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Abstract- Real-time, integrated health monitoring of gas 
turbine engines that can detect, classify, and predict 
developing engine faults is critical to reducing operating and 
maintenance costs while optimizing the life of critical 
engine components. Statistical-based anomaly detection 
algorithms, fault pattern recognition techniques and 
advanced probabilistic models for diagnosing structural, 
performance and vibration related faults and degradation 
can now be developed for real-time monitoring 
environments. Integration and implementation of these 
advanced technologies presents a great opportunity to 
significantly enhance current engine health monitoring 
capabilities and risk management practices. 

This paper describes some novel diagnostic and prognostic 
technologies for dedicated, real-time sensor analysis, 
performance anomaly detection and diagnosis, vibration 
fault detection, and component prognostics. The 
technologies have been developed for gas turbine engine 
health monitoring and prediction applications which 
includes an array of intelligent algorithms for assessing the 
total ‘health’ of an engine, both mechanically and 
thermodynamically. 
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1. INTRODUCTION 

There is a great opportunity for military jet engines to 
become more reliable, operationally available and 
economically maintained through the use of enhanced 
diagnostic and prognostic strategies such as those 
presented in this paper. The development and integration 

of enhanced diagnostic and prognostic algorithms that can 
predict, within a specified confidence bound, time-to-failure 
of critical engine components can provide many benefits 
including: 

Improved safety associated with operating and 
maintaining gas turbine engines. 
Reduced overall life cycle costs of engines from 
installation to retirement. 
Ability to optimize maintenance intervals for specific 
engines or fleets of engines and prioritization of tasks to 
be performed during the planned maintenance events. 
Increased up-time/availability of all engines within a 
fleet. 
Provides engineering justification for scheduling 
maintenance actions with corresponding economic 
benefits clearly identifiable. 

The development of enhanced diagnostic and prognostic 
strategies built upon existing engine condition monitoring 
platforms can allow for continuous monitoring and prediction 
of component failure rates and degraded engine performance. 
A block diagram illustrating how prognostic technologies can 
be integrated within existing diagnostic system architectures 
is shown in Figure 1. 

Engine 1 Fault Detection 1 E 

Figure 1 Integration of Prognostics within Diagnostic 
Framework 
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From Figure 1, the integration of prognostic technologies 
within existing diagnostic systems begins with validated 
sensor information currently measured on the engine being 
feed directly into the diagnostic algorithms for fault 
detectiodisolation and classification. The ability of an 
enhanced diagnostic system to fuse information from 
multiple diagnostic sources together to provide a more 
confident diagnosis is emphasized along with a system's 
ability to estimate confidence and severity levels 
associated with a particular diagnosis. In a parallel mode, 
the validated sensor data and real-time current/past 
diagnostic information is utilized by the prognostic 
modules to predict future time-to-failure, failure rates 
andor degraded engine condition (i.e. vibration alarm 
limits, performance margins, etc.). The prognostic 
modules will utilize physics-based, stochastic models 
taking into account randomness in operation profiles, 
extreme operating events and component forcing. In 
addition, the diagnostic results will be combined with past 
history information to train real-time algorithms (such as a 
neural networks or real-time probabilistic models) to 
continuously update the projections on remaining life. The 
specific approaches and algorithms for determining these 
component prognostic results are described in this paper. 

Once predictions of time-to-failure or degraded condition 
are determined with associated confidence bounds, the 
prognostic failure distribution projections can be used in a 
risk-based analysis to optimize the time for performing 
specific maintenance tasks. A process which examines the 
expected value between performing maintenance on an 
engine or component at the next opportunity (therefore 
reducing risk but at a cost of doing the maintenance) versus 
delaying maintenance action (potential continued increased 
risk but delaying maintenance cost) can be used for this 
purpose. The difference in risk between the two 
maintenance or operating scenarios and associated 

consequential and fixed costs can then be used to optimize 
the maintenance intervals or alter operational plans. 

