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Abstract—In this paper, we develop a model to characterize the
performance of multihop radio networks in the presence of energy
constraints and design routing algorithms to optimally utilize the
available energy. The energy model allows us to consider different
types of energy sources in heterogeneous environments. The pro-
posed algorithm is shown to achieve a competitive ratio (i.e., the
ratio of the performance of any offline algorithm that has knowl-
edge of all past and future packet arrivals to the performance of
our online algorithm) that is asymptotically optimal with respect
to the number of nodes in the network. The algorithm assumes no
statistical information on packet arrivals and can easily be incorpo-
rated into existing routing schemes (e.g., proactive or on-demand
methodologies) in a distributed fashion. Simulation results con-
firm that the algorithm performs very well in terms of maximizing
the throughput of an energy-constrained network. Further, a new
threshold-based scheme is proposed to reduce the routing overhead
while incurring only minimum performance degradation.

Index Terms—Competitive analysis, energy-aware routing,
mathematical programming/optimization, simulations.

I. INTRODUCTION

D HOC wireless networks have a broad range of applica-

bility: they can be used to interconnect PCs and laptops in a
wireless LAN setting, provide the means of communication be-
tween hand-held devices, as well as enable the transmission of
events that are observed by sensor network nodes back to collec-
tion points or data processing centers. The operational capabil-
ities of such networks are fundamentally limited by the energy
available at the nodes (radios) in the network. New and exciting
developments in the area of renewable sources of energy [1]-[3]
can be used to replenish the energy of individual nodes without
the need to tether them to an electrical outlet. However, energy
management is still very important in such networks since re-
plenishment rates are typically small, and, therefore, the avail-
able energy is still a bottleneck in being able to successfully
transmit packets through the network. In fact, the introduction
of renewable energy sources poses new problems in the en-
ergy management of these ad hoc networks. Among other pos-
sible techniques for energy conservation, energy-aware routing
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is aimed at choosing the most energy-efficient route to forward
the packets, at the cost of computational overhead. In this paper,
we present an admission control/routing framework in which we
formulate and solve the problem of energy-aware routing with
energy replenishment.

Energy-aware routing has received significant attention over
the past few years [4]-[9]. In [5] and [8], algorithms have been
presented to optimize the lifetime of the network. These algo-
rithms can be viewed as different attempts to combine the key el-
ements of two basic routing approaches: minimum energy (ME)
routing, which uses the least energy, and max-min routing that
selects the route with the maximum bottleneck residual node en-
ergy. It is shown through simulations in [5] that the algorithm
empirically achieves a good competitive ratio. The definition of
competitive ratio will be given later. In [9], the authors describe
a way to incorporate a simple measure of a node’s residual en-
ergy into the node’s cost function in solving the problem of
routing multicast circuits in an energy-limited wireless network.
The authors realize the potential of developing alternative cost
functions and make no claim of optimality. In [10] and [11], it is
shown that shortest path routing with a cost metric that is an ex-
ponential function in residual energy is optimal in a competitive
ratio sense. The main contribution in these works is to show that
there is an analogy between the energy-aware routing problem
and the routing of permanent virtual circuits (PVCs) as in [12],
and that the mapping from per-link resources to per-node re-
sources does not change the nature of the problem.

Our work and [10] both use competitive analysis to solve
problems in energy-aware routing. What distinguishes our work
from [10] is the following. First, from a theoretical point of
view, our work differs from [10] significantly. In routing PVCs
in ATM networks [12] or routing with nonrenewable energy
sources [10], [11], the resources used are never recovered. In our
case, the resources are allowed to be replenished by per-node
processes. This model eventually leads to a system of energy
queues. As a result, the dynamics in our system are more com-
plicated and it is more difficult show the competitive result.
Second, our algorithm for the general case can be applied to
a hybrid network where nodes with and without renewable en-
ergy sources are both present. If there are only nodes with no
renewable energy sources, our algorithm reduces to that of [10].
Third, we proposed a different approach to reduce routing over-
head. Lastly, we consider incremental deployment of nodes and
present an algorithm to combine our E-WME metric and the
on-demand routing framework. Also presented in this work is
a proof of lower bound for the competitive ratio, which shows
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that our online algorithm is asymptotically optimal. These as-
pects are not discussed in [10].

The intellectual merit of our work lies in the development of:

* amathematical framework that takes into account practical
realities such as energy replenishment, mobility, and erro-
neous routing information;

e associated analytical techniques to provide an under-
standing of the performance benefits that can be achieved
through energy-aware routing;

* distributed and scalable routing solutions that can be tai-
lored to a variety of network topologies, traffic and mo-
bility patterns.

Our energy model only assumes that each node in the network
knows its own short-term energy replenishment schedule. This
will be explained in detail in the next section. The energy
flow into each node can be, for example, at different rates, or
according to different on-off processes. The model also cap-
tures heterogeneous energy sources (different replenishment
rates, battery sizes, etc.) in the network, and our algorithm
can in fact adapt to the heterogeneity to do admission control
and routing in an energy-opportunistic way. This algorithm
is developed by making connections to routing of permanent
virtual circuits (PVC) and switched virtual circuits (SVC) in
the asynchronous transfer mode (ATM) literature. This is an
online algorithm that can be easily implemented in a distributed
fashion. By “online,” we mean the algorithm does not know
future packet routing requests at decision time. In contrast, an
offline algorithm knows the arrival times and packet sizes of
all the packet routing requests, including those in the future.
We show that our algorithm asymptotically achieves the best
achievable performance of any online algorithm.

The rest of this paper is organized as follows. In Section II,
we formulate the problem of energy-aware routing with energy
replenishment, and present our network and energy model. In
Sections III and IV, we present our algorithm and briefly dis-
cuss its implications. In Section V, we discuss our main result
on the competitive ratio of our algorithm. We further discuss
routing with incremental deployment in Section VI. Numerical
results are provided in Section VII. A threshold-based scheme
to reduce routing overhead is presented in Section VIII, and the
integration of our algorithm into a DSR-like on-demand routing
framework is discussed in Section IX. Concluding remarks are
presented in Section X.

II. PROBLEM FORMULATION

A wireless multihop network is described by a directed graph
G(V, E), where V is the set of vertices representing the sensor
nodes, and E is the set of edges representing the communica-
tion links between them. Packets are sent in a multihop fashion:
a path from source to destination consists of one or multiple
edges.

A 2-tuple (tpm, Tnm) is associated with each edge (n,m) €
FE, where t,,,, is the transmission energy requirement for node n
and 7,,,, is the reception energy requirement for node m. More
precisely, if a data packet of length [ is sent directly from node n
to node m, an amount of energy equal to lt,,,,, will be subtracted
from the residual energy of node n, and l7,,, will be subtracted
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from the residual energy of node m. For simplicity, we assume
that the size of a control packet is negligible compared to the
size of a data packet. In Section VIII, we consider the impact of
routing overhead and develop a scheme to reduce it.

