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Abstract

Brain cells normally respond adaptively to bioenergetic challenges
resulting from ongoing activity in neuronal circuits, and from envi-
ronmental energetic stressors such as food deprivation and physi-
cal exertion. At the cellular level, such adaptive responses include
the “strengthening” of existing synapses, the formation of new
synapses, and the production of new neurons from stem cells. At
the molecular level, bioenergetic challenges result in the activation
of transcription factors that induce the expression of proteins that
bolster the resistance of neurons to the kinds of metabolic, oxida-
tive, excitotoxic, and proteotoxic stresses involved in the patho-
genesis of brain disorders including stroke, and Alzheimer’s and
Parkinson’s diseases. Emerging findings suggest that lifestyles that
include intermittent bioenergetic challenges, most notably exer-
cise and dietary energy restriction, can increase the likelihood that
the brain will function optimally and in the absence of disease
throughout life. Here, we provide an overview of cellular and
molecular mechanisms that regulate brain energy metabolism,
how such mechanisms are altered during aging and in neurode-
generative disorders, and the potential applications to brain health
and disease of interventions that engage pathways involved in
neuronal adaptations to metabolic stress.
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Introduction

The higher cognitive functions of the human brain depend upon the

expansion and increased density and complexity of the neocortex

during evolution (Rakic, 2009). The enhanced abilities of the human

brain to plan complex behaviors, make decisions, and process

emotional and social contexts came with hefty energy requirements.

Although it is only 2% of the total body weight, the brain accounts

for 20% of an individual’s energy expenditure at rest (Kety, 1957;

Sokoloff, 1960). Among brain cells, neurons expend 70–80% of the

total energy, with the remaining portion being utilized by glial cells

(astrocytes, oligodendrocytes, and microglia) (Harris et al, 2012;

Hyder et al, 2013). Organisms allocate their available energy among

the competing needs of maintenance, growth, reproduction, and,

particularly in primates, higher cortical functions (communication,

imagination, and creativity). A growing body of evidence suggests

that metabolic adaptations within the brain and whole body played

important roles in the expansion of the cerebral cortex during

primate evolution. Several studies comparing the expression of genes

and regulatory regions in brains of various primates have shown an

up-regulation of genes and metabolites involved in oxidative meta-

bolism and mitochondrial functions in human brains (Grossman

et al, 2001, 2004; Cáceres et al, 2003; Uddin et al, 2004; Haygood

et al, 2007). Furthermore, recent evidence indicates that an increase

in metabolic rate, coupled with a higher predisposition to deposit fat

and changes in the allocation of energy supplies, was crucial for the

evolution of brain size and complexity (Pontzer et al, 2016). Under-

standing the metabolic signatures of different brain cells, and their

metabolic interactions, will not only advance our understanding of

how the brain functions and adapts to environmental demands, but

may also elucidate the propensity of the human brain to age-related

neurodegenerative disorders. In recent years, it has become evident

that metabolic alterations strongly influence the instigation and

progression of many neurodegenerative disorders. Decreases in

glucose and oxygen metabolic rates of brain cells occur during

normal aging (Hoyer, 1982a) and are further exacerbated in disor-

ders such as Alzheimer’s (AD), amyotrophic lateral sclerosis (ALS),

Parkinson’s (PD), and Huntington’s (HD) diseases (Hoyer, 1982b).

In this review article, we summarize the current knowledge of

neural cell energy metabolism in the contexts of normal brain func-

tion, adaptive neuroplasticity, and the pathogenesis of neurodegen-

erative disorders.

Brain barriers and metabolite transporters

Neurons in the adult brain rely mostly on glucose as an energy

source (Kety, 1957; Sokoloff, 1960). However, in some circum-

stances neurons can use substrates other than glucose. For example,

ketone bodies are utilized during brain development and in the

adult during prolonged fasting periods (Owen et al, 1967; Nehlig &

Pereira de Vasconcelos, 1993), while lactate utilization is increased
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during intense physical activity (Dalsgaard et al, 2003; van de Hall

et al, 2009). Given its high metabolic demands and negligible intrin-

sic energy stores, the brain depends upon a continuous influx of

substrates from the blood. In order to protect the brain from fluctua-

tions in the blood composition that could impact its milieu and func-

tions, the exchanges of molecules between blood and cerebral fluids

are regulated by the blood–brain barrier (BBB), and the blood–

cerebrospinal fluid barrier (BCSFB). The main function of the these

barriers is to limit the free diffusion of solutes between blood and

brain fluids, and to selectively transport essential nutrients, ions,

and signaling molecules, while removing metabolic waste products.