2. TECHNICAL APPROACH 

In order to evolve purely diagnostic health monitoring 
systems to those that are capable of more robust diagnostics 
and failure prognostics, a probabilistic framework is 
advantageous. Certainly, a prognostic system output that 
only reports a specific time-to-failure without having any 
confidence (uncertainty) bound associated with the prediction 
would be unwise. This is true for simple prognostic 
approaches that only utilize historical reliability data (such as 
Weibull distributions) to the more advanced prognostic 
modeling approaches that take design parameter and 
operating condition uncertainties into account. 
The prognostic modeling approach implemented in this paper 
takes advantage of the directly sensed parameters, fused and 
diagnostic EHM system results, as well as inspection and 
historical reliability data - to provide critical inputs for 
producing accurate failure predictions. As shown in Figure 
2, this process begins with a comprehensive evaluation of the 
sensor data including multiple techniques that are fused 
together for identifying incipient sensor failure modes. Once 
the possibility of a sensor malfunction has been minimized, 
multiple diagnostic algorithm outputs are combined with 
diagnostic fusion techniques to enhance the fault 
identification capabilities of the engine health monitoring 
system. An example of diagnostic fusion might be 
intelligently processing information from vibration data, 
performance parameters, and oil related measurements to 
detect bearing faults with higher certainty. Next, in order to 
obtain the prognostic projections on component failures or 
unsatisfactory engine operation, different levels of prognostic 
strategies can be utilized. Approaches to be considered in 
this paper include probabilistic, physics-based models that 
take design parameter and operating condition uncertainties 
into account. 
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Figure 2 Prognostic Enhancements to Diagnostic Systems 
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3. ENHANCEMENTS TO ENGINE HEALTH 
MONITORING AND DIAGNOSTIC SYSTEMS 

A few technologies for improving the robustness of existing 
engine health monitoring (EHM) and diagnostic systems 
will be discussed next which include; fused sensor 
validation and recovery, probabilistic anomaly detection and 
diagnosis and stochastic vibration fault classification. These 
real-time diagnostic enhancements are capable of 
accounting for uncertainties from engine transient 
conditions, random measurement fluctuations and modeling 
errors associated with model-based diagnostic procedures. 
Besides providing more robust diagnostic results, the 
techniques yield direct confidence and severity levels 
associated with particular diagnoses that can be directly 
utilized by prognostic algorithms which are also 
probabilistic in nature. 

Fused Sensor Validation and Diagnostics 

A necessary front-end to all engine health monitoring 
systems must insure the integrity of the measured 
parameters. Sensor problems such as ground loop faults, 
sensor drift or electrical noise can often appear as the onset 
of a performance or vibration fault and must be isolated and 
detected properly. The sensor analysis enhancements 
described herein must validate the integrity of sensor signals 
with multiple techniques that isolate particular failure 
modes, therefore also providing a level of fault diagnosis for 
the sensor system itself. 

The sensor validation and diagnostic process is performed 
using multiple and collaborative techniques that offer 
advantages for isolating and detecting specific sensor failure 
modes (Figure 3). Some available techniques that have 
been implemented with success include; trained neural 
networks, fuzzy logic analysis, signal auto and cross 
correlation, and high-pass filtering. 

Anomaly Detection P Fault Diagnosis - Sensor Recovery * Virtual Sensing 

Figure 3 Sensor Validation and Fault Diagnostics 

The sensor validation and diagnostic techniques fall in two 
categories; signal processing-based and physics-based. The 
signal processing techniques accomplish their tasks 
(detecting and diagnosing sensor anomalies) independent of 
a monitored system’s characteristics. Conversely, the 
physics-based techniques accomplish more advanced tasks 
(sensor recovery and virtually sensing parameters) because 
they are developed from a-priori knowledge of the system 
characteristics. Signal auto-correlation and high-pass 
filtering are two signal processing techniques used for 
identifying grounding and intermittent spikes at high levels 
of sensitivity. The correlation matrix tracks the degree of 
co-linearity between signals in real-time and can detect 
clipping, noise and multiplexer cross-talk. This technique 
bridges signal processing and physics-based approaches 

because system response characteristics may be used to aid 
in fault identification in highly dynamic situations. 

The more advanced detector schemes are rooted in the 
engine’s physical characteristics. The fuzzy logic based 
sensor analysis continuously assesses the “normal” bands 
associated with each sensor signal at the current operating 
condition. When a signal goes outside these bands, while 
others remain within, an anomaly is detected associated with 
those specific sensors. The neural network operates by 
comparing the physical relationships between signals as 
determined from a gas path model of the engine’s 
performance parameters. The neural network has the ability 
to recovery sensors that have failed or “virtually” sense 
critical diagnostic parameters that is not monitored. All of 
these parallel algorithms may be combined in a data fusion 
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process that determines the final confidence levels that a 
particular sensor has either failed or has suspect operation. 
~31. 