We define the unit energy requirement of node n on path R
as

en(R) = Tn"(R)n + tnn’(R): Vn e R
where nodes n'/(R) and n'(R) are the upstream and down-
stream neighbors of node 7 in path R, respectively. For con-
venience, when n is a source node, we let 7,(ry, = 0, and
when n is a destination node, we let ¢,,,,/(g) = 0.

Often, it is assumed that r,,,, = 0. Clearly, this is a special
case of our model. However, studies on short-range communi-
cation with low radiation power show that the transmission and
reception energy costs are often the same [13]. We can incorpo-
rate this in our model by letting ¢, = 7rn,,. Alternatively, in
[4], the reception energy cost is captured by adding a constant
to the link cost at each hop. This is a special case of our model
with r,,, = constant.

We consider a discrete-time system in which each sensor node
begins with a fully charged battery that has a capacity of u,,. At
the end of each time slot 7, P,,(7) is the residual energy at node
n. Bach node falls in one of the two categories depending on
whether a renewable energy source is attached to it. we use V.
to denote the set of nodes with energy replenishment, and V, to
denote the set of nodes with no energy replenishment.

At the beginning of time slot 7, node n € V,. receives the
energy accumulated due to replenishment in the previous time
slot, represented by v(7 — 1). At all times, the maximum energy
at node n is not allowed to exceed u,,.

Data packet routing requests arrive to the network sequen-
tially, the jth of which can be described as

B(I) = (5(), D(): 1), T*(5), p(5)) (M

where S(7) is the source node of the jth packet routing request,
D(j) is the destination, I(j) is the packet length, 7°(j) is the
arrival time of the request, and finally p(7) is the revenue gained
by routing this packet through the network. A request can be
accepted only if there is at least one feasible path (that is, each
node n along the path must have at least I(j)e,(R(j)) amount
of residual energy) in the system when the request arrives. If
the routing request is accepted and R(j) is the route used to
accommodate the request, then [(j)e,, (R(j)) will be the amount
of energy expenditure at node n, if n € R(j). We also assume
that the reduction of energy is instantaneous for all the nodes
along the path since the time-scale of energy replenishment is
usually much larger than the time-scale of packet forwarding. In
other words, we assume the delay due to packet transmission,
queueing, etc., is negligible compared to the time it takes to
replenish the energy consumption of transmitting/receiving one
packet.

For any node n in V., the energy model can, therefore, be
summarized by the following equation:

Po(7) = min(Pp(T — 1) + yu(7 — 1), up)

—I(an(M))(G)en(R(7)), n€ Ve
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where I( -) is the indicator function and a,,(7) is the event that
B(j) is accepted at 7, and n € R(j).

It is assumed that each node has an accurate estimate of its
own short-term energy replenishment schedule. More precisely,
at time-slot 7, node n knows v, (7), ¥u (7 + 1),..., Y (7n),
where 7, is the earliest time the battery at node n would be
fully recharged if no request were accepted at or after time 7.
It is worth noting that the 7,, here is dependent on the residual
energy of node n at the arrival time of a request. In practice, this
type of short-term prediction can be easily implemented.

We also assume that 7, is finite for n € V.. More specifically,
we denote T' < oo as an upper bound on the time it takes to fully
charge the empty battery at any given node n € V..

For any node n in V},,, since y(7) = 0,, it is evident that the
corresponding energy model can be written as

Po(7) = Po(7 = 1) = I(an(5)I(5)en(R(5)), n € V).

Our goal is to maximize the total revenue over some finite
horizon [0, ¢]

Joi= o p(i)I(a(h)) )

323 <k(t)

where a(j) is the event that 5(j) is accepted, and k(¢) is the
index of the last arrival in the time horizon, or, equivalently, k(%)
is the total number of arrivals in the time interval [0, ¢].

We briefly comment on the choice of the revenue of the jth

packet, p(j), in the above formulation.

» If p(§) = 1, then .J; is simply the total throughput in [0, ¢].

 If different packets have different priorities, then this can
be reflected in the above formulation by choosing different
values of p(-) for different packets. A larger value of p
would then indicate a packet of high priority.

* Since the work of Gupta and Kumar [14], a new metric (bit-
meters/s) that combines throughput as well as the distance
traversed by a bit has become popular. This can also be
incorporated in our model by simply choosing p(j) to be
proportional to the distance between S(j) and D(j).

III. ALGORITHM FOR THE CASE OF CONSTANT
REPLENISHMENT RATE

To succinctly highlight the main attributes of our solution,
in this section, we describe our algorithm for the case when
the rate of energy replenishment is constant (in time) at each
node (although different nodes can have different replenishment
rates). We also assume V,, = ¢ in this section, i.e., all nodes have
nonzero energy replenishment rate. The solution to the more
general case will be presented in the next section.

The basic idea of our algorithm is to assign a cost to each
node, which is an exponential function in its residual energy and
then use shortest-path routing with respect to this metric. To ac-
count for the timing relationship between the energy consump-
tion and replenishment, we also need to measure the impact of
previously accepted requests. To this end, we define the power
depletion index A, (j) of node n as

iy
An() = tm=Luld) 3)

Un
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where P/ (7) is the energy at node n right before considering re-
quest j. We will show in Sections IV and V that the appropriate
cost metric C,, associated with each node is given by

Culis B) = —r (10 = 1) 1(G)en(RG) @)

Yn log
where we recall that R is a path from source to destination, wu,,
is the battery capacity of node n, -, is the rate of energy replen-
ishment, A, (7) is the fraction of the maximum storable energy
used up at node n when considering request 7, {(j)e,(R(j)) is
the energy requirement for packet j of length [(5), and  is an
appropriately chosen constant. Note that since we have assumed
that V, = ¢, v, > 0,Vn. The hybrid case where some nodes
may have no energy replenishment is addressed in Section IV.

As in a typical weighted shortest path routing, the cost asso-
ciated with R when considering request () will, therefore, be
calculated as

Costgr(j) = Z Cn(4, R)
nER

Our proposed algorithm can be described as follows.

E-WME (Energy-opportunistic Weighted Minimum
Energy) Algorithm

For an incoming routing request j, check if the least-cost
route R from S(j) to D(j) satisfies

Costr(j) < p(j)- (5)

If yes, accept the request and route the packet on the
least-cost route.

Otherwise, reject the request.

Remark: The E-WME algorithm presented here! has prov-
ably good performance (because the cost function has been
appropriately chosen) in the sense that it can secure a relatively
large amount of revenue without any statistical information
about the routing requests. This point will be further discussed
when presenting our main result using competitive analysis
in Section V. Moreover, this algorithm requires only local
information at each node and can be easily incorporated in
traditional distance-vector type of routing framework in a
distributed fashion. For DSR-like mobile ad hoc on-demand
routing protocols, we have also designed a distributed algorithm
using our proposed metric to render them energy-aware. This
will be further discussed in Section IX.

