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Abstract
Purpose – This paper aims to improve the diversity and richness of haptic perception by recognizing multi-modal haptic images.
Design/methodology/approach – First, the multi-modal haptic data collected by BioTac sensors from different objects are pre-processed, and then
combined into haptic images. Second, a multi-class and multi-label deep learning model is designed, which can simultaneously learn four haptic
features (hardness, thermal conductivity, roughness and texture) from the haptic images, and recognize objects based on these features. The haptic
images with different dimensions and modalities are provided for testing the recognition performance of this model.
Findings – The results imply that multi-modal data fusion has a better performance than single-modal data on tactile understanding, and the haptic
images with larger dimension are conducive to more accurate haptic measurement.
Practical implications – The proposed method has important potential application in unknown environment perception, dexterous grasping
manipulation and other intelligent robotics domains.
Originality/value – This paper proposes a new deep learning model for extracting multiple haptic features and recognizing objects from multi-
modal haptic images.

Keywords Deep learning, Data fusion, Haptic perception, Multi-modal haptic images

Paper type Research paper

1. Introduction

Haptic recognition is one of the major issues in robotics
manipulation (Chitta et al., 2011; Dargahi and Najarian,
2004), medical diagnostics (Arian et al., 2014), prosthetics (Cu
et al., 2016) and haptic display (Tian et al., 2016, 2017).
Although there have been lots of studies on vision-based
recognition in recent years (Abdulnabi et al., 2015; Chen et al.,
2013), it is difficult to infer many properties of objects from
vision alone in some special scenarios (Zhang et al., 2017).
Therefore, this paper focuses on developing a novel haptic
recognitionmethod.
A wide variety of technologies have been presented for haptic

recognition recently. Song et al. (2014) designed a novel fabric
surface texture sensor using polyvinylidene fluoride film. Orii
et al. (2017) extracted tactile textures from the time-series data
of a pressure sensor and a six-axis acceleration sensor using
Convolutional Neural Networks (CNNs). Gorges et al. (2010)
developed a planar tactile sensor matrix for perceiving object
shapes. Zhang et al. (2017) described a Monte-Carlo-Tree-

Search-based algorithm for actively selecting a sequence of
end-effector poses to recognize objects. These methods mainly
focus on individual sensing modalities rather than the multi-
modal combination of sensory capabilities found in human
skin.
BioTac, a multi-modal biomimetic sensor developed by

SynTouch LLC, can measure force, micro-vibration and
thermal flux simultaneously, which provides a better solution to
multi-modal haptic perception (Han et al., 2016; Fishel and
Loeb, 2012a; Lin et al., 2009). Fishel and Loeb (2012b)
proposed a Bayesian exploration method that can adaptively
select the optimal exploratory movement to accurately
discriminate textures with BioTac. Wettels and Loeb (2011)
designed an artificial neutral network to extract multiple haptic
features from the BioTac’s output. Chu et al. (2013,2015) used
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Hidden Markov Models to recognize 25 binary haptic adjectives
using the BioTac’s data from several exploratory procedures
(EPs). Based on Chu’s research, Gao et al. (2016) proposed a
multi-modal CNN model to fuse haptic and visual inputs for
recognizing haptic adjectives. However, the studies of Chu and
Gao are essentially a binary classification task, which only outputs
a “yes” or “no” answer and cannot provide richer features.
Therefore, this paper combines the multi-modal haptic signals

fromBioTac into haptic images, and builds a newmulti-class and
multi-label haptic image recognition model based on CNN. This
recognition model is able to extract four haptic features, which
are hardness, thermal conductivity, roughness and texture,
and recognize objects (Figure 1). Compared with themethods by
Chu et al. (2013, 2015) and Gao et al. (2016), the main
innovation of the proposed model is that it can simultaneously
output multiple haptic features and multiple classes for each
feature instead of only single binary feature, which is conducive to
more diversified and richer haptic perception.