Figure 4 shows an example of some engine test cell results 
where the fuel flow sensor began “spiking” at full throttle. 
Both the high pass filter and autocorrelation technique were 
able to autonomously detecting this sensor fault. 

I Fuel Flow 
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Figure 4 Detection of Spikes in Fuel Flow Sensor 

Statistical Engine Baseline Models for Robust Fault 
Detection 

A critical aspect of most model-based diagnostic or 
prognostic processes is the physics-based engineering 
analysis andor computer simulation of the engine and 
associated baseline data that is used to develop the “baseline 
signature” model. The analysis model will be used to model 
the engine’s “normal” behavior, and any statistical deviation 
from that model will used to detect engine faults. Baseline 
data is typically analyzed for each engine over the entire 
envelope of operating conditions. The corrected parametric 
curves are then developed as the “engine signature” models. 
Subsequent engine performance assessments depends on 
evaluating the distribution shifts associated with the normal 
deviations from these baseline parametric models. This 
concept is illustrated at the top of Figure 5. 

Figure 5 Engine Signature Model and Statistical Anomaly 
Detection 

Engine performance anomaly detection algorithms are 
designed to statistically detect the manner in which 
performance parameters are shifting over time and to 
analyze the confidence intervals associated with engine 
performance degradation issues. 

The algorithms statistically trend and analyze how the 
measured parameters compare against the engine baseline 
“signature” model. A sample parametric plot is shown in 
the bottom left of Figure 5. The bottom right of Figure 5 
illustrates the normal deviation from a baseline engine 
signature model as the PDF or Probability Density Function 
identified with “baseline mean” under a specific operating 
condition. When a sufficient amount of new data at this 
condition has been collected, its PDF (identified by “new 
mean”) may be statistically compared with the baseline PDF 
to determine the confidence that the mean value has shifted. 
As an example, we may be 75% confident that the mean has 
shifted by more than 3%. Continuously tracking significant 
parameters such as flows, vibration fault frequency 
amplitudes, etc. in this statistical manner can yield robust 
and pertinent diagnostic information regarding degraded 
engine operation. 

Fused Fault Pattenz Recognition and Probabilistic Engine 
Diagnostics 

Utilizing collaborative probabilistic [2] and pattern 
recognition techniques [3] to diagnose particular fault error 
patterns with associated confidence and severity levels can 
significantly enhance current engine diagnostics. The 
probabilistic fault identification process utilizes known 
information on how measured parameters degrade over time 
and compares them with the current parameter distribution 
shifts (calculating the degree of overlap between the known 
fault joint probability density function and currently 
measured joint PDF) to identify potential fault scenarios. 
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Pattern recognition of a fault pattern has been successfully 
performed using an unsupervised neural network (Kohonen 
Map) for clustering fault types in series with a standard back 
propagation neural network to classify specific fault patterns 
in 2-D space [4]. The diagnostic predictions made by these 
two techniques are then fused together using a Bayesian 
inference algorithm that either increases or decreases the 
confidence of a particular diagnosis based on the outputs 
agreement or disagreements. A discussion and example of 
the probabilistic fault diagnostic method is provided in this 
paper. 

As mentioned, the probabilistic fault identification process 
utilizes known information on how measured parameters 
degrade over time and compares them with the current 
parameter distribution to track and identify degraded fault 
conditions. The amount of each parameter’s shift from the 
expected baseline operation at a particular operating 
condition is continuously analyzed along with the associated 
statistical confidence level. The shifted distributions are 
compared against the baseline parameter’s probability 
distribution for all known faults. Comparing the measured 
distributions against all the known fault distributions yields 
the confidence of a known performance degradation 
problem. 

A stochastic interpretation of the measured and known 
parameter distributions can provide a powerful means of 
calculating multiple fault contributions to a current engine 
operating condition and envisioning the most likely 
evolution of the fault. A manipulation of the First Order 
Reliability Method (FORM) can be used to gage a fault’s 
evolution in state vector space where the faults and the 
current condition are not known with complete certainty. 
The conceptual framework for structural reliability and 
more specifically the FORM algorithm is provided by 
classical reliability theory [5 ] .  