The BBB separates the brain interstitial fluid from the blood and is

formed by capillary endothelial cells interconnected by tight and

adherens junctions, their underlying basement membrane, peri-

cytes, and the “end feet” of astrocytes (Fig 1). The BBB controls the

influx of metabolites such as glucose, amino acids, and ketones

from the blood into the brain, while preventing the access of blood-

borne molecules and cells (e.g., lymphocytes) that could be detri-

mental for neuronal functions. The BCSFB is formed by the modified

epithelial cells of the choroid plexus which separates the peripheral

blood from the CSF, and the arachnoid epithelium separating the

cerebral blood from the CSF. In addition to filtering functions similar

to the BBB, the epithelial cells of the BCSFB are also responsible for

producing the CSF.

The modalities by which specific molecules cross through the

BBB depend upon the nature of the solutes (Fig 1). Passive partition

is limited to small nonpolar lipid-soluble molecules, and to dif-

fusible gases such as oxygen and carbon dioxide according to their

concentration gradients. The presence of tight junctions restricts

paracellular diffusion of polar molecules such as proteins (Zlokovic

et al, 1985a,b; Zlokovic & Apuzzo, 1997), which cross the BBB by

interacting with receptors or transporters expressed on both the

luminal and abluminal membranes, or selectively on one side

(Zlokovi�c et al, 1987; Zlokovic et al, 1990; Abbott et al, 2010).

Large peptides and proteins such as hormones, growth factors, and

neuroactive peptides are transferred via receptor-mediated, adsorp-

tive-mediated, and carrier-mediated transport (Zlokovic, 1995,

2008). Based on the requirement or not to hydrolyze ATP to move

the solute across the membrane, two major families of transporters

have been identified in the BBB: the ATP-binding cassette (ABC)

proteins and the solute carrier (SLC) proteins. The ABC transporters

include multidrug resistance-associated proteins (MRPs, ABCB1-6),

P-glycoprotein, and breast cancer resistance protein (BRPC) (Begley,

2004). These transporters function as efflux pumps that couple ATP

hydrolysis to move lipid-soluble molecules against their concentra-

tion gradient. The solute carrier proteins comprise a large super-

family of more than 300 members; they are instrumental for

ensuring a stable supply of carbohydrates, amino acids,
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Figure 1. Nutrient transport across the blood–brain barrier.
The blood–brain barrier is formed by capillary endothelial cells surrounded by basement membrane, pericytes, and the astrocyte perivascular end feet. The presence of tight
junctions between the endothelial cells strongly inhibits the penetration of water-soluble molecules. Passive diffusion is limited to gases and small nonpolar lipids. All other
nutrients require passive or active mediated transporters. GLUT1-5, glucose transporter 1-5; MCT1-4, monocarboxylic acid transporter 1-4.
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monocarboxylic acids, nucleotides, fatty acids, and organic anions

and cations (Abbott et al, 2010).