Before delving into our results from competitive analysis, it
is more interesting to first look at the cost metric defined in (4),
and to intuitively understand why this algorithm results in good
performance.

1) Note that the metric in our E-WME algorithm for each
node is an exponential function of the nodal residual en-
ergy, a linear function of the transmit and receive energies,
and an inversely linear function of the replenishment rate.

More precisely with the cost function given in (6) and (7) from Section IV.
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So, E-WME provides us with a clear guideline of how to
balance the importance of residual energy (related to load
balancing), the transmit and receive energies (related to re-
source thriftiness), and the quality of the replenishment.

2) If we assume that the nodes have the same energy re-
plenishment process, e.g., all have the same constant rate
of replenishment, the cost function (4) can be viewed as
combining elements of the so-called ME and max-min ap-
proaches, similar to ideas in [10] and [11]. Suppose that
there are two identical parallel links whose transmission
and reception nodes have the same residual energies, then
the one with the smaller link energy cost will be selected.
Thus, it resembles the ME algorithm in this case. On the
other hand, if there is a choice between two nodes whose
link energy costs are the same, the algorithm will choose
the node with the larger residual energy. This behavior is
similar to the max-min approach.

3) In an environment where the rates of energy replenishment
are heterogeneous, by using the cost function (4), the net-
work automatically directs traffic to nodes with a faster
energy renewal rate. Consider a set of nodes with similar
residual energy as well as similar link transmission and
reception energy requirements. Of these nodes, the ones
which can replenish their batteries at a higher rate will ad-
vertise a cheaper cost. For instance, in a sensor network
powered by solar cells, nodes receiving more sunlight will
forward more data packets.

4) Note that even though u,, is in the numerator in (4), it does
not imply that nodes with larger battery capacity are as-
signed a higher cost. The reason is that u,, is also embec/lded
in the exponential cost metric since A, (j) = 1 — Pjt—gj),
where P! (7) is the residual energy at node n when consid-
ering request j.

IV. E-WME ALGORITHM FOR THE GENERAL CASE

In this section, we present the E-WME algorithm that al-
lows a time-varying replenishment rate at each node. This al-
gorithm can be applied to a hybrid network where nodes with
and without renewable energy sources are both present.

For any node n with renewable energy source, i.e., n € V.,
we begin by defining a set of parameters to describe the effect
of previously accepted routing requests when considering the
new request 3(7). More specifically, let At,,(j) be the amount
of time it takes for the incoming energy, accumulated from time
slot 7°(j — 1), to equal w,, — P,,(7°(5 — 1)). As mentioned in
Section II, we then define

(i) =T°0 = 1) + At (j)-

7n(4) is the earliest time the battery at node n would be fully
recharged if no request were accepted after request (j — 1). It
can also be written as

T—1
7n(7) = min T n(t
()= min t:TSZ(“)W (1)
2 (un = Pu(T°(j = 1)))
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To characterize the energy consumption due to previous
pacelfgts, we define the new power depletion index A, (4, )

)\n(j>7—)
07 T Z 7171.(.])7
_ ) (ke T), T<T(j - 1),
=P (T2 (j=1)=5 71 Tnlt
(T (5 ))“ Zt:T”(]*l) 1 )7 otherwise
where

kr =max[j: T°(j — 1) < 7].

In fact, A, (4, 7) is the fraction of the energy consumed due to
{6(1),6(2),...,8(5 — 1)} at node n, as measured at time .
Note that new routing requests (with index greater than (j — 1))
can arrive at or before time 7, but their energy consumption will
not be included in the calculation of A, (j, 7). There are three
cases in the above definition.
* 7 > 7,(J): By the definition of 7,,(j), An(j, 7) should be
zero at or after time 7,,(J).
e T5(j — 1) < 7 < 7,(4): In this case, part of the energy
consumption has been restored.
e 7 < T°(j — 1): In this case, the time-slot 7 is before
the arrival time of request (j — 1); hence, it is almost
meaningless to talk about the energy consumption of
{B(1),B(2),...,8(5 — 1)} at time 7. For preciseness, we
define A, (j, 7) in this case to be A, (k,, 7), where k. is the
largest request index j such that A, (4, 7) is “meaningful.”
Fig. 1 shows the amount of energy at node n assuming that
no request is accepted after request (j — 1). In reality, it is con-
ceivable that only a fraction of the last replenishment is received
by the node, due to limited battery capacity. This is taken into
account in the definition of A, (j, 7).

For any node n with no renewable energy source, i.e.,n € Vj,
the power depletion index A, () is defined as

S(a) —
() =1 G = 1)
un

where P,(T*%(j) — 1) is the residual energy at node n when
considering request j. As excepted, A, (j) is not a function of
time-slot 7.

We now define our routing metric used on each node as

Cn(j, R)

i Zj,,:(%-l_(;)(uxn G — D)i(j)en(R()), n €V, (6)
T(p @) — D)I(f)en(R()), nevy

where p is a constant to be defined later, and R is a path from
S(j) to D(j). We recall that T < oo as an upper bound on
the time it takes to fully charge the empty battery at any given
node n € V... The main change in the definition of the node
cost metric for n € V, is to take into account the replenish-
ment schedule in the immediate future. Again, the cost associ-
ated with R when considering request 3(j) will, therefore, be
calculated as

Costr(f) = Y Cu(4, R). (7)
neER

The E-WME algorithm is the same as that given in Section 111,
with the cost function given by (6) and (7).
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TS(-1) T X0 t

Fig. 1. Amount of energy at node n assuming that no request is accepted after
request (j — 1).

Remarks: 1t is worth noting that the admission control of
routing requests is done in an energy-opportunistic fashion.
Again, we turn to the example of a sensor network powered by
solar cells. Let us assume that a request arrives at the network
right after sunset. Recall our assumption that each node knows
its short-term energy replenishment schedule. At this moment,
each node knows that the energy replenishment rate will be
much smaller for the several hours to come (in practice, this
type of knowledge can be gained by evaluating the energy
replenishment schedule over the past few days). The 7,(-)
calculated will then be relatively large, so the cost of routing
the packet will be higher than that during the daytime. As
compared to its daytime policy, the network is, thus, more
conservative in accepting the request, which is precisely what
the network should do in this particular scenario.

In a hybrid network where both kinds of nodes are present,
we look at two nodes: one with energy replenishment and one
without. Assuming that they both have the same residual en-
ergy and that the routing request takes the same communication
costs from them, it is clear that the cost metric for the node with
energy replenishment is smaller. Therefore, this node is more
likely to be used than the one without energy replenishment.

In a network where there are only nodes with no energy re-
plenishment, the modified E-WME algorithm reduces naturally
to the algorithm presented in [10] and [11].

The cost function (6) is more complicated than that of the
constant rate case (4). Nevertheless, it corresponds to a simple
sum that can easily be computed at each node. Further, from
an intuitive point of view, it still carries all the merits that we
discussed in Section III.