2. Haptic data set

The haptic data set used in this paper is Penn Haptic Adjective
Corpus 2 (PHAC-2) (Chu et al., 2015). PHAC-2 contains the
haptic data of 60 different household objects, which are
classified into eight classes according to their materials: Foam,
Organic, Fabric, Plastic, Paper, Stone,Glass andMetal (Figure 2).
The haptic data of each object were collected by two BioTac

sensors that were mounted on the gripper of a Personal Robot 2

(PR2) robot. For each object, the measurement was performed
in ten trials, and each trial included four EPs: Squeeze, Hold,
Slow Slide and Fast Slide (Chu et al., 2015).
BioTac outputs five types of signals (Figure 3): low-

frequency fluid pressure (PDC), high-frequency fluid vibration
(PAC), core temperature (TDC), change rate of the core
temperature (TAC), 19 electrodes (E1,. . ., E19) spatially
distributed on the surface of the rigid core (Fishel, 2012).
The two BioTac sensors are treated as two distinct instances

for augmenting the haptic data set. Therefore, the total number
of haptic instances in PHAC-2 is now 1,200 (60 objects � 2
BioTacs� 10 trials).

3. Haptic data pre-processing

3.1 Setting labels
Labels are essential for training and testing deep network
models. There are two kinds of labels: object category labels
and haptic feature labels in this paper.
In PHAC-2, Glass and Stone only include two objects each,

which are too few for deep learning. Therefore, the four objects
of these two categories are deleted, which means 56 objects,
namely, six categories, are retained, as shown inTable I.
According to the BioTac’s output, the haptic features of

objects in this paper include hardness, thermal conductivity,
roughness and texture, and each feature is described by more
than two classes. The hardness of objects is divided into six

Figure 1 Illustration of the proposed algorithm framework

Figure 2 The 60 objects in PHAC-2
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Figure 3 The output signals of BioTac

Table I Labels for object categories

Object category Organic Plastic Paper Fabric Foam Metal

Label 0 1 2 3 4 5
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classes from the softest to the hardest. Thermal conductivity is
divided into six classes from the lowest conductivity to the
highest conductivity. Roughness is divided into four classes
from the smoothest to the roughest. Texture is divided into
three classes from the coarsest to the finest, which are used for
describing the fineness of the surface textures of objects. The
labels of these four features were set for each object mainly
according to the change rate of PDC signal, the change of TAC
signal, the power of PAC signal and the spectral center
frequency of PAC signal, respectively (Chu et al., 2015; Fishel
and Loeb, 2012b). Moreover, the known information of
objects also contributed to the objective label setting.

3.2 Normalization
The haptic signals collected by BioTac have different ranges.
Therefore, the haptic data should be normalized before being
inputted into deep networkmodels, as follows:

s
0
ij ¼ sij � sij

s ij
(1)

where sij is the ith type of haptic signal across all objects in all
jth-EPs; i = 1, 2,. . ., 5, which means PAC, PDC, TAC, TDC
and E1,. . ., E19, respectively; j = 1, 2, 3, 4, which means
Squeeze, Hold, Slow Slide and Fast Slide, respectively; sij
represents the mean of sij; s ij is the standard deviation of sij; s

0
ij

is the normalized signal.

3.3 Dimension reduction for electrode signals
As mentioned above, there are 19 electrodes in BioTac.
However, experiments found that four principal components
capture 95 per cent of the variations of E1,. . ., E19 (Gao et al.,
2016). Consequently, the 19 dimensional electrode signals are
transformed into four dimensions by the Principal Component
Analysis (PCA) algorithm (Abdi and Williams, 2010), which
can extract the main change characteristics, reduce useless data
and improve the efficiency of training deep networkmodels.

3.4 Data augmentation
The total number of haptic instances is only 1,120 (56 objects �
2Biotacs� 10 trials). Apparently, it is a small data set for training
a deep network model. To augment the data set, each signal is
sub-sampled five times at different starting points to obtain five
different signals (Figure 4). After the data augmentation, the
number of haptic instances is increased to 5,600.

