not straightforward. 
Often the user has to study the documentation of each data source to enable suitable 
integration [7]. An enterprise data lake system built with Hadoop [8] would rely on 
professionals and experts playing active roles in the data integration workflow. PDL, 
however, is designed for ordinary people, and has no highly trained and skilled IT 
personnel to physically manage its contents. To this end, equipping PDL with an effi-
cient and easy-to-use data integration solution is essential for casual users and allows 
them to process, query, and analyze their data, and to gain insights for supporting 
their decision-making [9].

To support PDL, the big data integration (BDI) system faces the following three 
challenges:

  • The scalability challenge arises from the vast number of data sources that may 
input to a data lake [10], and the continuous addition of new and varying data 
sources [2].

  • The heterogeneity challenge is the implication of dealing with various types of 
raw data collected from a large number of unrelated data sources [1]. The data 
sources of a lake, even in the same domain, can be very heterogeneous regard-
ing how their data are structured, labeled and described (e.g., naming conventions 
for JSON keys, XML tags, or CSV headers), exhibiting considerable variety even 
for data with substantially similar attributes [11]. The reconciliation of semantic 
and structural heterogeneities in raw data is a necessary preparatory step for stor-
ing and retrieving data quickly and cost efficiently and aligning raw data from dif-
ferent sources so that all types of data relevant to a single analysis requirement 
can be combined and analyzed together. Manually handling heterogeneity recon-
ciliations would pose a huge burden on PDL users. Despite efforts in the fields 
of semantic web and data integration for automating the reconciliation process 
[12–14], existing approaches, most of which require optimized parameter tuning 
and expertise-based configurations to cope with the heterogeneities of data [10], 
cannot be adopted in PDL.

  • The schema evolution challenge refers to the problem of handling unexpected 
changes in the schema and structure of the data ingested [15, 16]. Big data is often 
subject to frequent schema evolutions, which would cause query executions to 
crash if not dealt with [17]. Handling schema evolutions is a non-trivial task, and 
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the common practice normally involves employing skilled manpower. Schema 
evolution has been a known problem in the database community for the last three 
decades [18] and has become frequent and extensive in the era of big data, yet it 
has not been addressed effectively [1, 7, 11].

In this paper, we introduce SemLinker, an ontology-based BDI system to address the 
BDI challenges discussed above. SemLinker, as a principal integrated component in the 
PDL architecture, adopts an automatic approach that only operates on the schema meta-
data level without involving physical transformation of data during integration. Thus, it 
preserves the data in their native formats and structures while, at the same time, allowing 
the data to be easily analyzed and queried by casual users. In addition, SemLinker also 
handles frequent schema evolutions automatically and shields analysis processes operat-
ing on the schema metadata level from crashing due to unexpected schema changes.

The remainder of this paper is organized as follows: a summary of related work is given 
in “Related work” section; an overview of the SemLinker architecture is given in “Sem-
Linker architecture overview” section; the implementation of SemLinker is discussed in 
detail in “Global schema layer”, “Local schemata layer”, and “Query” sections; the inte-
gration of SemLinker into the PDL architecture is described in “Integration with PDL” 
section; an experimental evaluation is given, and its results are presented and analysed 
in “Experimental evaluation” section; finally, our conclusions and future work directions 
are discussed in “Conclusion and future work” section.

Related work
Lenzerini introduces in [19] a theoretical framework for integrating a set of heterogene-
ous data sources based on their associated schema metadata, more formally, local sche-
mas. The framework’s integration workflow is to maintain a mediated schema (i.e., global 
ontology) and specify relationships, or mappings, between the mediated schema and 
the local schemas of different data sources under integration. The concept of an ontol-
ogy [20] is used as an efficient description tool for representing the mediated schema 
and for providing unified views over the data collected from the integrated sources. 
The user formulates queries by utilizing the terms (concepts) defined by the ontology, 
and the queries are executed according to mappings between the ontological terms and 
their corresponding representations in the local schemas. Many current state-of-the-art 
ontology-based data integration systems follow Lenzerini’s framework [19] to integrate 
structured and/or semi-structured data collected from heterogeneous data sources, such 
as [7, 21–23]. Although these systems can deliver effective and efficient data integration 
performance in many use cases, they typically require continuous human intervention to 
supervise the process of discovering mappings between the global ontology and the local 
schemas [1, 14, 24], which is a laborious and time-consuming task itself that requires 
schema matching expertise. Furthermore, these systems favor static integration work-
flows, where any changes in the global ontology or the local schema metadata implies a 
high degree of manual processing to (re)configure the mappings [7, 14].

With the increasing popularity of data lakes in the big data landscape, metadata 
is becoming of immense importance for BDI research [25], and metadata manage-
ment is currently an active research topic. GEMMS [5] is a Metadata Management 
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Framework (MMF) that extracts and manages metadata about the data stored in the 
constance data lake. GEMMS integrates the user’s personal data in life science fields 
by modeling them with a common metadata model. Although GEMMS is theoreti-
cally capable of reconciling semantic heterogeneities between the raw data, and tol-
erating big data volume and variety, its architecture suffers multiple drawbacks: first, 
it reconciles structural heterogeneities through physical data transformations, which 
implies altering the native schemas and structures of the data and posing constraints 
on the ingestion process; secondly, it is very sensitive to emerging changes in the raw 
data schemas; thirdly, the GEMMS literature does not describe how the integrated 
data can be systematically accessed and queried. Kayak [26], a generic framework for 
managing data lake content through metadata-based data preparation and wrangling, 
is a case similar to GEMMS. Although it promises integration and querying capabili-
ties, its approach has not yet been revealed. Atlas [27] is an agile Apache enterprise 
framework for data governance and metadata management in Hadoop data lakes. 
After integration with Apache Avro [28], it became capable of handling schema evo-
lutions in the datasets stored in a Hadoop data lake. In [7], Nadal et al. propose an 
integration-oriented ontology-based system for integrating heterogeneous JSON data 
in data lakes, and for governing their schema evolutions. The system has two ontology 
levels. The top level is modeled as an OWL ontology to offer unified views over local 
schemas, and the bottom level contains local schemas maintained as RDF graphs, A 
data steward is responsible to provide mappings between the two levels. If a particular 
local schema evolves, the data steward is notified, and a remapping then takes place. 
The shortcoming of current data lake BDI solutions is that they inherently exhibit the 
same drawbacks found in traditional data integration. For instance, raw data meta-
modeling remains an expensive task and requires expert user supervision [1, 29]. Fur-
thermore, the schema evolution problem and its impact on data access, processing, 
integration, and analysis in a data lake is often overlooked, and its solution largely 
remains manual [7, 28, 30]. Rahm states in [1] that most big data integration propos-
als are limited to a few data sources, and analytics over a large volume of heterogene-
ous data ingested from various data sources is only possible with the availability of 
a holistic data integration solution that: (i) should be fully automatic or require only 
minimal manual interaction, and (ii) should make it easy to add and use additional 
data sources and automatically deal with frequent changes in these sources.