Among the SLC carriers, those that transport hexose and pentose

sugars (glucose transporters; GLUTs) and monocarboxylates (mono-

carboxylic acid transporters; MCTs) are particularly important for

brain metabolism. The intake of glucose into the brain is mediated

by GLUT1, which is expressed as a 55-kD isoform in endothelial

cells of the BBB. A second 45-kD GLUT1 isoform ensures delivery of

glucose to glia, ependymal cells, and the choroid plexus. GLUT3

mediates uptake of glucose in neurons; GLUT3 is mainly concen-

trated in axons and dendrites. GLUT3 has a higher glucose affinity

and transport capacity compared to other transporters, and so

ensures that neurons receive a constant supply of glucose even

when interstitial glucose concentrations are low. Other members of

the glucose transporter family are expressed at much lower levels

compared to GLUT1 and GLUT3 in specific cell types and/or in

specialized brain regions. For example, the insulin-sensitive GLUT4

is present in astrocytes, neurons, and endothelial cells (Kobayashi

et al, 1996), and GLUT8 is located in the cytoplasm of neurons

mostly in the hippocampus, amygdala, cerebellum, and hypothala-

mus (Reagan et al, 2001; Ibberson et al, 2002). GLUT2 is expressed

in a subset of glutamatergic neurons in the hypothalamus and has

recently been identified as a brain glucose sensor that triggers sugar

seeking behavior under hypoglycemic conditions (Labouèbe et al,

2016). GLUT6 has been detected in neurons (Doege et al, 2000) and

GLUT7 in astrocytes (Maher et al, 1994). In microglia, the most

abundant transporter is GLUT5 which has a very low affinity for

glucose and mostly fluxes fructose (Mantych et al, 1993).

The predominant roles of GLUT1 and GLUT3 in efficiently

moving glucose from the blood across the BBB and into neurons

have been clearly demonstrated in studies of gene knockout mice.

GLUT1+/� mice have a reduced brain size and abnormal motor

behavior (Wang et al, 2006), reminiscent of the phenotypes

observed in human GLUT1 deficiency syndrome patients (De Vivo

et al, 1991). GLUT3+/� mice exhibit abnormal spatial learning and

working memory, in addition to perturbed social behavior (Zhao

et al, 2010). GLUT8-null homozygous mice have modest reductions

of hippocampus volume (Membrez et al, 2006), and locomotion

(Schmidt et al, 2008). In addition to facilitative glucose transporters,

the endothelial cells of the BBB also express sodium-dependent

unidirectional transporters that are members of the solute carrier 5

family (SGLT) 1 and 2. These carriers couple the sodium electro-

chemical gradient to transfer glucose against its concentration gradi-

ent across the membrane. Their role under physiological conditions

is not clear, but they appear to be functional during conditions of

oxygen/glucose deprivation or ischemia (Yu et al, 2010). Because

GLUT1 and GLUT3 transporters are constitutively located on the

plasma membrane and do not respond to stimulation with insulin,

brain glucose uptake is believed to be insulin-independent.

There are 14 MCTs with particular affinities for one or more

substrates. MCTs 1–4 are expressed in cells of the BBB (Fig 1) and

are responsible for bidirectional passive proton-linked transport of

lactate, ketone bodies (i.e., acetoacetate and 3-b-hydroxybutyrate),
and pyruvate. MCT1 has high affinity for pyruvate and also trans-

ports lactate and ketone bodies; it is present in endothelial cells

(Gerhart et al, 1997), astrocytes (Bröer et al, 1997), oligodendro-

cytes (Lee et al, 2012), and microglia (Moreira et al, 2009). Only a

few specific subsets of hypothalamic neurons express MCT1

(Carneiro et al, 2016). MCT2 is the major transporter in neurons

(Pierre et al, 2002), and compared to MCT1 has an overall higher

affinity for all the substrates (Bröer et al, 1997). MCT2 is concen-

trated in dendritic spines where it associates with postsynaptic

density proteins, as well as the AMPA receptor subunit Glur2

(Bergensen et al, 2005). MCT3 transports lactate and is only

expressed in the retinal epithelium and the choroid plexus epithe-

lium (Philp et al, 2001). MCT4 carries lactate and is exclusively

expressed in astrocytes (Pellerin et al, 2005). The specific cell distri-

bution patterns and substrate affinities of MCTs in the brain suggest

that MCTs play fundamental roles in shuttling energy substrates

among different brain cell types.

Glucose metabolic pathways in neurons and astrocytes

The metabolic fate of glucose in the brain depends upon the cell

type and the selective expression of metabolic enzymes. Neurons

are predominantly oxidative, while astrocytes are mostly glycolytic

(Hiden & Lange, 1962; Hamberger & Hyden, 1963). In addition to

the production of adenosine-50-triphosphate (ATP), glucose is also

used to generate metabolic intermediates for the synthesis of fatty

acids and other lipids required for membrane and myelin synthesis

(Ramsey et al, 1971; Jones et al, 1975); amino acids for protein

synthesis and neurotransmitter production (Vrba et al, 1962;

Gaitonde & Richter, 1966); and 5-carbon sugars for the synthesis of

nucleotides (Gaitonde et al, 1983); and to produce glycogen in

astrocytes.