In essence, the probabilistic fault diagnostic process 
involves assigned PDF’s to performance error patterns 
associated to known faults in N-dimensional space. 
Similarly, the current error exists as a PDF in the space as 
well. The probability that the current condition (C), may be 
attributed to a given fault (F) is determined by their joint 
probability density function. If C and F can be assumed to 
be normally distributed, the probability of association (Pa) 
can be found using: 

where: 

- 
F ,  
of, oC = the standard deviation of the F and C distributions 

= the mean of the distributions F and C respectively 

The function @( ) is the standard normal cumulative 
distribution. The notation p is the reliability index. If  F and 
C are not normal or lognormal variables then the probability 
of failure can be determined only by using a computer 
algorithm as described in [4]. 

Two different fault measures have been developed from this 
stochastic technique [ 13. First, a cumulative sensitivity 
index defined by the global non-dimensional variation from 
the initial state, at time 0, to the final state, at time t (over 
the time interval [O,t]). Next, an evolutionary sensitivity 
index defined by the local non-dimensional variation from 
an intermediary state, at time ti, to another intermediary 
state, at time ti+l, over the time interval [ti,ti+l]. Both of 
these indices are given below. 

Cumulative Sensitivity Index: 

P l  - P o  Co., = -~ 
P O  

Evolutionary Sensitivity Index: 

where p1 is the reliability index related to the Euclidean 
distance between the current conditional distribution and a 
given fault distribution. 

Figure 6 illustrates the fault detection and classification 
process in a two-dimensional parameter space. Starting at 
the origin, (representing initial normal engine operation) the 
measured parameter distributions begin to shift as some type 
of performance degradation begins to occur. After several 
missions when the anomaly level is reached an anomaly 
detection warning is issued. As shown in Figure 6, the 
current measured PDF moves to point T1 then to T2 as time 
progresses, ultimately approaching the 4% fault. The 
described situation in Figure 6 can be handled with 
mathematical accuracy by using the proposed probabilistic 
fault diagnostic calculations previously described. 

4% Fault 

Fault Dstechm 

Figure 6 Probabilistic Fault Diagnosis Process 
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Figures 7 and 8 provide a further example of the evolution 
of a performance error pattem. Three different performance 
faults at a 2% level were identified using a gas path model 
of an engine. In this example, and shown in Figure 7, the 
PDF of the current error pattern initially evolves towards a 
2% HP Compressor efficiency fault. This is also shown in 
Figure 8 from the fact that from T=O to T=3 the Euclidean 
distance between the current PDF and the HPC fault gets 
smaller. However, as time goes by, the current condition 
evolves towards, and eventually past, the HPC fault. From 
Figure 8, at T=5 the current PDF is closest to the 2% HP 
Turbine Efficiency fault. Figure 7 illustrates that the 
engine's degradation has indeed evolved beyond association 
with the HP Compressor fault to high association with the 
HP Turbine fault. In this example, the final position rests at 
9.98% association with the HPC fault and 22.8% association 
with the HPT fault. 

machine can be enhanced using neural-fuzzy diagnostic 
techniques. Domain knowledge associated with particular 
vibration fault frequencies, fixed frequency ranges, per-rev 
excitations, structural resonance's, etc. are extracted from 
the vibration spectrums and used to develop a knowledge 
base from which the fuzzy logic membership functions and 
rulebases are developed. This feature extraction process is 
illustrated in Figure 9. Non-vibration related data such as 
the performance parameters, oil analysis data, etc. can also 
be integrated (knowledge fusion) into the fuzzy expert 
system to collaborate on a particular diagnosis. 

Resonance 
Frequency B md 

Figure 9 Feature Extraction from Vibration Spectrums 

Most current vibration anomaly detection schemes rely 
solely on amplitude levels. However, the vibrational 
analysis scheme presented here investigates amplitude 
levels, critical spectral features and utilizes a shape-based 
statistical analysis of the tracked order coupled with a 
intelligent rulebase to detect and diagnose mechanical 
faults. The combination of these 3 techniques allows for 
robust and more sensitive diagnostic capability. Figure 10 
shows the average shape of a HP shaft tracked order and +/- 
2 standard deviations determined from testing of multiple 
engines. The bold line in Figure 10 shows a simulated 
tracked order of an engine with a different structural 
resonance. In this example, a simple amplitude level band 
on the racked order would not detect a problem, however, a 
statistical analysis of the shaDe of the tracked order is able to 
detect a fault. 