Note that the cost function (4) for the case when the rate of
energy replenishment is constant in time, i.e., 7, (7) = yn, can
be approximated directly from the more general cost metric (6)
when the node energy level is not full or close to full.

Consider the case where ,, # 0. Since node n does not have
a full battery upon the arrival of 3(7), and by the definition of
Tn,, We have

Un = P () = (Fa(5) = T°(5))7m ®)
and
)‘n(_], T) = &

&)
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where we recall that P/, (j) is the node energy right before con-
sidering request j. Putting (8) and (9) into (6) gives

Tn(§)—1
Cu(iB)= 3 Uiea(B)(u07 ~ 1)
=T (j)
P B
L—p Yn

Note that 41~* ~ 1 — zlog i, when 0 < z < 1. Using this ap-
proximation and (3), the cost function can be further simplified

o en (B () ;
s ) 5 (01 )
(10)
~ W)en(R)un (w0 ~1). (11)
Yn log p

The last approximation is true since A, (j) is not close to zero
and p > 1.

V. ASYMPTOTIC OPTIMALITY OF THE E-WME ALGORITHM

In this section, we show that the algorithms presented in Sec-
tions III and IV are online algorithms with asymptotically op-
timal competitive ratio. The competitive ratio is defined as

sup
all input
sequences in [0,t]

sup
t

where J; of is the performance achievable by any offline algo-
rithm and J; o, is the performance of the given online algorithm,
where the performance is defined in (2). A competitive ratio of
r means that the performance of the online algorithm is at least
1/r that of any offline algorithm. In other words, a smaller com-
petitive ratio means better performance.

We need the following two assumptions:

(A1)
L) B e Rli
YL GeargyT <5 )
(A2)
Uea(RG)) < 20 V0 € R()

where R(j) is the path chosen by either the online or the of-
fline algorithm to route 3(j), L is the maximum hop count al-
lowed for any path, F' is a constant chosen large enough to sat-
isfy (Al), T < o0, as defined before, is an upper bound on the
time it takes to fully charge the empty battery at any given node
n € V., and p = 2(LFT + 1). Assumption (A1) requires that
the revenue from a packet scales with the amount of resource it
requests. This is quite reasonable and certainly agrees with the
definition of revenue as throughput or weighted throughput. As-
sumption (A2) guarantees that the energy claimed by a packet
is not larger than a certain fraction of the total energy available
at any single node. These assumptions are modifications of the
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assumptions in [12] and take into account some crucial differ-
ences that we will discuss shortly.

Under assumptions (A1) and (A2), we have the following the-
orem. We prove this theorem for the E-WME algorithm in the
general case using the cost function given by (6). A similar re-
sult can be proven using the cost function (4) for the special case
with constant energy replenishment.

Theorem 1: (Asymptotic Optimality of the E-WME Algo-
rithm): (A) The E-WME algorithm has a competitive ratio
upper bounded by O(log(|V])), where |V is the number of
nodes in the network.

(B) The competitive ratio of any online routing scheme is
lower bounded by Q(log |V]).

From (A) and (B), our algorithm is asymptotically optimal.

Proof of Theorem 1: Please refer to the Appendix for the
proof.

There are some similarities between SVC routing in the ATM
literature [12] and our algorithm. However, our algorithm and
proof have several crucial differences that we note below.

1) The replenishment of energy, or the release of resources
in our case is a per-node activity, while it is a per-request
activity in the routing SVC case.

2) The release of resources in our system is through a replen-
ishment process, while the bandwidth occupied by a SVC
is released at the end of the connection.

3) The SVC case is a typical loss system where there are mul-
tiple servers with no waiting room. In our system, each
node can be viewed as an energy queue where the work-
load is the energy to replenish and the battery is the buffer.
As a result, the limits of the summation over time in the
cost metric equation (6) actually depend on the residual
energy seen by an incoming request. In the SVC case, the
summation over time depends only on the holding time of
the incoming request itself.

4) The hybrid network model we have in this paper allows
the co-existence of renewable resources and nonrenewable
resources. Routing in this context has not been discussed
previously in the related literature.

In the Appendix, we prove the above main result using tech-
niques developed for the SVC case while taking into account the
crucial differences between the two scenarios described above.

VI. ROUTING WITH INCREMENTAL DEPLOYMENT OF NODES

In a wireless sensor network, due to cost or technical con-
siderations, deploying nodes adaptively and incrementally can
result in significant improvement of network performance. For
networks of sensor nodes without the support of energy replen-
ishment (e.g., solar cells), incremental deployment of nodes, as
an alternative way to replenish the in-network energy, is almost
mandatory. Even for networks with nodal energy replenishment,
the failure of the electronic devices at nodes, as well as the
potentially unpredictable number of monitored events, makes
it desirable to have the ability to deploy (possibly more pow-
erful) nodes in an incremental fashion. Furthermore, using in-
cremental deployment, it is easier to determine and deploy the
right amount of sensors, e.g., to reach a certain degree of con-
nectivity and coverage.
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In the following discussion, we assume that the incremental
deployment scheme consists of multiple phases. In each phase,
one or more nodes are deployed. It is assumed that the online
algorithm does not know the time at which each phase takes
place until it actual happens.

An interesting question we attempt to answer here is how
a good routing algorithm should behave with an incremental
deployment of nodes. To approach this question, we first look at
the performance of the ME routing and max-min routing in this
context.

* Since the ME algorithm uses communication cost only, it
may not be able to utilize the energy in some of the newly
arrived nodes.

* The max-min algorithm strives to protect the nodes that are
low in energy at the cost of more energy spent per packet.
This kind of protection may not be necessary. Since there
may be more nodes coming to help in the future, it may be
desirable to have some nodes “die” to save on communi-
cation energy per packet.

As we can see from the above simple analysis, with incre-
mental deployment of nodes, we again need to strike the right
balance between these two approaches, among other things. In
fact, in the following theorem, we show that the E-WME algo-
rithm works well without any modification:

Theorem 2: (Asymptotic Optimality of the E-WME Algorithm
in Networks With Incremental Deployment): (A) With unknown
incremental deployments, the E-WME algorithm has a compet-
itive ratio upper bounded by O(log(|V'])), where | V| is the max-
imum number of nodes in the network.

(B) With unknown incremental deployments, the competi-
tive ratio of any online routing scheme is lower bounded by
Q(log|V]).

From (A) and (B), our algorithm is asymptotically optimal.

Proof of Theorem 2: The detailed proof is omitted since it
is a straightforward extension of the proof of Theorem 1. The
intuition required to prove the logarithmic competitive ratio is
to duplicate the network in time, and then use the result from the
PVC case. Here, the same idea applies, except that the size of
the network can now increase over time. Fortunately, this does
not bring additional complexity to the proof. We provide the fol-
lowing online technical report for details [15]. In constructing
the request sequence for the proof of the lower bound, we can
assume the first request arrives only after all the nodes are de-
ployed. The proof then follows that of part (B) of Theorem 1.m

The above theorem shows that the E-WME algorithm can
make good use of the available energy at any time to prolong
network lifetime, without any knowledge of future node de-
ployments. Intuitively, one would expect this result to be true
because, as mentioned before, the incremental deployment of
nodes can be viewed as a way to add to the in-network en-
ergy. By defining the cost metric as an exponential function in
node residual energy, the E-WME routing is capable of closely
adapting to these changes in network energy profile.