In neurons, each molecule of glucose is oxidized via glycolysis,

the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA)

cycle, and oxidative phosphorylation, with the production of carbon

dioxide, water, and 30–36 molecules of ATP depending upon the

rates of proton leakage in the mitochondria (Fig 2). The glycolytic

process metabolizes glucose to pyruvate, which can be actively

transported into the mitochondria where it is converted to acetyl

coenzyme A (acetyl-CoA). Acetyl-CoA is complexed with citrate

which undergoes a series of regenerative enzymatic reactions

producing reduced nicotinamide adenine dinucleotide (NADH) and

flavin adenine dinucleotide (FADH2) in the TCA cycle. The NADH

and FADH2 produced during glycolysis and the TCA cycle are

subsequently re-oxidized in the electron transport chain (ETC).

ETC. utilizes the energy produced by the transfer of electrons

through its various complexes to transport protons across the inner

mitochondrial membrane into the intermembrane space. The flux of

protons back into the mitochondrial matrix is mediated by the

enzyme ATP synthase, which utilizes the energy to generate ATP

from ADP. Once inside the cell, glucose is irreversibly converted to

glucose-6-phosphate (G6P) by hexokinase (HK). G6P can then be

further metabolized via glycolysis or the pentose phosphate path-

way (PPP) or can be used for glycogen synthesis.

Although negligible compared to peripheral energy deposits,

glycogen represents the largest energy reserve in the brain. Glyco-

gen metabolism is regulated by two key enzymes, glycogen synthase

(GS) and glycogen phosphorylase (GP). The reason why glycogen is

produced and stored exclusively in astrocytes (Magistretti et al,

1993) is because in neurons GS is maintained in a constitutively

inactive state by hyperphosphorylation via glycogen synthase kinase

3 (GSK3), and subsequent ubiquitin-dependent proteasomal
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degradation mediated by the malin–laforin complex (Vilchez et al,

2007) (Fig 2 inset). A similar degradation process also occurs for

protein targeting to glycogen (PTG), the regulatory subunit of

protein phosphatase 1 that is able to activate GS by dephosphoryla-

tion, thus preventing the accumulation of glycogen in neurons

(Vilchez et al, 2007). The preferred route of G6P metabolism in

neurons is the PPP, an anabolic metabolic pathway that converts

G6P into 5-carbon sugars utilized for the biosynthesis of nucleotides

with generation of reduced nicotinamide adenine dinucleotide phos-

phate (NADPH). Based on the cellular requirements, a portion of

ribulose-5-phosphate (R5P) can be converted back into the glyco-

lytic intermediates fructose-6-phosphate (F6P) and glyceraldehyde-

3-phosphate (G3P). In neurons, this conversion is minimal, and

NADPH is utilized as a cofactor for synthesis of fatty acids and

myelin, for neurotransmitter turnover, and to maintain redox homeo-

stasis. The maintenance of neuronal antioxidant potential relies on

the use of NADPH as cofactor to regenerate reduced glutathione

(GSH) (Fig 2) and thioredoxin by glutathione and thioredoxin

reductase, respectively.