SemLinker, as a data integration system, shares many features and functionali-
ties with other solutions. However, as a solution for PDL whose users are typically 
casual and unskilled, SemLinker needs to be in agreement with Rahm’s automation 
proposal and isolate its users from the technical details imposed by the integration 
workflow. Our proposed automations in SemLinker are implemented in the following 
operations:

  • Metadata extraction and maintenance.
  • Schema evolution handling.
  • Discovery of mappings between the system’s global ontology and the metadata 

denoting the local schema of a data source.
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SemLinker also supports data analysis in PDL by allowing direct queries over its 
metadata repository. Thus, big data management tasks such as data summarization, 
analytics, and insight discovery can be readily performed.

SemLinker architecture overview
The SemLinker architecture consists of a global schema layer, a local schemata layer, 
and the relationships between these layers. The global schema layer consists of the 
global schema ( G ), and the query engine for formulating queries over G . The local 
schemata layer consists of the schemas repository (S), and schema metadata extrac-
tion, mapping and management components. As an ontology-based integration sys-
tem, SemLinker is conceptually based on the theoretical framework proposed by 
Lenzerini [19], and we formally define the system as follows:

Definition 1 SemLinker is a triple 〈G, S,M〉 , where G is the global schema, S is a set 
of local schemas corresponding to n data sources, S = {S1, S2, . . . , Sn} , and M is a set of 
mapping assertions, such that, for each  Si there is a set of mappings between g and  Si, 
g ∈ G , 1 ≤ i ≤ n , in the form: p → a, where attribute a ∈ Si and property p ∈ g.

The system’s global schema G is modeled as a global ontology and is described using 
web ontology language (OWL) [31]. SemLinker extracts and maintains machine-reada-
ble metadata describing the physical schema details of each data source connected with 
the PDL, and specific semantics about its available data. We refer to such metadata as a 
local schema. A local schema is described using resource description framework (RDF) 
[32] and is stored in the schema’s repository S. SemLinker is responsible for automati-
cally mapping the local schema Si of the data source i to a semantically corresponding 
concept in the global ontology G . Such mappings provide a metadata model that allows 
SemLinker to systematically annotate data ingested and allows the user to pose queries 
over G which serves as an abstraction layer over S and its raw data. With the metamod-
eling in place, the raw data of PDL are integrated on the metadata level; no manual effort 

Fig. 1 Overview of SemLinker architecture



Page 6 of 26Alrehamy and Walker   J Big Data  (2018) 5:14 

is required to reconcile the heterogeneities in the physical schemas and structures of the 
raw data. Figure 1 gives a high-level overview of the SemLinker architecture.

Here we introduce a personal data example comparable to a real-life scenario to 
give a realistic view of the challenges that a BDI system like SemLinker must meet. 
Figure 2 lists four personal data instances representing social media feeds posted by a 
PDL user on Facebook and Twitter and ingested by the PDL through the available API 
of each source (Facebook Graph API, and Twitter Streaming API) with evolved sche-
mas. Although these instances exist in self-describing formats and contain abstract 
schema metadata implicitly encoded in JSON keys and XML tags, they suffer seman-
tic and structural heterogeneities, even for the instances ingested from the same 
data source. For example, the JSON keys in Facebook data instances (Fig. 2a, b) are 
expressed with different strings and exist in different structures (see “location” and 
“geo” keys). Similarly, Twitter data (Fig. 2c, d) also exist in different data formats. The 
example serves as a reference point for later sections on SemLinker’s implementation.

Global schema layer
The global ontology G serves two purposes: to tag data sources with type semantic infor-
mation, and to form an indispensable basis in the form of query-able format-agnostic 
unified views, that allows executing uniform queries over the raw data ingested from 
different data sources. An ideal global ontology is a comprehensive and standardized 
ontology that provides semantic coverage and interoperability across a vast range of 
domains [33]. For this reason, we initiate G as an OWL implementation of SCHEMA 
[15]. SCHEMA is a lightweight and well-curated vocabulary which consists of abstract 
concepts common across many domains and is used as a backbone schema for anno-
tation in many large-scale knowledgebase projects, such as Wikipedia, DBPedia, and 
Google Knowledge Graph. Such initiation is beneficial in supporting semantic interop-
erability between a multitude of data sources that possibly exist in different domains; 

Fig. 2 Examples of personal data instances ingested from two data sources. a Facebook data in schema v.2.9. 
b Facebook data in schema v.3.0. c Twitter data in schema v.1.1. d Twitter data in schema v.1.2



Page 7 of 26Alrehamy and Walker   J Big Data  (2018) 5:14 

the disadvantage, however, is that SCHEMA abstract concepts can be too generic and 
require more specificity to support concise metamodeling and integration [34]. To 
balance between the conceptual abstraction and the semantic specificity, we enable G 
extensibility.