VII. NUMERICAL RESULTS

We now describe the results from our simulations. For our
simulations, we randomly deploy 200 nodes on a 10 x 10 field.
All nodes have an initial energy of 1. The energy consumption to
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send a unit packet directly is Kd2,,, where d,,,, is the distance

between two nodes and K = 10~* is a constant. Packet lengths
are all 100. The constant K, as well as the packet lengths, is
chosen in such a way that the energy required to transmit a
packet is only a small fraction of the total available energy at
a node. There is a link between node n and m if and only if
a) the distance between them is less than or equal to the max-
imum transmission range of a node and b) node n has enough
energy to transmit a packet from n to m directly. The max-
imum transmission range? is 3. Routing requests arrive to the
network according to an i.i.d random process, and the average
interarrival time is eight time slots. For each routing request,
the source-destination pair is randomly selected among all the
nodes (we have obtained similar results when packets are di-
rected to a single node, such as data collection center in a sensor
network. See Section VIII for such an example). Each node is
responsible for generating its own packets as well as forwarding
packets for others. Energy replenishment processes at the nodes
are assumed to be i.i.d. random processes. The average replen-
ishment rate of half of the nodes is 4 times that of the other half.
At each time slot, the amount of energy that a node receives
is uniformly distributed over intervals [0, 49] or [0, 4], where
4 = 1.875 x 1073,

Even though our algorithm attempts to maximize the revenue
of the network, to illustrate that the algorithm also has good
performance under other metrics, we also use the oft-used notion
of lifetime to compare our algorithm with other algorithms.
Specifically, we say that a partition has occurred for a node
pair if there is no path between the nodes with sufficient energy
to route a packet. The above definition leaves the definition
of network lifetime “open.” Lifetime could then be defined
as the time that it takes for a certain fraction of the node
pairs to experience partition. We believe a good definition
of network lifetime is strongly application dependent. Some
applications may require that all nodes stay connected at any
given time, as in the traditional ad hoc computer networks.
In that case, the throughput until the first node down time
will be a good candidate for the network lifetime. In the case
where nodes are densely deployed, losing connectivity at a
few nodes may not pose great danger to the health of the
network. To take into the many possible definitions of lifetime,
we plot the end-to-end throughput against the number of node
pairs that have experienced partition. For example, a point
(500, 5000) would mean that 5000 packets were delivered
between the randomly chosen source-destination pairs by the
time 500 packets were dropped by the network because there
was not sufficient energy to transmit the packets. Of course,
since we allow energy replenishment, a partitioned node-pair
could regain its connectivity later on.

In our simulations, we do not allow rejection of packets. Note
that this, in fact, handicaps the E-WME algorithm since the op-
timality of our algorithm has been established assuming admis-
sion control. However, since most prior algorithms that we com-
pare E-WME to do not use admission control, we decided not
to use admission control for E-WME, but only use the E-WME

2The selection of maximum transmission range by itself is an interesting
problem. Here, we just choose a value so that any two nodes are initially con-
nected to each other in a multihop fashion.
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Fig. 2. Throughput comparison of E-WME to other schemes.

cost metric for shortest path routing to obtain a fair comparison
with other algorithms.

Fig. 2 shows the throughput comparison between our
E-WME algorithm and other routing algorithms in the litera-
ture. These algorithms can be put into three categories.

* Basic approaches include ME routing and max-min routing
[13] (see Section I for a brief description of these two al-
gorithms).

» Approaches based on dynamic weighted shortest path in-
clude broadcast incremental power (BIP) [9], maximum
battery capacity (MBC) [7], and E-WME. For BIP, we vary
parameter (3 in the suggested range [0.5, 2] [9] and the re-
sult reported in Fig. 2 is the case when the throughput peaks
with # = 1.0. Similarly, for MBC, we report the case with
the quadratic model [7].

e Other approaches include max-min battery capacity
routing (CMMBCR) [8] and max-min zP;,, routing [5].
The reported result for max-min zPy;, routing is the
case when the maximum throughput is observed with the
parameter z = 2.0.

It can be seen that E-WME always has better throughput than
the other routing algorithms.3 The two main reasons are that
E-WME is optimal in the sense of minimizing the competitive
ratio, and that it strikes the right balance between saving com-
munication cost and distributing the load.

Fig. 3 depicts the node energy distribution after 4200 suc-
cessful end-to-end packet deliveries. This corresponds approx-
imately to the time-instance at which the first node partition
takes place in E-WME (see Fig. 2) (To avoid overcrowding the
figure, we have left out the results from other schemes in the lit-
erature, since they can be viewed as different ways to combine
max-min and ME). It is clear that the network with the ME or
the max-min algorithm has many more nodes with low energy
levels (the “crosses” correspond to nodes with less than 5% of
their battery capacity, while “circles” correspond to nodes with
greater than 5% of their battery capacity). The reason for the

3In fact, the improvement in using E-WME will even be larger if replenish-
ment rates chosen are higher.
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poor performance of the ME algorithm is its failure to load-bal-
ance between the nodes. The reason for the poor performance
of the max-min algorithm is its failure to consider transmit and
receive energies, which leads to routes with only a few hops and
very large average energy expenditure per packet.

The ME routing is a greedy approach in terms of saving en-
ergy on each routing request. Compared to E-WME, such a my-
opic scheme can end up costing more in the long run. Fig. 4
shows the energy spent per packet (averaged over every 500
packets and normalized to the mean energy in the ME case) for
E-WME and ME routing. The average energy per packet starts
at a relatively low level for the ME routing. Without load bal-
ancing, the residual energy runs out faster at the critical nodes,
e.g., the nodes near the center of the network, which leads to
possible disconnections in the network. Hence, as more requests
are routed, the average energy cost quickly increases, and even-
tually exceeds the average energy cost for the E-WME case. The
latter, on the other hand, remains relatively steady over time. Al-
though the average energy spent per packet is not our optimiza-
tion goal, this figure does offer some explanation for why the
E-WME algorithm outperforms greedy approaches such as the
ME routing.

VIII. REDUCING ROUTING OVERHEAD

The proposed algorithm relies on instantaneous nodal infor-
mation, so that changes in the energy level at each node have

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 5, OCTOBER 2007

x10*  Comparison of Total Throughput

3 r T T T

o

k]

T 29[ e

o

< MW

é 25 x<

o 25

o

2 15¢ <

s |

<

(o] 1+

5 &

=

E o5 x  ME Path

° x - E-WMEM=4

= — Ideal E-WME Path (No Overhead
0 L n L n

0 20 40 60 80 100

Number of Accumulated Node Partitions

Fig. 5. Throughput comparison of ME routing and E-WME with different
amounts of overhead.

to be instantaneously communicated to other nodes. In practice,
this load balancing need not be carried out frequently. Our ap-
proach is as follows: routing updates are only initiated when the
residual energy at a node passes some preset threshold. Intu-
itively, thresholds should be more finely tuned in nodes that are
closer to energy depletion (so that these nodes can be avoided,
if possible). Towards this end, we define a set of thresholds
T(i):logMT 1=1,2,..., M.