3.5Making signals with the same length
PAC is sampled at a much higher frequency than other signals
for getting high-frequency vibration, leading to its far longer
length. Furthermore, the signal lengths in Squeeze vary

considerably among objects due to different hardness. The
haptic signals with different lengths cannot be directly used for
haptic images. Therefore, the following method is adopted to
make the signals with the same length:
� The minimum signal length lmin is found among the

signals gotten from all jth-EPs.
� PAC is divided into three parts (Figure 5), first; then, the

Start and End parts are removed because these two parts
are easily disturbed by external noise; finally, the Stable
Vibration part is sub-sampled to length of lmin. Compared
with directly sub-sampling PAC to length of lmin, this
method can retain the valuable data of PAC as much as
possible.

� For other signals, sub-sampling will destroy their gradient
features because of different sampling ratios. Therefore,
from the start of the signals except PAC, the parts with
length of lmin are retained (Figure 6).

According to the requirement of haptic images (Section 3.6),
all haptic signals are then compressed into a fixed length by
sub-sampling.
An example of pre-processing haptic signals is shown in

Figure 7, where the raw signals are from one object in a Squeeze
procedure. In Figure 7, taking PDC as an example, the raw
PDC signal is normalized according to equation (1) first; then,
the normalized signal is augmented five times, making the
length change from 750 to 150; third, the new PDCs are cut
to length of lmin= 95; finally, the signals are compressed into
length of 32 to construct a haptic image.

3.6 Buildingmulti-modal haptic images
To form the input of CNNs, the processed haptic signals from
one trial are concatenated into haptic images with dimension of
C � T, where C is the number of signal channels, namely, the
image height, and T is the number of time steps, namely, the
image length (Figure 8).
The haptic images in Figure 8(a) have 32 channels [(PAC1

PDC1TAC1TDC1 4 Electrodes)� 4 EPs], which contain
all the haptic signals from one trial. To explore the influence of
image lengths on haptic image recognition, the three haptic

Figure 4 Illustration of data augmentation
Figure 6 Illustration of cutting the signals to length of lmin in squeeze
procedures

lmin

PDC
signals

Figure 5 Dividing PAC into three parts: start, stable vibration, end

Start Stable Vibration End

PAC Signal
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images with 32 channels are set with different lengths: 32� 32,
32 � 16, 32 � 8. The haptic images in Figure 8(b) and 8(c)
contain 16 channels and 8 channels, respectively. The lengths
of these two images are set as 32. So, the three haptic images
with dimensions of 32 � 32, 16 � 32, 8 � 32 are used for
comparing the recognition performances of haptic images with
different signal channels.
In summary, the process of generating haptic images is

shown in Figure 9.

3.7 Train/test splits
The haptic images and the labels of 56 objects are partitioned
into a training set and a testing set. The training set contains
4,600 haptic images of 46 objects, and the testing set contains
1,000 images of the other 10 objects. The partition is random,

but both the training set and the testing set include at least one
object in each category, and the two sets do not include the
same object. The number of objects in each category is mainly
decided by the proportion of this category in the total objects.
The objects in the testing set are shown in Figure 10.

4. Haptic image recognition model

4.1Model structure
A multi-class and multi-label model based on CNN is built for
recognizing haptic features and object categories, as seen in
Figure 11. The model is implemented by Caffe, which is an
open-source deep learning framework (Jia et al., 2014):
� Haptic_Input is a data layer. Its output has two parts: one is

a label matrix, which is divided into five label vectors by
Slicer layer, namely, the labels of hardness, thermal

Figure 7 An example of pre-processing haptic signals, the left is the raw signals from one object in a squeeze procedure, the right is the pre-processed
signals, PDC is used as an example for illustrating the pre-processing procedures
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Figure 8 Haptic images with different dimensions, where (a) shows the images with dimensions of 32 � 32, 32 � 16, 32 � 8; (b) and (c) show the
images with dimensions of 16� 32 and 8� 32, respectively; Elec represents the electrode signals

Figure 9 The process of generating haptic images
Figure 10 The objects in the testing set
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conductivity, roughness, texture and object categories (see
Section 3.1); the other is the haptic images.

� Convolution_1 and Convolution_2 are convolutional layers.
“Grouping” is used in the two convolutional layers, which
makes different groups of channels not interact with each
other. The number of groups is equal to the channel
number of haptic images, which means interactions
between different haptic signals are not learned until the
fully connected layer (Gao et al., 2016). This method is
crucial for such a small training set because it can reduce
the number of model parameters and improve the training
efficiency.