The balance between glycolysis and PPP rates in neurons is very

important, and diversion of glucose utilization toward exclusive

glycolysis can result in decreased availability of NADPH, increased

oxidative stress and cell death (Herrero-Mendez et al, 2009). The

preferential use of G6P in the PPP in neurons, as well as their inabil-

ity to up-regulate glycolysis, is due to the selective expression of

enzymes favoring such a metabolic route coupled with the absence

G
LY

C
O

LY
S

IS

G6P 6PG

P
P

P

G3P R5P

PEP

GLUT3
Glucose

Pyruvate Lactate

L
a

c
ta

te

Lactate

F6P

F1,6P

Glycogen

ATP
Citrate

PFK1

HK

HK

PKM1

PDH

PROTEASOMAL
DEGRADATION G6P

F6P

F1,6PF2,6P

F2,6P

APC/C
–Cdh1

PFK1PFKFB3

PFKFB3

Neuron Astrocyte

GSK3

G1P

Malin–Laforin

GS-hyperP

GP

GS

PROTEASOMAL
DEGRADATION

NADP+

NADPH

GSH

GSSG

Acetyl-CoA

ATPTCA ETC

CO2

CO2
O2

O2

MCT2
MCT4

MCT1

G
LY

C
O

LY
S

IS

G6P

G3P

PEP

GLUT1
Glucose

Pyruvate

F6P

F1,6P

Glycogen

PFK1

HK

PDH

6PG

P
P

P

R5P

Acetyl-CoA

ATPTCA ETC

CO2

CO2
O2

O2

AMP
ADP
Pi

PKM2

LDH1 LDH5

PDK4

©
 E

M
B

O

Figure 2. Metabolic pathways of glucose utilization in neurons and astrocytes.
In neurons after entering the cell via glucose transporter 3 (GLUT3), glucose is phosphorylated byhexokinase (HK) to glucose-6-phosphate (G6P),which is subsequently routed in
the glycolytic pathway and the pentose phosphate pathway (PPP). The end product of glycolysis is pyruvate that enters the mitochondria where it is metabolized through the
tricarboxylic acid (TCA) cycle and oxidative phosphorylation in the electron transport chain (ETC.), generating adenosine-50-triphosphate (ATP) and carbon dioxide (CO2)
while consuming oxygen (O2). Pyruvate can also be generated from lactate dehydrogenase 1 (LDH1)-dependent conversion of lactate. In the PPP, G6P is converted to 6-phos-
phogluconate (6PG) that is transformed in ribulose-5-phosphate (R5P), with the concomitant production of reduced nicotinamide adenine dinucleotide phosphate (NADPH).
NADPH is utilized to regenerate oxidized antioxidants such as glutathione (GSH) and thioredoxin. Neurons are not able to store glucose in the form of glycogen due to
constitutive degradation of glycogen synthase (GS) via glycogen synthase kinase 3 (GSK3) phosphorylation, and subsequent ubiquitin-dependent proteasomal digestion
mediated by the malin–laforin complex. In astrocytes, glucose is imported trough glucose transporter 1 (GLUT1) and preferentially stored as glycogen, or metabolized via
glycolysis. The pyruvate generated is converted to lactate thanks to the expression of lactate dehydrogenase 5 (LDH5), and pyruvate dehydrogenase kinase 4 (PDK4)-dependent
inhibition of pyruvate dehydrogenase (PDH). The presence of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) allows astrocytes to generate fructose-2,6-
bisphosphate (F2,6P) that acts as an allosteric modulator of PKF1 boosting glycolysis. Abbreviations are as follows: F6P, fructose-6-phosphate; PKF1, phosphofructokinase 1;
F1,6P, fructose-1,6-diphosphate; G3P, glyceraldehyde-3-phosphate; Mit, mitochondrion; PEP, phosphoenolpyruvate; PKM1, pyruvate kinase M1; PKM2, pyruvate kinase M2;
G1P, glucose-1-phosphate; GP, glycogen phosphorylase; APC/C-Cdh1, anaphase-promoting complex C/cytosome-Cdh1; MCT, monocarboxylic acid transporter.
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of specific glycolysis modulators. In addition to the HK step

mentioned above, the glycolytic flux is regulated by phosphofruc-

tokinase 1 (PKF1) and pyruvate kinase (PK) (Lowry & Passonneau,

1964). PKF1 catalyzes the phosphorylation of F6P to fructose-1,6-

bisphosphate (F1,6P). Its activity is inhibited by metabolites associ-

ated with a high energy state (i.e., ATP, citrate) and enhanced by

those resulting from high metabolic activity (i.e., ADP, AMP, phos-

phate), as well as by fructose-2, 6-bisphosphate (F2,6P). It was

recently shown that neurons lack the enzyme responsible for the

generation of F2,6P, 6-phosphofructo-2-kinase/fructose-2,6-bisphos-

phatase 3 (Pfkfb3) due to continuous ubiquitin-dependent protea-

somal degradation (Herrero-Mendez et al, 2009) (Fig 2 inset). While

neurons lack Pfkfb3, they express pyruvate kinase M1 (PKM1)