After forwarding a packet, each node will check its fractional
residual energy. If one or more thresholds is crossed, the node
will then initiate an update.

This threshold-based scheme chooses the right moment to ini-
tiate updating. It is clear that an error term will appear in the cost
metric since we are not using the most up-to-date node energy
information. However, it can be easily shown that, as long as no
threshold has been passed since the last update, the error in the
per-node cost is upper bounded by C/M, where C is a con-
stant with respect to node energy. A set of equally spaced thresh-
olds, on the other hand, will have a much larger error when the
node residual energy is low. We provide the following online
technical report for details [15].

Our routing algorithm can, therefore, adapt to different traffic
patterns. A heavily loaded network does more updating. In a
network where different types of low-duty cycle traffic patterns
are possible, this routing algorithm self tunes accordingly. This
can result in order of magnitude reduction in routing overhead,
and incur only minimal degradation in performance.

Simulation results in Fig. 5 show that a four-threshold scheme
has performance close to that of the ideal algorithm. (In the ideal
case updating is done upon every change in nodal energy and the
energy for exchanging updates is totally omitted). It is assumed
in this set of simulations that the energy at each node is nonre-
newable. For each routing request, the source node is randomly
chosen and the destination is a common data collection gateway
at the center of the field.
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When nodes are mobile, the routing overhead can be further
reduced by using an on-demand routing scheme. We will discuss
this in the following section.

IX. ON-DEMAND ROUTING

When ad hoc network nodes are highly mobile, a proactive
distance-vector implementation could lead to a large amount
of overhead. In a mobile environment, on-demand routing
protocols, e.g., dynamic source routing (DSR) [16], have the
potential of reducing routing overhead, since there is no need
to constantly update the routing tables. Ideally, routing should
be tailored for different degrees of mobility. Proactive routing
should be used in a low mobility environment, while on-de-
mand routing should be used in a high mobility environment.
Given our proposed dynamic routing framework, an interesting
question is the following: Can we design a distributed algorithm
to integrate E-WME into an on-demand routing framework?

The difficulty lies primarily in the route discovery process.
Here, we would like to use the E-WME routing metric, and at the
same time incur only a minimum amount of routing overhead.
We propose the following approach to translate the E-WME cost
metric linearly to waiting time, and forward only the best metric
based on ideas in [5].

The algorithm for the route discovery process is given as fol-
lows. For simplicity of presentation, we assume that the inter-
mediate nodes do not know a path to the destination. Let M,,
be the E-WME metric associated with the best path (currently
known to node n) from the source to node 7, and Mpacket be as-
sociated with a route request packet, representing the E-WME
metric of the best path discovered so far. Let § be an appropri-
ately chosen small positive constant.

Energy-Aware Route Discovery Algorithm

1) Each node n calculates the E-WME cost metric C,,,,, on
each of its incoming links from local communication. M,
is initialized to be oo for all nodes.

2) The source node S initiates route discovery by
broadcasting a route request packet with source
identification S, destination identification D, a unique
request packet identification 4, cost metric Mpacket = 0,
and the time-stamp 7.

3) For any other node n

a) a) upon receiving a route request packet from node
m, update M,, by

Mn = min(Mn, Cmn + Mpacket)-

b) If M,, = Cpyn + Mpacket, compute the delay Ty, as

ﬂz;zéXMn

and set the timer to expire at time (Tp + T,). Cancel
any timer that was set to expire after (Ty 4+ T, ), and
is associated with the route discovery initiated by
node S with the same request id.
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¢) Upon expiration of the timer, if node n is not the
destination, it propagates the routing request by
setting Mpacket = My, appending its own ID to the
source route list in the packet, and broadcasting this
request packet to all its neighbors. Otherwise (node
n is the destination D), it transmits a route reply
packet back to the source by reversing the route. In
both cases, node n ignores any further route request
packet initiated by node S with the same request id.

Note that the cost function (6) is path-dependent: the same
node can have different costs depending on its upstream and
downstream neighbors in the path. In the route discovery
process of DSR, when an intermediate node propagates the
route request packet, there can be more than one possible next
hop, since the path is not finalized yet. Because the E-WME
metric dictates the delay at each node in the above algorithm, it
is then impossible to have a single delay value for each node.
To solve this problem, in our algorithm, we calculate the cost
of a link (n,m) as follows:

rnm

em(J)

tum o
" en(d) Onld- B) +

Cm(J, R)

where we recall that ¢,,,,, and 7,,,, are the transmission and re-
ception energy requirement of a unit packet for node n and node
m, respectively. Note that the link cost C,,, (j) calculated this
way is independent of the path that the link is in.

The following theorem shows the above algorithm finds the
correct E-WME path with little communication overhead.

Theorem 3: (Validity of the Energy-Aware Route Discovery
Algorithm): The energy-aware route discovery algorithm finds
the shortest path with respect to the E-WME metric with no
more than |V| transmissions in total.

Proof of Theorem 3: For part 3c of the algorithm, it is
clear that each node in the network transmits at most one
route request packet for each round of the route discovery
process. Therefore, no more than |V| route request packets
are transmitted in total.

To prove that the algorithm finds the correct shortest path,
we show that each node knows the shortest path from source
node S to itself when its timer expires (Note that all the
“shortest” paths mentioned in this proof are with respect to
the E-WME metric). Let i be the hop count of the shortest
path from the source node S to node n. We prove this result
by induction over h as follows.

e If h = 1, from part 2 in the algorithm, it is clear that node

n gets the shortest path from source node S to itself when

its timer expires.

* Let us assume that any node with h = k gets the shortest

path from source node S to itself when its timer expires.

For any node n with h = k+ 1, the shortest path Rg,, from

S to n consists of the short path Rg,, from S to a node m

and the link (m,n), where node m is a neighbor of node n.

Since Rgy, is a path with k hops, node m sends the correct

routing update to node n when the timer of node m expires.

Since Rgy, is the “shortest” path, the delay calculated for
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this path is the smallest. This has two implications: on the
one hand, no timer of node n can expire before this timer,
which implies the update from node m is not ignored; on
the other hand, the update sent out when this timer expires
carries the path Rg,, as well as the correct E-WME metric.
|

In the above theorem, the delay due to queueing and MAC
contention, etc., is ignored. By choosing a large enough ¢, we
can ensure that the algorithm is still correct in the presence of
such delay [5]. Using the above approach, we can reduce the
overhead at the cost of a larger delay in route discovery. Mean-
while, other features of on-demand routing, e.g., detecting a
change in network topology, time to keep routes in cache, etc.,
are not affected.