� Pooling_1 and Pooling_2 are pooling layers with average
pooling function.

� Fc_0 is a fully connected layer with 64 neurons to fuse the
features from the upper layer.

� Relu_0 is an activation layer with Rectified Linear Units
function, which has faster convergence rate than other
functions such as sigmoid and tanh (Krizhevsky et al., 2017).

� Fc_hard, Fc_thermal, Fc_rough, Fc_texture and Fc_object are
fully connected layers and their outputs represent
hardness, thermal conductivity, roughness, texture and
object categories, respectively. In fact, Fc_object is the
fusion of the haptic features from Fc_hard, Fc_thermal,
Fc_rough and Fc_texture, namely, the category of an object
is determined by the four extracted features. Haptic_all is
provided for concatenating the output features from
Fc_hard, Fc_thermal, Fc_rough and Fc_texture.

� Dropout_1, Dropout_2, Dropout_3, Dropout_4 and Dropout_5
are dropout layers. Dropout can reduce over-fitting by
dropping out some nodes of the model with a certain
probability.

� Loss_hard, Loss_thermal, Loss_rough, Loss_texture and
Loss_object are loss layers with type of SoftmaxWithLoss,
which is the combination of softmax function and
multinomial logistic loss for multi-class classification tasks.

4.2Model training
The proposed model is trained by the Stochastic Gradient
Descent algorithm with a variable learning rate and a
momentum value of 0.9. Learning rate can influence the speed
and quality of the model training, as a high value may cause
unstable oscillation, while a too low value slows the training.
Therefore, it would better to update the learning rate during the
training process:

lrðiterÞ ¼ base lr � 11 g � iterð Þ�b (2)

where base_lr = 0.01, g = 0.0001, b = 0.75 and iter is the
number of iterations. Consequently, the learning rate lr will
decrease according to iter. The maximum number of iterations
is 600, and the batch size is 1,000.

5. Results

After training the model, the testing set is adopted to evaluate
the recognition performance. The results are reported by F1-
score, which reaches its best value at 100 per cent and worst
value at 0 (Chu et al., 2015). The following F1-score (per cent)
is the weighted average of F1-scores of all classes for one label,
where the weights are determined by the proportion of one class
in thewhole set.

5.1 Single-modal recognition
The single-modal haptic signals from four EPs are applied in
haptic image recognition first. The haptic images with only
PAC signals have four channels (one PAC in each EP), and
their length is set as 32. Similarly, the haptic images with only
PDCs, TDCs or TACs have a dimension of 4 � 32 each. The
haptic image dimension for electrodes is 16 � 32 (four
electrode signals after the PCA processing in each EP). The
results are shown in Table II, Table III and Table IV,
respectively.
As seen in Table II, Table III, Table IV:

5.1.1 For object recognition
The F1-score of PDCs is the lowest, because most of the
objects in the same category have different hardness except

Figure 11 The CNNmodel for haptic image recognition

Table II Recognition with PACs (%)

Haptic images Roughness Texture Object recognition

PACs (4� 32) 67.4 61.4 64.2

Table III Recognition with PDCs, electrodes (%)

Haptic images Hardness Object recognition

PDCs (4� 32) 46.9 51.4
Electrodes (16� 32) 47.7 62.8

Table IV Recognition with TDCs, TACs (%)

Haptic images Thermal conductivity Object recognition

TDCs (4� 32) 56.4 59.3
TACs (4� 32) 64.0 68.6
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metal objects, making it difficult to recognize objects by PDCs
alone. Electrodes contain multi-dimensional features, resulting
in obtaining a higher F1-score than PDCs. Objects can bemore
accurately recognized by extracting surface features from
PACs. The F1-score of TACs is the highest, because the
objects in PHAC-2 are classified by their materials, and the
thermal conductivities of different materials are usually
different leading to significant difference among the measured
TACs. Although TDCs are able to recognize objects by
different thermal changes, the thermal conduction of BioTac is
very slow causing a little change of TDCs in a short time.
Hence the TDCs’ performance is much worse than that of
TACs.