The elements of G may be extended by adding new properties to the current set of 
properties of a concept, g ∈ G , to increase its coverage over elements in local schemas at 
the local schemata layer. g may also be extended by adding a new subordinate concept to 
it. rdf:type and rdfs:subClassOf are used for importing new and more specific concepts. 
To comply with G′s structure, the newly added concept must be associated with a set 
of properties (declared using G:hasProperty) and each property is of a certain primitive 
data type that is strictly reused from the XSD vocabulary [35] (declared using G:hasDa-
tatype). Figure 3 depicts an example of extending SocialMediaPosting, a concept in G , 
with Feed, a more specific concept imported from the SIOC vocabulary [36]. The exten-
sion taking place is to support a unified view over data ingested from social media data 
sources. Feed is linked to SocialMediaPosting using rdfs:subClassOf, and is described by 
a set of properties imported from the DCMI [37] and WGS84 [38] vocabularies. The 
required RDF data to implement such an extension are automatically generated by Sem-
Linker and are added to the G ontology.

Local schemata layer
Schemas repository

The schemas repository S is the principal component in the local schemata layer. It 
stores the set of local schemas corresponding to different data sources that are added 
to SemLinker over time. Each local schema is stored in S as a data graph that contains 

Fig. 3 Example of concept extension in G
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machine-readable metadata in the form of RDF triples to describe the physical schema 
details of the data ingested from the data source.

For each new data source i, SemLinker initializes a new empty RDF graph represent-
ing i’s local schema, denoted as Si. Subsequently, SemLinker requires Si to be tagged with 
a concept g ∈ G , so that g reflects the underlying type semantics of the data typically 
offered by i. Local schema tagging is normally modeled as an RDF triple, and follows the 
pattern:

For example, to add data source Facebook to SemLinker (Fig.  2), a global concept 
“Feed” is used to tag Facebook, i.e. Tag(Facebook)=Feed, and the RDF interpretation of 
such tagging is asserted as

The physical schema of any data source is subject to changes and updates [15, 39]. In 
the example depicted in Fig. 2, schema evolution is observed at both the semantic level 
(data attribute renaming, e.g. “message” ↦ “story”, and “text” ↦ “message”), and the struc-
tural level (data format changes, e.g. JSON↦XML, and attribute changes, e.g. casting 
the JSON object “location” in Fig.  2a into the simple attribute “geo” in Fig.  2b). Sem-
Linker takes a novel, automatic approach to handle the schema revolution problem. In 
this approach, the RDF representation of the local schema of a data source is regarded as 
dynamic. It contains a changeable set of subgraphs, each of which represents an evolv-
ing version of the schema and is called a source schema. A schema extraction algorithm 
is used to extract source schemas automatically, and a mapping computation algorithm 
is responsible for mapping them to the global ontology. A formal definition of the local 
schema of a dynamic feature is given below.

Definition 2 (Local schema) The local schema Si ∈ S is a dynamic set of source sche-
mas corresponding to m physical schema evolutions in the data ingested from the data 
source i, Si = {Si1, Si2, . . . , Sim} . For each Sij ∈ Si , 1 ≤ j ≤ m, there is a set of mapping 
assertions M between Sij and g ∈ G of the form: p → a, where attribute a ∈ Sij and prop-
erty p ∈ g.

The system ingests a data instance from its source’s API that is typically associated 
with a release version. Analysis of the instance’s physical schema is needed to obtain its 
source schema Sij, where i is the data source’s unique identifier (typically a URI), and j is 
i’s API release version. SemLinker (fully/partially) then maps Sij to the tagging concept g 
in the global ontology, stores it in the underlying graph of Si, and uses it to integrate i’s 
data with other data stored in the PDL. Furthermore, Sij is regarded as a benchmark and 
is used to run schema checks on any new data instances ingested from i. A schema check 
may fail, and when the number of failures reaches a predefined threshold, the system 
infers that data source i has released its API with a newer version. Consequently a new 
evolution has occurred in the physical schema of i’s data, and the system must augment 
the local schema Si by constructing a new source schema, say Sik, that is also mapped to g 
and added to Si, so that Sik is utilized to integrate any new data instances ingested from i 

�SiM: isInstanceOf g�

�SFacebookM: isInstanceOf G:Feed�
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with the release version k, meanwhile utilizing Sij to maintain backward integration sup-
port for the data instances that have already been ingested from i with the release ver-
sion j. The procedure for augmenting the local schemas upon schema evolutions in the 
APIs of their data sources is automatically repeated to keep up-to-date metadata about 
the physical schema of the data instances ingested from each data source.

Schema extraction algorithm

The schema extraction algorithm automatically extracts source schemas from data 
instances (see List 1). It takes as input a data instance F ingested from a data source i, 
with release version j, and a mime string specifying the format type of F. F is assumed to 
conform to a known format specification [40], and its structure consists of a mix of flat 
and complex attributes, each of which has a label and a value. The algorithm operates 
on the structure level of F and extracts its RDF representation Sij that consists of nodes 
and relationships between them. Each node in Sij describes a specific element (attribute) 
in the physical schema of F and is associated with three constructs: Identifier, Semantic 
Type, and Relation. The algorithm assigns a value to each node and constructs Identifier 
using the URI of the data source and the release version j as base values. Semantic Type 
specifies the semantic class of the node, and its range is one of the classes, S:Attribute, 
S:Object, or S:Collection. Relation refers to a relation between a pair of nodes, and can 
be S:hasAttribute, S:hasObject, S:hasCollection, S:hasFormat, S:isComposedBy, or S
:isDecomposedFrom.