We have implemented the above energy-aware route dis-
covery algorithm using the ns-2 simulator [17]. In our simula-
tion, we use the 802.11 MAC layer implemented in ns-2. There
are 50 nodes randomly deployed in the sensor field. Their
mobility is captured by the Random Way Point model with an
average moving speed of 5.0 m /s and a pause time of 100 s. In
Fig. 6, we show the performance comparison of two versions
of DSR, one with the energy-aware route discovery mechanism
and one without. (We have carried out extensive simulations
with different node speeds and/or different traffic patterns.
What is reported in Fig. 6 is typical in our simulations). It can
be seen from the figure that the energy-aware DSR has better
throughput performance. We assume in these simulations uni-
form transmission and reception power because the underlying
MAC layer assumes symmetric connectivity. Otherwise the
gain would be more significant. Nevertheless, the point we
are trying to make here is that the idea of delay-based route
discovery has provably bounded overhead, and it works in an
actual on-demand routing framework.

X. CONCLUSION

In this work, we address the problem of energy-aware
routing with distributed energy replenishment. We formulate
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the problem as an integrated admission control and routing
framework by appealing to ideas from PVC/SVC routing in the
ATM literature. The energy model in this framework allows
vastly different energy sources in heterogeneous environments.
We have shown that our E-WME algorithm has an asymp-
totically optimal competitive ratio, which suggests that, in
practice, this algorithm can lead to significant improvements
in the performance of the network. The algorithm is easy to
implement: it requires local short-term energy replenishment
information and assumes no knowledge about the statistical
information on the packet arrivals. The algorithm can be seam-
lessly integrated with distance-vector-like proactive routing
protocols, and with minor modifications, can also be integrated
with on-demand routing protocols. A threshold-based scheme
is also introduced to reduce routing overhead while incurring
minimum performance degradation.

The following are possible directions for future work. The
strength of the competitive analysis lies in the fact that no statis-
tical information on packet arrivals is assumed. This, however,
can lead to conservative results since the focus is in the worst
case. In multihop networks, some information about the packet
arrival pattern may be known in advance, or through adaptive
learning. Taking advantage of such knowledge, i.e., routing with
a certain amount of known statistical information, may help de-
velop algorithms for these scenarios.

Using the E-WME algorithm, successive packets of the same
flow can get routed along different paths. This may have neg-
ative impact on upper layer protocols. The interaction between
multipath routing and the transport/application layers is a very
important problem, and needs further investigation.

In addition to taking energy considerations into account,
our routing decisions should also take into account different
channel conditions, especially in a wireless environment. The
goal will be to develop optimal opportunistic routing algorithms
that favor good channel conditions in order to minimize packet
retransmissions and, thus, avoid unnecessary wastage of battery
resources.

APPENDIX

Proof of Theorem 1: (A) We outline the proof as follows.
We first establish the relationship between .J,,, the secured rev-
enue of the online algorithm, and the residual energy in the
network [please refer to Inequality (18)]. We then show that
(Jot — Jon), the additional revenue gained by the offline al-
gorithm is upper-bounded by a function of the residual energy
[please refer to Inequality (19)]. It follows that the ratio of Jog
to Jon is upper-bounded by a logarithmic function in the number
of nodes in the network.

Throughout the proof, for notational convenience, let

R.(j) = R(j)NVr, and  Ry(j) = R(j) NV,
denote the sets of renewable and nonrenewable nodes used to
accommodate request j, respectively.

We begin by proving the following useful results. First, we
consider a node n € V,.. Let A be the set of requests accepted
by the E-WME algorithm, and k be the index of the last request.
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Given anode n € V., a time slot 7, and any function f,,( ), we
have

Z {frOn(G+1,7) = fu(Aa(d, 7))}
Ty er e (141
k
Z n(d+1,7) = fa(Anld 7))} (12)

We consider the following three cases whose union corre-
sponds to the complement of the index set,, , = {j € A :
n € R(j),T°(j) < 7 < 7l + D}, € V.

1) Ifj ¢ A orj e Abutn ¢ R(j), the load created by the
first j requests is the same as the first (j — 1) ones, since
the jth request has no impact on the energy of node n at
time 7. It follows that A, (5 + 1,7) = A\, (4, 7).

2) If 7 > 7,(j + 1), then the energy consumed by the first j
requests is fully recharged at time 7. It follows that A, (5 +
177—) = )‘n(JaT) =0.

3) If 7 < T%(j), then A, (j + 1,7) = An(4,
tion of A, (4, 7).

In these three cases, fn(An(j + 1,7)) = fu(An(4,7)) always
holds since A, (j + 1,7) = An(4, 7). In other words, for any
index 7 satisfying any of the above three conditions, or equiva-
lently j ¢ Uy, -, the corresponding term in the right hand side of
(12) gives no contribution to the sum. Hence, we can calculate
the summation according to a smaller set of indices, as indicated
by the left hand side of (12).

Similarly, for any node n € V,,, we have the following result:

>

jEAnER,(5)

7), by the defini-

{Fn(An(G + 1)) = fu(An(5)}

Fa(An(9))}- - (13)

-S4 1) -

We are now ready to derive the relationship between the
residual energy and the revenue secured by the online algo-
rithm.

Forany j € A, n € R,(j), and 7 satisfying T°(j) < 7 <

#0)
)= (07 -1)}

Yo(4,7) = un {( An(i+17) _
= un (50 b i)
= Uy [t n(]T)( w—l)

Since 2” — 1 < z for z € [0, 1] and using (A2), we have

G LU)en(R(5))
Di(4)en(R(4)) log p
en(R(4))log p.

Yo (. 7) < wnp log 1t
< (MA" ) _

+1(5) (14)
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Similarly, for any j € A, n € R.(j), and 7 satisfying 7,,(j) <
T < 7a(j + 1), the following equation holds:

Ya(j, ) i= un{ (U — 1) —

= u, (/1/ An(G+1,7) )

(167 ~ 1))

S upAn(j +1,7)log p
< U(G)en(R(5))log p.

The last inequality is true since u, A, (5 + 1, 7) in this case rep-
resents the impact of the energy consumed by request j, as mea-
sured at time 7. Summing Y,,(j,7) over n € V,., 7, and j, by
the virtue of (12), (14), and (15), we have

DDl

nev, T

) IPIPR AR

nev, 7 j=1

2.2 X

nevV, 7 JjEAmER()),
T=(§)<T<tn(§+1)

(15)

An (k+1,7‘) _ 1)

JEANER,(j) T=T*(j)

#.()—1
<> 2

Z (uz\n(j,f) _
JEARER..(5)

T=T"(j)
Fa(GH1)—1

S

=T(j)

Dl(7)en(R(5)) log p

[(7)en(R(j))log 1 (16)

For the nodes without renewable energy sources, from (13),
a simpler result [10], [11] holds in the following form:

> Tun(p

nev,

An(k+1) 1)
<2 2

An(d) _
JEANER,(j) ! { (M ]

H(j)en(R(7))log 1} -

Combining (16) and (17), and using the fact that 3(j) is ac-
cepted and part of assumption (A1), it follows that:

Z Z“" (M)\n(k+1,7-) _ 1)

D(5)en(R(5) ) log

a7

nev, T
+ Tu, An(k+1) _q
P
< St { Contnl) + 1 g e (R
< o)+ 1 g e )1
<Y logu{n(5) + p(4)}
JjEA

<Z2p

JEA

) log . (18)
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Next, we derive the relationship between the residual energy
and the additional revenue secured by the offline algorithm.