Figure 7 Degree of Fault Association 
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Figure 8 Fault Evolution 

Enhanced Vibration Fault Detection and Diagnostics 

Real-time assessment of mechanical faults (bearing, 
rotordynamic, structural, etc.) utilizing vibration signatures 
collected from accelerometers at specified locations on the 
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Figure 10 - Shape-based Vibration Diagnostics 

Database Analysis 

Utilizing probabilistic and artificial intelligence methods to 
record and trend critical component life usage, 
instrumentation problems, as well as vibration and 
performance faults over the life of the machine is an 
important feature of an advanced diagnostic and prognostic 
system. A database would at a minimum consist of error 
pattern trend charts, life accumulation charts, as well as 
selected data and anomoly detection logs. The error pattern 
trend chart shown in Figure 11  is a "to-date'' snap-shot of 
how performace or vibration faults have manifested 
themselves over the life of the machine. Similarly, the life 
accumulation chart would show how the remaining life for a 
given critical compent has reduced over time. 

Ermr Pattem Trend Damage Accumulation 

TinW 

Dah /Anomaly Log 

Figure 11 Error Pattern Trending 

4. COMPONENT PROGNOSTIC MODELING 

A physics-based stochastic model is a technically 
comprehensive modeling approach that has been 
traditionally used for component failure mode prognostics. 
It can be used to evaluate the distribution of remaining 
useful component life as a function of uncertainties in 

component strengthhess or condition for a particular fault. 
The results from such a model can then be used to create a 
neural network or probabilistic-based autonomous system 
for real-time failure prognostic predictions. Other 
information used as input to the prognostic model includes 
diagnostic results, current condition assessment data and 
operational profile predictions. This knowledge-rich 
diagnostic information is generated from multi-sensory data 
fusion combined with in-field experience and maintenance 
information obtained from data mining processes. 

A prognostic model must have ability to predict or forecast 
the future condition of a component and/or system of 
components given the past and current information. The 
realm of prognostics is sometimes divided into failure and 
condition prognostics. Failure prognostics often refers to 
the continuous accumulation of damage and/or life on 
components or systems of components, with or without the 
presence of any identified faults. Components govemed by 
mechanical wear and failure often fit into this category (i.e. 
prediction of crack initiation without the presence of a fault 
detected). In contrast, condition prognostics is most often 
associated with a fault being diagnosed prior to a vibration 
or performance related limit being exceeded. A detected 
fault must be isolated and assessed for severity so that the 
remaining useful life can be determined. This useful life is 
defined by the operating time between detection and an 
unacceptable level of degradation. 

Failure Prognostics using Physics-Based Models 

A physics-based stochastic model for failure prognosis 
typically incorporates mechanical (finite element) or 
thermodynamic (through-flow model) deterministic models 
as their basis. The probabilistic procedure for addressing 
inherent modeling uncertainties must be built into these 
models using statistical distributions of the parameters that 
most directly effect the component life limiting factors. 
Some of these factors include the material properties, 
dynamic forcing, and process variability. The distribution 
on the 'current remaining life in a component life prediction 
may be determined by calculating all possible combinations 
of these life-limiting factors in a stochastic process given 
past maintenance and operating conditions. Operating hours 
can be statistically analyzed, trended and projected into the 
future to provide the prognosis of remaining life. More 
advanced stochastic models that represent failure mode 
uncertainties, projected operational parameters, and 
rare/random events can be used to help predict failure mode 
propagation. 

This analytical model should be calibrated using in-service 
data to clearly reflect the root cause of the in-service failure 
mode experiences. In the case where a finite element model 
can be used (gearing, blading, impellers, or rotors for 
example) crack initiation regions should agree with any in- 
field experience and inspection data. More empirically 
analyzed components such as bearings should have clearly 
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identified relationships between diagnosed fault severity and 
life consumption. 

Example of a Stochastic Physics-Based Model 

Sophisticated fracture mechanics and damage accumulation 
analysis have shown that accelerated crack nucleation and 
micro-crack formation in components can occur due to start- 
ups and shutdowns, transient load swings, higher than 
expected intermittent loads, or defective component 
materials. More commonly, normal wear causes 
configuration changes (loose fit of assembled parts, work 
hardened surfaces, and reduced structural section areas) that 
contribute to increased or unexpected dynamic loading 
conditions. High cycle dynamic and transmission loads 
cause micro-crack incubation and formation at material 
grain boundaries in stress concentrated regions (especially 
between hardened surfaces and softer subsurface material 
interfaces, and at acute changes in component material 
geometry). The majority of crack growth evolves in a sub- 
critical propagation process of crack tip blunting, unstable 
crack formation, and crack elongation. As super-critical 
loading in the cracked material region is approached, growth 
accelerates resulting in material dislocation and detachment. 
Sub-critical crack evolution is highly dependent on a 
component’s material, geometry, loading conditions, and the 
particulars of the unique component crack growth cycle. 
This kind of failure-mode knowledge is often times 
overlooked in determining the potential usefulness of a 
particular prognostic or diagnostic algorithm. 