5.1.2 For feature extraction
As for thermal conductivity, the F1-score of TACs is higher
than that of insensitive TDCs. Compared with PDCs,
Electrodes have slightly better performance on hardness
extraction, which may be due to their multi-dimensional
features.

5.2Multi-modal recognition
The five haptic images in Figure 8 are adopted to illustrate the
recognition performances of multi-modal haptic images. The
loss curves during the training with 32 � 32 haptic images are
shown in Figure 12, which illustrate the convergence of the
CNNmodel. The testing results are shown inTable V.
In Table V, the average F1-score of 32� 32 haptic images is the

highest, while decreasing the lengths (32� 16 and 32� 8) and the
channels (8� 32 and 16� 32) of haptic imagesmakes the average
F1-score lower. The reasons should be that: shortening the lengths
possibly discards some important information; less signal channels

reduce the richness and diversity of haptic images. Therefore, a
haptic image withmore signal channels and longer length can have
better recognition performance if there are enough haptic data to
train theCNNmodel.
The confusion matrices of object recognition are shown in

Figure 13. Apparently, organic objects are easily mistaken for
paper objects, and fabric objects are easily mistaken for foam
objects. There are twomain reasons:
1 The number of objects in organic and fabric categories is

too small to learn their features (five organic objects and
seven fabric objects).

2 In the testing set (Figure 10), the organic object is layered
cork, which is similar with some paper objects such as fiber
board; the fabric object is dishcloth, which is similar with
some foam objects such as shelf liner. These similarities
also result in the wrong recognition.

However, the model can recognize metal objects rightly
although the number of metal objects is smaller. It is because
metal objects have some special features compared with other
objects such as very high thermal conductivities.
The confusion matrices of hardness recognition are shown in

Figure 14, which are used as an example for showing the haptic
feature recognition performance. hard-1 and hard-2, hard-3 and
hard-4, hard-5 and hard-6 are more easily confused. The main
reason should be that the differences between these classes are
not obvious enough. Furthermore, the measurement errors by
BioTac can also lead to themisclassification.

6. Discussion

Compared with the results in Table II, Table III and Table IV, the
performance of 32 � 32 haptic images in Table V is the best on
both feature extraction and object recognition. It implies that
multi-modal signal fusion has advantages over single-modal
signals. Actually, the BioTac’s output signals are not completely
independent. For example, even for the same object, larger
pressure (larger PDC) can lead to faster thermal conduction
(larger TAC). Furthermore, the four features also have certain
relations with each other. For example, harder objects often have
higher thermal conductivities than softer objects, which means a
haptic feature may be determined by more than one type of
signals. Thus, fusing the multi-modal signals may be the only way
to learn the complex coupling relations for more accurate
recognition.
Other key factors, which influence the recognition performance,

should be that: there is a small number of objects in some
categories; the differences among different categories are not
obvious. A direct method of solving these problems is to enlarge
and enrich the haptic data set.
Different from the work by Chu et al. (2015) and Gao et al.

(2016), the recognition model in this paper is not a binary
classifier, which only outputs “yes” or “no”, but a multi-class and
multi-label classifier, which provides more accurate description of
haptic features.

7. Conclusion

A new multi-class and multi-label deep learning model is
designed for recognizing haptic images. The model can
simultaneously extract four haptic features and recognize

Figure 12 The loss curves during the training with 32 � 32 haptic
images
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Table V Recognition with multi-modal haptic images (%)

Image dimensions 8� 32 16� 32 32� 32 32� 16 32� 8
Hardness 58.6 58.8 73.7 55.9 57.0
Thermal conductivity 62.6 63.5 67.7 68.3 67.0
Roughness 53.8 68.3 69.9 68.9 69.4
Texture 53.5 68.8 77.5 75.6 67.4
Object recognition 60.5 69.0 74.8 67.6 67.2
Average 57.8 65.7 72.7 67.3 65.6
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objects from the haptic images with multi-modal signals. The
results show that: compared with single-modal haptic signals,
multi-modal signal fusion can successfully improve the
recognition performance; increasing the dimension of haptic
images is also beneficial for better recognition performance.
The proposed model can provide more accurate and richer
haptic information, and improve the capabilities of unknown
environment perception and dexterous manipulation.
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