Let Q be the set of requests accepted by the offline algo-
rithm and rejected by our online algorithm, and R(j) be the path
chosen by any given offline algorithm for 3(j), 7 € Q. Since
B(7) is rejected by the E-WME algorithm

ZC_}R ZCJ’

n€R-(5) n€Ry(j)
"'n(]) 1

=2 X

n€R.(j) T=T"(j)

T (u*”@ — 1) l(i)en(R())

An(4,7) _

1) 1d)ea(R()

(uxn<k+1,r> _ 1) 1(j)en(R(4))
n€R,(j) 7=T"(5)

+ 3 T(Mxnucﬂ)_
nER,(J)

1) 1G)en(R())-

Summing over all 7 € Q and exchanging the order of summa-
tion, we have

> i)

Jj€Q

<y

JjeQ

Tn(5)—1

2. X2

n€R,(j) T=T=°(j)

>

n€Rp(j)

_ Z Z“n (MAH (k+1,7) _ 1)

nev, T
¢y aae)

JEQNERL (),
T () <7<7n(4)

+ Z Tun,(p An(kt1) 1)
nev,

An(kt1,7) _ 1) 1(5)en(R(4))

T (0D = 1) 1(G)en(R())

D l(j)ez(nR(j))
JEQMER,(5)

< Z Z“n (MAH (k+1,7) _ 1)

neV, T

L e

nevy

1) . (19)

The last step is true since

> )

JE.Q:n€R(j), )
Ts(§) <7< (4)

Vn e V,,

and
1()en (R(j
S Dl oy, ey,
jegmen,Gy "
i.e., the energy claimed by the offline algorithm from each node

at each time slot cannot exceed the battery capacity of that node.
Note that the condition 7%(j) < 7 < 7,,(j) for n € V. implies
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that the energy consumption due to 5(j) has not been replen-
ished yet in our energy model: therefore, I(j)e, (R(j)) is part
of the used energy for the offline algorithm.

Inequality (18) basically establishes the relationship between
the secured revenue and the residual energy. Inequality (19)
guarantees that the additional revenue gained by the offline al-
gorithm is upper-bounded by a function of the residual energy.
Denoting the set of all calls accepted by the offline algorithm by
A*, we have

Josr . Z]GQ p( )+ZJeA*\Q p( )
Jon N Z]’GAP(J)
Z]'GQ p(j) + Z]’eA p(j)
ST ) SR

Recall that o = 2(LFT + 1), where L is the maximum hop
count allowed for any path, F is a constant chosen large enough
to satisfy (A1), T is the upper bound on the time it takes to fully
charge an empty battery. Therefore, (1+21log 1) = O(log |V|),
since L < |V|.

It remains to be shown that our routing algorithm does not
violate the energy constraint at each node. Again let .A be the set
of requests accepted by our online algorithm. Suppose by way
of contradiction that 3(3) is the first accepted request to violate
energy capacity constraint at node n at its arrival time-slot 7.
(Due to the replenishment, the first time slot such a violation
can happen is the arrival time slot). Then

U(3)en(RU)

Un

An(fm) > 1 - (20)

From the above inequality and (A2)

NA" G _q

1 Wen(RG))
> (@ -1

> (' — 1)

K LFT.
2

2n

From (21)
(/‘LAn(j’T) — 1

From the description of our algorithm, the above inequality
shows that 3(j) could not have been accepted in the first place.
The above argument works for nodes with or without renew-
able energy source. Therefore, our routing algorithm does not
violate the energy constraint at each node.

(B) The proof of the lower bound follows the proof for the
SVC case [18], where examples are shown to prove the lower
bound of Q(log|V]) in circuit-switched networks. In these ex-
amples, capacity constraints are put on the links. However, it so
happens that in the examples, every link (n, m) that can possibly
have the maximum congestion connects to exactly one distinct
node m. This property makes it straightforward to convert the
examples into special cases of the energy-aware routing prob-
lems we study. In this case, the energy replenishment does not
complicate the proof either.

For completeness, we include the proof as follows.
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To show the lower bound, we construct a sequence of routing
requests, and show that the total revenue secured by the online
algorithm is upper bounded by the total revenue of the offline
algorithm multiplied by 2/ log n.

Consider a string of (n + 1) nodes with uniform battery ca-
pacity, say 1. Denote the nodes by vg, v1, . .., vy,. The transmis-
sion energy requirement 7y, 341 = «, and the reception energy
requirement 7 41 = 0,k = 0,1,2,...,n— 1. All all batteries
are initially full. All requests appear at the beginning, though
sequentially. They come in (logn + 1) phases. In each phase
i,0 < i < log n, there are 2¢ groups of requests, 0 < j < 2/ —1.
A request in phase 4, group j has vj,/9: as source node and
V(j+1)n/2¢ as the destination node. Each group of such requests
consists of 1/« identical packet routing requests, where each
packet has unit length. Each request carries the same revenue «.

Note that the sequence of routing requests is designed such
that the resource per unit revenue decreases exponentially fast,
which means that accepting later requests is “exponentially”
better. However, an online algorithm cannot wait for the last re-
quest since it does not know which request is the last one. Let ¢;
denote the total amount of energy used by the online algorithm
in phase ¢. Since there are n nodes in the network whose energy
can be used to transmit packets, it is evident that 312%™ ¢; < n.
At phase i, a unit of revenue corresponds to spending n/2" units
of energy, since n/2¢ nodes are involved to accommodate one
packet routing request. Let By, be the total revenue secured by
the online algorithm up to phase k. Then

k

Bk = Z %CZ

1=0

Note that offline algorithm can always accept only the re-
quests in phase k and secure 2* revenue and declare phase k
to be the last phase. Therefore, the maximum revenue for an of-
fline algorithm up to phase k is 2¥. We now consider the ratio
of the online revenue to the offline revenue, namely By, / 2k To
show the lower bound, it is enough to show that there exits some
k such that this ratio is upper bounded by 2/ log n. Consider the
summation of the ratio from £ = 0 to logn

(5]

ogn logn

k .

Bk 2sz

=2
k=0 =0

logn logn logn

2=k 2¢;
Z - ¢ < ; # <2.

=0 k=i

£l
Il
<]

Therefore, there exists some & such that By, /2% < 2/logn.
|
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