The algorithm has two main procedures: InitializeGraph() and GenerateGraph(). Ini-
tializeGraph() starts with specifying the given URI and the release version j as the root of 
Sij (line 2); the auxiliary function ToRDF() adds format attributem (the input mime) to Sij 
as one of its nodes (lines 3 and 4); ToRDF() then specifies the relationship (:hasFormat) 
between the format node and its parent node (line 5). At this point, the source schema 
Sij is initiated. The procedure then invokes GenerateGraph() and passes F and the root of 
Sij to it.
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List 1 Schema extraction algorithm
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GenerateGraph() constructs Sij through a series of iterations and recursive calls over 
the physical schema of F. In each call, the procedure takes a label-value pair from F 
and parentId (the URI) as input, creates a node in Sij corresponding to the label, and 
links the node to its parent node (parentId). The initialization and linking of any node 
is modeled as the RDF triples (NodeId rdf:type S:Type) and (ParentNodeId S:relation 
NodeId), respectively (line 12). Next ToRDF(), based on the type of the node, appends 
these triples to Sij (lines 6–15). Depending on the complexity of F’s structure, a label-
value pair may represent a flat attribute in F (e.g. the “id” key in Fig.  2a), in which 
case, the node type obtained from the auxiliary function Type() is S:Attribute, and 
the corresponding node is linked to its parent node using S:hasAttribute relation, and 
the algorithm moves to the next label-value pair. Conversely, the current label-value 
pair may correspond to a complex attribute (e.g. the embedded object “location” in 
Fig. 2a). In this case, the type obtained from Type() is either S:Collection or S:Object, 
and the node is linked to its parent node using one of the relations S:hasCollection or 
S:hasObject, and subsequently the node’s identifier and value are passed to the recur-
sive procedure GenerateGraph(). Figure 4, as an example, depicts the graphical repre-
sentation of the source schema extracted from the data sample given in Fig. 2a. The 
first node in the graph is created as a leaf node because the first label-value (JSON 
key “id”) is a simple attribute in F. Its identifier is https ://graph .faceb ook.com/me/
feed/2.9/id. A node maybe embedded in another node, such is the case with the node 
labeled ‘latitude’, which serves as one of the flat attributes of the object ‘location’.

Fig. 4 Example of source schema extracted using the schema extraction algorithm

https://graph.facebook.com/me/feed/2.9/id
https://graph.facebook.com/me/feed/2.9/id
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Mapping computation and management

Once a source schema is constructed, it needs to be mapped to the global ontology. A 
mapping is a relationship specifying how an element structured under one schema (i.e., 
the source schema) corresponds to an equivalent element structured under the mediated 
schema (i.e., the global ontology G ) [19]. Mappings may be discovered either implicitly 
or explicitly. In SemLinker, because the global concepts of G are predefined indepen-
dently from the data sources, it is likely that a source schema is semantically incompati-
ble with the concepts of G , and therefore no implicit mappings can be directly discovered 
between a source schema Sij and a tagging concept g.

Typically, computing mappings between a source schema and a tagging concept involves 
specifying the semantic types of the source schema elements, i.e., labeling each schema 
element with a semantically equivalent property in the tagging concept [13]. However, 
semantic labeling alone is not sufficient [41], and a precise mapping computation pro-
cess requires an extra step that specifies how the elements of a source schema should be 
organized in accordance with the structure of its tagging concept so that the two con-
structs become semantically compatible and ready for mapping. This ‘extra step’ is often 
missed in systems that automate the mappings [14, 24, 29, 42, 43] and is expected to be 
dealt with manually [41]. SemLinker uses a two-step mapping approach that not only does 
the explicit mappings, but also performs the ‘extra step’ automatically. The two steps are 
schema matching (SM) and virtual transformation of source attribute (VTSA).

Mapping algorithm

The mapping algorithm (see List 2) takes as inputs a tagging concept g , a source schema 
Sij, and a threshold t. It takes two steps, SM and VTSA, to compute mappings between 
properties and source attributes. Mappings are established as RDF triples, where each 
mapping triple has the pattern (pM : mapsTo a), p ∈ g , a ∈ Sij . Such modeling offers 
the flexibility of allowing multiple source attributes of multiple source schemas to be 
mapped to a single property. The source attributes mapped to the same property are 
considered semantically equivalent between themselves, so a unified view over them can 
be automatically represented by the property.

Revisiting the example in Fig.  2, we see that the Twitter data source is tagged with 
the concept “Feed”. With the mappings specified below, “text” in STwitter,v1.1 (Fig.  2c) is 
regarded as semantically equivalent to “message” in STwitter,v1.2 (Fig. 3d).

Such mappings allow SemLinker to automatically reconcile heterogeneous attributes 
from different source schemas of the same data source, and the reconciliation can be 
further obtained by a SPARQL query with the pattern 

〈

Feed: descriptionM: mapsTo ?a
〉

 . 
In our running example, the result ?a = {STwitter,v1.1: text, STwitter,v1.2: message} allows 
an analysis process to access the values of both data attributes from both versions, 
STwitter,v1.1 and STwitter,v1.2. This can also be applied to unify semantically equivalent attrib-
utes in the source schemas of different data sources as long as they are tagged with the 
same concept. In our example, if we have both Facebook and Twitter data sources tagged 

〈

Feed: description M: mapsTo STwitter,v1.1: text
〉

〈

Feed: description M: mapsTo STwitter,v1.2: message
〉
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with the same concept Feed, then “message” in SFacebook,v2.9, “story” in SFacebook,v3.0, “text” 
in STwitter,v.1.1, and “message” in STwitter,v1.2 are all regarded as equivalent. 

List 2 Mapping algorithm 
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Schema matching

For each property p (line 2), the mapping algorithm invokes function Matcher() to find 
the attribute in Sij that is semantically equivalent with p (line 3). Matcher() is an inter-
face function that passes the matching task to an external schema matcher that has been 
plugged into the system. For each attribute a, it computes a score that quantifies the 
semantic correspondence between a and p. If the score is larger than the threshold t, a 
and p are regarded as semantically equivalent.