(Zhang et al, 2014), a constitutively active enzyme with a very high

affinity for phosphoenolpyruvate (PEP), thereby favoring the gener-

ation of high levels of pyruvate. This, in association with the expres-

sion in neurons of the low-pyruvate-affinity isoform of lactate

dehydrogenase (LDH1), prevents pyruvate conversion to lactate and

favors its entrance into the TCA cycle (Fig 2). Further metabolic

bias toward the TCA cycle results from the lower levels of expres-

sion in neurons of pyruvate dehydrogenase kinase 4 (PDK4) which

controls the activity of pyruvate dehydrogenase (PDH), and there-

fore the decarboxylation of pyruvate to acetyl-CoA.

Astrocyte utilization of glucose is complementary to that of

neurons. A portion of G6P is channeled into glycogen synthesis and

PPP, but its predominant metabolism occurs via glycolysis with

production of lactate and very low rates of mitochondrial oxidation

(Itoh et al, 2003). This metabolic phenotype of astrocytes is the

result of their unique expression of various enzymes and trans-

porters. In contrast to neurons, astrocytes express very high levels

of Pfkfb3 which favors glycolysis via allosteric activation of PFK by

F2,6P (Herrero-Mendez et al, 2009). Furthermore, under basal

conditions the levels of PDH phosphorylation are high (Halim et al,

2010) thanks to elevated expression of PDK4 (Zhang et al, 2014),

efficiently limiting the conversion of pyruvate to acetyl-CoA (Fig 2).

Astrocytes also express low levels of mitochondrial aspartate/gluta-

mate carrier (AGC) decreasing the import of reduced equivalents

(NADH) from the cytosol (Ramos et al, 2003). The expression of

LDH5, which has a high affinity for pyruvate, rather than LDH1,

ensures its conversion to lactate with concomitant oxidation of

NADH to NAD+ thus maintaining high rates of NAD+/NADH that

further favor aerobic glycolysis. The presence of PKM2 instead of

PKM1 also enables astrocytes to easily up-regulate the rate of

glycolysis to increase the production of lactate, if needed.

Monocarboxylic acid metabolism

Over the past few decades, it has become clear that in addition to

glucose, neurons can utilize alternate fuels, namely lactate and ketone

bodies. Seminal in vitro studies of McIlwain in the 1950s demonstrated

that in human cerebral cortex slices, both pyruvate and lactate could

replace glucose to support respiration under basal conditions, and

during electrical stimulation (McIlwain, 1953). Neurons in vitro have a

preference for lactate over glucose when both substrates are provided

(Itoh et al, 2003; Bouzier-Sore et al, 2006). However, clear evidence

for a role for lactate in brain metabolism in vivo has been obtained only

recently. The cell type-specific distribution of MCTs, and the intrinsic

metabolic properties of astrocytes and neurons, led to the hypothesis

that lactate is shuttled between the two cell types to support neuronal

metabolism (Pellerin & Magistretti, 1994) (Fig 2). Such metabolic

coupling of astrocytes and neurons is supported by optogenetic studies

showing an in vivo lactate gradient from astrocytes to neurons

(Mächler et al, 2016). Furthermore, pharmacological inhibition or

genetic targeting of MCT2 irreversibly impairs long-term memory in

mice (Newman et al, 2011; Suzuki et al, 2011). Long-term memory

impairment can be reversed by intrahippocampal administration of

lactate, but not glucose, in MCT4-deficient mice (Suzuki et al, 2011).

Targeted disruption of MCT1 and MCT2 impairs memory consolida-

tion/reconsolidation in cocaine-induced conditioned place preference

and self-administration (Zhang et al, 2016). Heterozygous MCT1

knockout mice have impaired inhibitory avoidance memory (Tadi

et al, 2015). Altogether, these results strongly suggest that the

neuronal uptake of lactate is important for the establishment of long-

term memories. The overall contribution of lactate to brain metabolism

varies with its availability. Studies in conscious humans have shown

that under resting conditions, lactate uptake by the brain provides

about 8% of its energy requirements (van de Hall et al, 2009). The

percentage increases up to 20% under conditions of high plasma levels

of lactate such as during intense exercise (van de Hall et al, 2009).