The available time to take corrective or compensatory 
actions during specific periods of micro-crack incubation, 
formation, and sub-critical propagation in the material of a 
faulted component must be considered. Based on this 
understanding, either of two beneficial actions could be 
taken: a corrective one to perform maintenance to repair or 
replace the part, or a compensatory one to reduce system 
operational loads to extend the life of the faulted part. The 
informed decision exists only if the diagnosticlprognostic 
system has the ability to detect that the fault exists, isolate it 
to the specific component, and assess its severity in a timely 
manner. 

A stochastic physics-based model of a turbine blade will be 
used to describe the modeling approach described above and 
is shown below in Figure 12. Although each component 
prognostic modeling procedure is different based on the 
failure modes being predicted, a process that utilizes the 
raw, database and processed diagnostic data through a 
physical-based model is still applicable. 

The factors and associated level of uncertainty that most 
directly effect the remaining useful life on a component 
must be identified in this physical model. One of these 
factors specific to a turbine blade is the steady stress at the 
critical locations in the root region. The uncertainty 
associated with this steady stress due to variations in the 
operating environment, temperatures, manufacturing 

tolerances, etc must be accounted for with a statistical 
distribution computed by testing and field service data. 
Another factor critical in predicting turbine blade life is the 
dynamic stress as a function of the uncertainty in harmonic 
excitation and response characteristics. The strength or 
resistance capability of the material must also be considered 
as a function of the uncertainty in material properties. 

I State or stress 

Harmonlc content and 
contrlbution uncerlrlnty I 

I I I 1 

Cycles m failure 

Figure 12 Physics-Based Stochastic Model 

In an effort to describe the process of prognostic modeling 
for a specific component failure mode (only one aspect of 
this turbine blade model) the LCF fatigue life for the root 
location that experiences stress cycling in excess of the 
material’s yield strength will be described in the equation 
(4) below [6]. 

All of the parameters involved in calculating LCF life have 
levels of uncertainty associated with them and are therefore 
given as probability distributions that may or may not be 
Gaussian. The distributions are combined using a Monte- 
Carlo simulation. The Monte-Carlo simulation is an 
automatic process that randomly selects thousands of 
different values from each of the life-limiting factor 
distributions. Over the entire simulation, the randomly 
chosen values are combined to generate the distribution of a 
parameter that may have been very difficult or impossible to 
calculate in a strict analytical sense. The result of the 
simulation is also shown in Figure 12. 
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The damage due the low cycle fatigue may be given by a 
non-linear damage accumulation rule proposed by Gary 
Halford at NASA Langley [7]: 

Damage= - ( ;;IL J 
The complete turbine blade prognostic model must further 
account for the other failure modes at other critical locations 
on the blade, however that is outside the illustrative scope of 
this paper. The net result, however, is the path that’s been 
taken to determine the current component life consumption 
as shown in Figure 13. 

Extreme Event Loading History 

Mamtenance Achon 

Resonance 

Figure 13 Damage Accumulation and Projected 
Remaining Useful Life 

When statistics on the past operating profile of the machine 
are tracked, projected future operating conditions and 
maintenance actions can be estimated and utilized by the 
prognostic model in order to forecast the remaining life in 
the blade. 

5 .  CONCLUSIONS 

An integrated set of turbomachinery health monitoring, 
diagnostic and prognostic technologies have been presented, 
that when implemented will offer significant potential for 
reducing current turbomachinery Life Cycle Costs (LCC). 
These technologies can be implemented across the entire 
spectrum of turbomachines from mid-sized pumps to land- 
based gas and steam turbines as well as aircraft engines. 
Implementation of these technologies is advantageous in 
nearly eliminating sensor problems, improving maintenance 
decision effectiveness by providing early warning of 
incipient performance and vibration faults and gauging 
remaining life and predicting future usage associated with 
critical components. 
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