When there is more than one property equivalent to the same source attribute, or 
more than one source attribute equivalent with the same property, the algorithm, before 
a mapping is established, adjusts the structure of Sij using VTSA.

Matcher() returns a data structure containing two collection constructs, A and P; while 
A holds zero or more source attributes, P holds one or more properties. The algorithm 
decides its next step according to what is returned in the A and P constructs.

If A = ∅ (line 4), no match is found and the algorithm proceeds to the next p.
If |A| = 1 and |P| = 1 (line 5), one matching attribute a of the source schema is found, 

so the algorithm establishes a mapping between p and a (line 6).
If |A| > 1 and |P| = 1 (line 8), an operation called Composition is performed on the 

attributes of A before establishing mappings (lines 9–17).
If |A| = 1 and |P| > 1 (line 18), an operation called Decomposition is performed on the 

attribute a stored in A before establishing mappings (lines 19–28). After the operation, P 
is skipped from g using the auxiliary function Skip() for optimization purposes (line 29).

While typically information regarding the concept g is abundant, information regard-
ing a specific input Sij is often inadequate [44]. When a situation like this arises, Sem-
Linker uses matchers from third parties to handle schema matching tasks. Matchers 
are classified into three groups, schema-level, instance-level, and hybrid matchers 
[45]. Schema-level matchers utilize the information available in input schemas to find 
matches between schema elements. Instance-level matchers use statistics, metadata, or 
trained classifiers to decide if the values of two schema elements match. Hybrid match-
ers combine both mechanisms to determine match candidates. Schema matching 
approaches are constantly evolving, and often they apply other techniques such as dic-
tionaries, thesauri, and user-provided match or mismatch information [44].

After every single property is examined, and mappings between g and Sij are estab-
lished, the underlying RDF data of the newly constructed Sij are added into the local 
schema Si (line 33).

Virtual transformation of source attribute

In Fig. 2, “latitude” and “longitude”, the two properties in the concept Feed, correspond 
directly to the flat attributes of the embedded object labeled “location” in Fig.  2a, but 
correspond indirectly to the flat attribute labeled “geo” in Fig.  2b. The relationships 
between “latitude” and “longitude” and their indirect corresponding source attribute 
“geo”, though apparent, can semantically hold only if “geo” is transformed into two new 
source attributes, i.e., “geo” →

〈

“latitude”, “longitude”
〉

 , or vice versa. To preserve the 
structure of the raw data stored in the lake, we adopt two virtual transformation opera-
tions, Composition μ and Decomposition γ, to work on the schema of the raw data rather 
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than on the data themselves. The virtual transformation operations are based on [46, 47], 
and they allow SemLinker to virtually map an attribute in a source schema to a property 
in the global ontology.

Definition 3 (Composition µ ) Given a set of source attributes A, A = (a1, a2, . . . , ak) , 
A ⊆ Sij , Sij ∈ Si , 1 < k ≤ n, n =

∣

∣Sij
∣

∣, the composition operator µA,aµ composes A into a 
single virtual attribute aμ.

The mapping algorithm uses the condition (|A| > 1, and |P| = 1 ) as the heuristic rule to 
compose a subset of source attributes A,A = (a1, a2, . . . , ak) as a single new attribute aμ 
and adds it to the Sij. Since aμ is a new source attribute, it must be initialized in the same 
manner as other source attributes. Two types of mappings are established to activate the 
composition transformation. Mapping px → aμ is performed by adding the RDF triple 
�pxM:mapsTo aµ� to Sij (line 13); mapping A → aμ is performed by adding a set of RDF 
triples, each following the pattern 

〈

ayS:isComposedBy aµ

〉

 (lines 14–17). Since aμ is a 

virtual attribute that has no physical implementation, its data values are dynamically 
constructed when queried.

Definition 4 (Decomposition γ ) Given an attribute ay  ∊  Sij,  Sij  ∊  Si, the decom-
position operator γay,Aγ decomposes the attribute ay into a set of virtual attributes 
Aγ , where Aγ =

{

aγ 1aγ 2, . . . , aγ k
}

, k > 1.

When |A| = 1, and |P| > 1 (line 18) a decomposition operation takes place to decom-
pose a source attribute ay into a set of new virtual attributes Aγ, and adds the set to Sij. In 
the operation, ay is modeled as the parent node of the new virtual attributes (lines 
23–25). Similar to composition, the algorithm establishes two types of mappings to acti-
vate the decomposition transformation. Mapping px → aγi is materialized through the 
RDF triple 

〈

pxM:mapsTo aγ i
〉

 , and mapping aγi → ay is materialized through the RDF 
triple 

〈

aγ iS:isDecomposedFrom ay

〉

 . Since Aγ is a set of virtual attributes that have no 

actual implementation, the value of each attribute aγi in Aγ must be dynamically con-
structed whenever needed.

Partial unified views

Instead of providing a strictly unified view that requires full mapping between the global 
schema and local schemas as is normally supported in rigorous data modeling, Sem-
Linker allows a partial unified view and gives users control over the scope of the view. 
The scope of the partial unified view can be adjusted by adding or removing properties 
in the global ontology.

Figure  5 depicts a sample of two source schemas and their mappings to proper-
ties of a tagging concept in the global ontology. The source schemas are extracted 
from Facebook data samples given in Fig.  2b, using the schema extraction algo-
rithm, and the mappings are computed using the mapping algorithm. In the figure, 
red circles indicate normal source attributes mapped to the equivalent properties in 
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straightforward schema matching operations. The source attribute ‘geo’ in the source 
schema https ://graph .faceb ook.com/me/feed/3.0 is marked by a white circle to indi-
cate that decomposition has taken place, and ‘geo’ is decomposed into virtual source 
attributes, namely, “latitude” and “longitude”. The virtual source attributes (yel-
low circles) are also mapped to their corresponding global properties “geo:latitude” 
and “geo:longitude”. Nonetheless, not all source attributes are mapped to properties 
of the tagging concept. Some source attributes (gray circles) are inaccessible, such 
as “attachments” of the second local schema. An inaccessible attribute, without an 
equivalent property in the global ontology, cannot be accessed through queries.