Furthermore, at various exercise intensities the metabolism of lactate

in the brain is higher in trained subjects compared to controls

(Kemppainen et al, 2005). This suggests the possibility of adaptive

mechanisms allowing the brain to respond to changes in substrate

availability. Notably, in rodents acute exercise induces brain region-

specific up-regulation of MCTs (Takimoto & Hamada, 2014) and

enhances oxidative capacity of cells in the motor cortex (McCloskey

et al, 2001).

In addition to lactate, brain cells can metabolize the ketone bodies

3-b-hydroxybutyrate (3HB) and acetoacetate (AcAc). Ketones are

recognized as an essential energy substrate for the brain during

development, delivering up to 30–70% of its energy requirement

(Nehlig, 2004); compared to the adult, the immature brain has high

activity and levels of MCTs (Gerhart et al, 1997; Pellerin et al, 1998).

Also, in rodents the brain activity of enzymes involved in ketone

metabolism increases steadily through the suckling period, and then

drops after weaning (Page et al, 1971; Middleton, 1973). The high

level of ketone utilization during development is necessary to

support energy metabolism, as well as the amino acid and lipid

biosynthesis required for brain maturation (De Vivo et al, 1975; Yeh

et al, 1977). In rats, incorporation of 3HB into amino acids is two- to

threefold higher than glucose during the nursing period (De Vivo

et al, 1975). Similarly, lipid synthesis, fundamental for myelination,

is preferentially sustained by the use of ketones as precursors during

the suckling period (Yeh et al, 1977). In addition to anabolic func-

tions, the oxidation of ketones is also important during the early

postnatal period (Fig 3). Mice with succinyl-CoA-3-oxoacid CoA

transferase (SCOT) deficiency have normal prenatal development,

but right after birth they become ketotic, with reduced plasma levels

of glucose and lactate (Cotter et al, 2011). In the adult brain, the

utilization of ketones is greatly reduced in the fed state, but can

increase considerably under conditions of limited glucose availability

as occurs during fasting, starvation, low carbohydrate/high fat

intake, and prolonged or intense exercise bouts (Fig 3). Under such

conditions, the liver generates ketone bodies from fatty acid and

ketogenic amino acid oxidation. Among brain cells, only astrocytes
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are equipped to generate ketone bodies from fatty acid b-oxidation
(Edmond, 1992), but the rates of fatty acid transport are very low

compared to those in the liver. All brain cell types are, however, able

to uptake ketones, mostly 3HB and AcAc, via MCTs; the ketones are

then metabolized to acetyl-CoA to support the cell energy and

biosynthetic needs (Fig 3). In adults, the activity of ketone-metabo-

lizing enzymes is high enough that it would easily permit a complete

switch from glucose to ketones to support brain energy needs (Krebs

et al, 1971). Because ketones are never produced at saturating

concentrations, the brain rate of utilization is strictly regulated by

their blood concentration (Sokoloff, 1973). Indeed, during ketosis the

brain glucose utilization has been shown to decrease by about 10%

for each millimole of plasma ketones (LaManna et al, 2009). During

medically supervised starvation of obese patients, ketones provide up

to 60% of the energy utilized by the brain (Owen et al, 1967).