Query
The Query engine of the global schema layer (see Fig. 1) provides querying services 
for SemLinker. It serves two purposes: (i) to provide an SQL abstraction for formu-
lating SQL-like queries targeting the unified views over raw data, and (ii) to compile, 
translate, and execute SQL-like queries and return results to the users. The query 
engine takes a successfully compiled input query, converts it into a relevance query 
and an unfolding query, both of which are internal SPARQL queries. A relevance 
query is a SPARQL SELECT query derived from the input query based on the con-
cepts embedded in its clause formulation, and its execution over G returns all con-
ceptually relevant data sources. An unfolding query is the input query unfolded in a 
SPARQL formulation and is executed iteratively on the underlying RDF graphs of the 
relevant local schemas that have been found by the relevance query. The result of the 
iterative execution is a list of source attributes that correspond to properties of the 
concepts specified in the query. Once the source attributes have been identified, we 
have all the relevant metadata information regarding the query, and the last phrase 
of the query is to retrieve data values from data instances stored in the raw data lake 

Fig. 5 Mappings between the concept “sioc:Feed” and two source schemas

https://graph.facebook.com/me/feed/3.0
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based on the returned metadata and assemble the results into a list before giving it to 
the user.

Here is a simple query scenario. Suppose a user (the same user of the example in 
Fig. 2) is interested in retrieving all social feeds, and their geolocations, after a speci-
fied date (e.g., 1/10/2017), and so she formulates the following query.

On receiving the query, the query engine compiles it, and based on the concept 
(sioc:Feed) used in the clause of the query, it forms the following relevance query:

This above relevance query is executed on the global ontology. A successful exe-
cution returns all local schemas that are tagged with the concept Feed. In our case 
(assuming Facebook and Twitter are the only local schemas tagged with the concept 
Feed), SFacebook, STwitter are returned. Next, the query engine unfolds the input query 
and generates the following unfolding query, executing it iteratively on the RDF 
graphs of each local schema it has found, i.e., SFacebook, STwitter.

Table  1 lists the metadata returned from the execution of the above unfolding 
query. From the table, we see two matching local schemas, each with two source sche-
mas, and their attributes corresponding to the properties indicated in the query. Two 
virtual source attributes from decomposition, “latitude” and “longitude”, are among 
the source attributes returned.

Once the metadata information is obtained, the query engine retrieves and parses 
the corresponding data instances to retrieve data values matching to the specific 
source attributes and the filter condition. The nature of PDL, a marriage between 
data lake and data gravity pull, determines that data are stored in their native for-
mats, and third-party apps and tools can serve the lake as plugins (gravity pull) so 

Table 1 Schema metadata results from a query

Local S. Source S. Query properties Result attributes

SFacebook SFacebook,v2.9 Description, latitude, longitude Message, latitude, longitude

SFacebook SFacebook,v3.0 Description, latitude, longitude Story, geo (latitude, longitude)

STwitter STwitter,v1.1 Description, latitude, longitude Text, coordinates (latitude, longitude)

STwitter STwitter,v1.2 Description, latitude, longitude Message, coordinates (latitude, longitude)
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that any special need for a specific data type can be dealt with professionally [6]. For 
our instance, both the source schemas of SFacebook and STwitter,v1.1 use JSON, whereas 
STwitter,v1.2 uses XML. A suitable plugin parser for each data instance is chosen in 
order to parse it.

Integration with PDL
SemLinker, specializing in structured and semi-structured raw data integration, 
together with SemCluster [48], which tags free-text documents with key phrases that 
are associated with ontology-based semantics, and SemMedia, which extracts and 
manages metadata for multimedia data, constitute the MMF for PDL. Figure 6 depicts 
the architecture of the PDL, in which SemLinker is directly connected to the inges-
tion, and storage layers of the lake. The ingestion layer temporarily stores incoming 
data instances in a message queue before being preprocessed and dispatched to the 
storage layer. Through a cross-layer data pipeline SemLinker pulls data instances from 
the message queue, extracts their schema metadata, and dispatches the data instances 
and their associated metadata to the unified storage repository in the storage layer. The 
storage layer consists of a key-value tuple store and a simple hash table called the Link-
age Table. The MMF associates each data instance and its metadata with a hash key 
representing the data instance’s unique identifier and stores the hash key with the data 
instance itself as a key-value pair in the key-value store. Subsequently, the hash key and 
the data instance’s metadata are stored as a key-value pair in the linkage table. Note 
that the metadata record associated with a data instance includes various information 
produced from different MMF components, such as lineage metadata (e.g., creation 
date, last access date), and security metadata (e.g., access control, encryption informa-
tion). The RDF graph identifier (URI) of the local schema, and the subgraph identifier of 
the source schema (i.e., i and j) are also stored in the record, whereas the actual schema 
are stored in the schema repository.

Fig. 6 The architecture of PDL integrated with SemLinker-based MMF
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Experimental evaluation
The evaluation of SemLinker is carried out in two phases. The first phase examines the 
accuracy of SemLinker’s mapping computations on data with substantial heterogeneities 
and frequent schema evolutions. The second phase investigates integration effectiveness 
and the runtime functional complexity of SemLinker. Because of the difficulty in collect-
ing personal data and privacy concerns, we do not use personal data in the evaluation, 
but instead use 11 real-world publicly available datasets (see Table 2) that exhibit a high 
degree of heterogeneity and have frequent schema evolutions. Each dataset consists of 
many data instances, and each data instance may be of a different release version. The 
collection include 3 datasets that contain sensor (accelerometer and gyroscope) streams 
generated by smart phone and smart watches carried by human subjects and are col-
lected from two human activity recognition experiments [49, 50]. Also included are a 
mix of social data, some of which concerns user opinions, reviews, and ratings of popu-
lar places in London such as hotels, restaurants, and pubs, and two public datasets pub-
lished by UK government agencies.

To integrate the above datasets into the system, we first need to tag the data with 
the most relevant concept of the global ontology G . For example, “sc:Review” is used 
to tag the TripAdvisor and Tourpedia datasets; “sc:LocalBusiness” to tag the Eng-
landPubs dataset; and “sc:PostalAddress” to tag the OpenPostCode dataset. G is also 
extended to include more specific concepts, such as “G:SensorReading” (extension to 
“sc:Dataset”) to tag the HAR-1, HAR-2, and HAR-3 datasets, and “sioc:Feed” (extension 
to “sc:SocialMediaPosting”) to tag the Facebook, Twitter, Flickr, and Foursquare datasets. 
Full information about the global ontology and its extension used in the evaluation is 
available at [51].

Automatic mapping management evaluation

Here we evaluate the accuracy of SemLinker’s mapping computations between the 
schema of each dataset and its tagging concept. Three matcher plugins are used. 
The first two, SemanticTyper [13] and AgreementMaker [43], are both open source 
matching approaches [52, 53]. SemanticTyper is an instance-level schema matcher 
that collects statistical information about the data based on their type and decides if 

Table 2 Datasets used in the evaluation

#Attr: Number of attributes; #Evol: Number of Schema Evolutions

Source Type Format #Attr. #Size #Evol.

HAR-1 [66] Scien. CSV 10 3,540,962 0

HAR-2 [66] Scien. CSV 10 3,205,431 0

HAR-3 [57] Scien. CSV 4 200,471 0

Facebook [58] Social JSON 17 19,770 4

Twitter [59] Social JSON 19 169,000 2

Foursquare [60] Social JSON 17 15,712 2

Flickr [61] Social XML 10 20,000 3

TripAdvisor [62] Social Spreads 13 19,998 4

Tourpedia [63] Social JSON 7 115,732 3

EnglandPubs [64] Public CSV 9 51,566 4

OpenPostCode [65] Public CSV 7 2,525,575 1
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two schema elements match. AgreementMaker comprises multiple automatic match-
ers that are grouped into three layers. Each layer uses a different representation and 
similarity comparison measure, with the third layer being a combination of the other 
two. For AgreementMaker, because of the data lake lacks structural information in 
schemas, we use only the first layer, which represents features of schema elements 
(labels, comments, instances, etc.) in TF.IDF vectors and compares their similarities 
using the cosine similarity metric or some string-based measures (such as edit dis-
tance and substrings). The third plugin, SemMatcher, is the system’s default matcher. 
A detailed discussion of SemMatcher is beyond the scope of the paper, however, Sem-
Matcher is built as a combination of AgreementMaker, the schema-level matcher, and 
SemanticTyper, the instance-based matcher. It is linguistics-based and measures the 
similarity between two schema elements based on their textual descriptions retrieved 
from an external schema dictionary [44].

We measure the accuracy of SemLinker mappings against gold standard map-
pings—the mappings manually obtained using the Karma tool [54] and use the follow-
ing formula to compute the accuracy score for SemLinker’s mapping computations:

where MSemLinker(Sij,  g) is the number of correct mappings between Sijand g that are 
automatically computed by SemLinker, and MGold(Sij, g) is the total number of mappings 
established using Karma. The following formula is used to obtain an overall accuracy 
score:

where j is the total number of evolutions in the physical schema of i.
The evaluation was run three times, each using a different schema matcher. Figure 7 

displays the comparison results of the overall accuracy score when using different 
schema matchers. The results demonstrate clearly that the accuracy of a mapping cal-
culation is very much determined by the schema matcher that is used, and that the 
system’s own matcher, SemMatcher, outperforms the other two matchers in most of 
the datasets. SemanticTyper successfully captures correct matches wherever Agree-
mentMaker fails, and this, to an extent, explains why SemMatcher, which combines 
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=
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)
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)
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)
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j
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(
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Fig. 7 The overall precision score of mapping calculations using different matchers
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the best features of the matchers, gets almost full scores on 6 of the datasets. The fact 
that SemMatcher is also linguistics-based suggests that, for social and public datasets, 
by providing proper schema-level linguistic information (e.g., meaningful attribute 
labels), schema matching may achieve a better precision.

Functional efficiency and query complexity evaluation

To evaluate the functional efficiency of SemLinker in integrating big data with frequently 
changing schemas and the time complexity of executing queries, we compare SemLinker 
with a similar integration-oriented and ontology-based prototype system that is used in 
the SUPERSEDE project and is discussed in [7] (we refer to this as the BDI Ontology sys-
tem). The BDI Ontology system prototype is implemented using a MongoDB [55] data-
base backend to store JSON data, and SQL to store CSV and XML data. The downside 
of using the BDI Ontology system is immediately apparent as substantial effort (includ-
ing manual interactions) is required to maintain its global ontology and to manage the 
source attributes found in the data collected from data sources. Each schema evolution 
also requires manual (re)mappings. Two scenarios are used in the evaluation:

Scenario 1 (involving datasets HAR-1, HAR-2, and HAR-3):

It is assumed we want to retrieve all gyroscope readings ingested from gyroscope sen-
sors to pass to a specialized HAR application for HAR analysis. For this purpose, the fol-
lowing query is formed:

A gyroscope reading, such as [0.0041656494, −  0.0132751465, 0.006164551] (see 
HAR-3 dataset), consists of values corresponding to the x, y and z axes. The global con-
cept “SensorReading”, which has one property, “G:reading”, has been used to tag all three 
HAR datasets. This apparently simple Gyroscope reading retrieval has some complexity: 
the reading in HAR-1&2 is described by three separate attributes, X, Y, and Z, whereas 
the reading in HAR-3 is described by only one attribute. However, before the query takes 
place, this heterogeneity problem has been solved when HAR-2 data are ingested and the 
schema mapping takes place. In the mapping, the source schema, SHAR-2,V1.0, is virtually 
transformed into the virtual source attribute “reading”. Consequently, the query alone is 
sufficient to retrieve the required data without any extra pre- or post-processing steps.

However, for the BDI Ontology system, since there is no easy solution for structural 
heterogeneities in the source schemas, it is impossible to execute the query directly. 
Either we must transform the data so that HAR-1&2 and HAR-3 share the same struc-
ture, or we tag them with different concepts and query them separately.

Scenario 2 (involving social and public datasets):

It is assumed we are interested in local businesses in London such as hotels, restau-
rants, and pubs, and would like to know their full address (including postcode), and 
reviews and ratings about them. We may also apply sentiment analysis to gauge the 
polarity in the comments that are retrieved.
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Because the data exist in different formats and semantic contexts, a direct query may 
seem to be complicated. With SemLinker, however, provided the raw data are ingested 
properly into the system, and predefined inline functions (another kind of plugin of 
the lake) that fulfill certain relevant tasks are in place, a direct query will return the 
desired results. In the datasets, there are defects in the data, such as a postcode miss-
ing from the reviewed business, or some geolocation is inaccurate, or the name of 
a business may have different spelling (using “&” for “and” or “65” for “sixty-five”, and 
so on). If such problems have been anticipated, as in our case, customized inline func-
tions may be designed and imported in advance to deal with these situations at query 
time. Here we use Sentiment(string) to produce a polarity representing the user opin-
ion (i.e., positive, negative, or neutral), Normalize(string) to normalize the business 
names, Radius(float,integer) to generate x values around an input spatial coordinate, and 
WordNet(string,int) (a WordNet-based function) to retrieve all the possible synonyms 
and hyponyms of an input string. In addition, there is also the complication regarding 
schema evolution that has already been dealt with by SemLinker. Once all elements are 
in place, the user can retrieve the desired information using the following query:
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In the query, the postcode associated with each review is obtained by chaining data 
instances across multiple datasets.

For both scenarios, we ran 20 queries targeting raw data in the range 0–800K data 
instances on both SemLinker and the BDI Ontology prototype system, and we measure 
and compare their query execution time. The recorded time of each query includes input 
query translation, query unfolding, and data retrieval from the backend. Figure 8 pre-
sents the runtime benchmark data recorded for the query executions of each system. We 
observe that when the number of datasets is small, the difference in the execution times 
for the two systems is insignificant, but when the retrieved data are moderately large, 
SemLinker significantly outperforms the BDI Ontology system. For example, SemLinker 
requires 8  s on average to retrieve and integrate 40K review results, whereas the BDI 
ontology system requires 96 s on average to perform the same task. SemLinker’s signifi-
cant improvement is mainly due to the following reasons: (i) since SemLinker fully sup-
ports the storage, integration, and querying of raw data regardless of their formats and 
structures, any high-performance key-value store can be adopted as the central unified 
backend (e.g., Redis [56]). Hence, compared to the data access and query execution over-
heads of the BDI Ontology system (MongoDB/SQL), SemLinker’s backend is conceptu-
ally a big hash table with data access complexity O(1); and (ii) in SemLinker the source 
schemas of each dataset are modeled as subgraphs grouped into one RDF graph (i.e., 
the local schema), whereas in the BDI Ontology system each source schema is treated 
as a separate RDF graph. As expected, SemLinker, which executes its internal SPARQL 
queries on a single graph for each dataset, is much faster than the BDI Ontology system, 
which executes its queries on several graphs for each data set.

Conclusion and future work
We have presented SemLinker, an ontology-based data integration system for PDL 
and other similar data lake implementations. SemLinker allows casual users with lim-
ited technical background and with minimal effort, to integrate, process, and analyze 
heterogeneous raw data through a unified conceptual representation of the data sche-
mas regarding a widely used global ontology. To the best of our knowledge, SemLinker 
is the first domain-agnostic integration system that offers self-adapting capabilities to 

Fig. 8 Real time query execution performance comparison
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automatically integrate big data with frequently evolving schemas based on solid theo-
retical foundations. SemLinker has been evaluated on large datasets in multiple domains, 
and the results not only validate its integration effectiveness and functional efficiency, 
but also indicate that SemLinker’s performance is robust and promising, albeit there is 
still room for improvement in multiple aspects of the system.

Although SemLinker is a generic integration solution, it targets only structured 
and semi-structured data, and it is, by no means, a holistic integration solution when 
unstructured data such as free-text documents and multimedia files are also consid-
ered. For such data we have proposed, in an earlier paper [48], SemCluster, an auto-
matic key phrase extraction tool that specializes in extracting keyphrases from free 
text documents and annotating each keyphrase with ontology-based metadata. One 
of our planned immediate undertakings is to combine SemLinker and SemCluster 
into a broader integration solution towards an effective and efficient metadata man-
agement framework for the personal data lake.

In this paper, we have discussed the importance of automating the tasks of the inte-
gration process, thereby building an easy-to-use data lake for casual users. However, 
SemLinker, though in many aspects it can be regarded as an automatic system, still 
has two vital tasks that need to be dealt with manually by its users: data source tagging 
and selecting a schema matcher plugin. Using machine learning based approaches to 
label data sources with ontological concepts automatically, and thus relieving users 
of the burden of manual data source tagging, is one of our future research goals. As 
for schema matcher selection, though the performance of SemMatcher in the evalu-
ation is promising, we intend to extend it by combining a number of other matching 
approaches, so that it provides a good matching solution for schemas of various char-
acteristics, reducing the need for users to resort to other schema matchers.
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