Brain metabolism in aging

About 20–40% of healthy people between 60 and 78 years old expe-

rience discernable decrements in cognitive performance in several

domains including working, spatial, and episodic memory, and

processing speed (Mattay et al, 2006; Glisky, 2007). Semantic

memory and knowledge show no decline until very late in life,

while emotional, automatic, and autobiographic memory are not

impacted by aging (Hedden & Gabrieli, 2004). These cognitive alter-

ations correlate with neuroanatomical changes, including an

age-dependent decrease in gray matter volume not related to patho-

logical conditions (Resnick et al, 2003). This thinning of the cortex

is not uniform, with some regions such as the prefrontal cortex,

medial temporal lobe, and hippocampus being more impacted by

aging; other regions, such as the cingulate gyrus and the occipital

cortex, remain relatively unaffected (Sowell et al, 2003). The loss of

gray matter does not appear to be the result of neuronal loss, but

instead involves a gradual decline of dendritic arborization and

synapse numbers (Nakamura et al, 1985; Page et al, 2002). Aging

also reduces white matter density and increases the number of

white matter lesions (Guttmann et al, 1998), mostly in the

prefrontal cortex and the anterior corpus callosum (O’Sullivan et al,

2001). By altering the interactions between prefrontal cortex and

structures such as the hippocampus and striatum, white matter

abnormalities result in poor performance in tasks requiring
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Figure 3. Schematic of ketone body oxidative and anabolic utilization in brain.
Under conditions of reduced glucose availability such as low carbohydrates/high-fat diet, exercise, or fasting, the liver utilizes fatty acids mobilized from adipose tissue and
ketogenic amino acids (i.e. leucine, lysine, phenylalanine, isoleucine, tryptophan, tyrosine, threonine) to produce acetoacetate (AcAc), 3-b-hydroxybutyrate (3HB), and acetone
(Ac). Acetone is considered to have negligible metabolic significance and rapidly eliminated through urine and lungs. Ketone bodies cross the blood–brain barrier via
monocarboxylate transporters (MCTs). Inside the cells, they may be directed toward anabolic or oxidative pathways depending on the developmental stage and cellular
requirements. In the anabolic pathway taking place in the cytosol, acetoacetate is converted into acetoacetyl-CoA (AcAc-CoA) by acetoacetyl-CoA synthase (AACS). AcAc-CoA
can be condensed with acetyl-CoA to generate the precursor of sterols, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by 3-hydroxy-3-methylglutaryl-CoA synthase 1
(HMGCS1). The acetyl-CoA produced from AcAc-CoA by cytosolic b-ketothiolase (cBKD), or from citrate by ATP-citrate lyase (ACLY), can be transformed in malonyl-CoA for fatty
acid synthesis. Amino acid can be synthesized utilizing intermediates of the TCA cycle. Oxidation of ketones occurs in the mitochondria (Mit) where AcAc directly taken up or
generated from 3HB by 3-b-hydroxybutyrate dehydrogenase (BDH) is transformed into acetyl-CoA via succinyl-CoA-3-oxoacid CoA transferase (SCOT), and mitochondrial
b-ketothiolase (mBKD). The complete oxidation of AcAc yields 23 molecules of ATP, while 3HB generates 26 molecules of ATP.
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processing speed and immediate or delayed memory (Glisky, 2007).

The brain undergoes a gradual decline in energy utilization during

aging (Hoyer, 1982a). Functional neuroimaging studies have shown

that glucose hypometabolism and mitochondrial dysfunction are

early indicators of age-related functional changes during normal

brain aging (De Leon et al, 1983; Small et al, 2000: Mosconi et al,

2008). Positron emission tomography analyses of fluorodeoxyglu-

cose uptake into brain cells in human subjects of different ages have

revealed age-related decrements in glucose utilization in several dif-

ferent brain regions (Zuendorf et al, 2003). Regional analyses

revealed age-related metabolic declines in temporal, parietal, and

cerebral cortex, with a particularly rapid decline in the frontal cortex

(Kuhl et al, 1984a). In rats, age-dependent reduction in brain cell

energy metabolism (glucose utilization) in the hippocampus and

prefrontal cortex is associated with impaired performance in learn-

ing and memory tests (Gage et al, 1984). The current resolution of

functional brain imaging is insufficient to establish a temporal

sequence between hypometabolism and neuroanatomical changes.

It is however tempting to speculate that the increased mitochondrial

capacity and oxidative metabolism that appear to have driven

expansion of the cerebral cortex during human evolution (Grossman

et al, 2001, 2004; Cáceres et al, 2003; Uddin et al, 2004; Haygood

et al, 2007; Pontzer et al, 2016) may have also rendered the brain

susceptible to cognitive decline in aging. Synaptic spines are the site

of neurotransmission, and thus fundamental for forms of synaptic

plasticity such as long-term potentiation and long-term depression.

Excitatory synapses are subcellular sites with very high rates of

energy consumption as large amounts of ATP are required to

support the activities of neurotransmitter transporters, and

membrane Na+ and Ca2+ pumps that rapidly restore gradients of

these ions after synapse activation (Attwell & Laughlin, 2001; Alle

et al, 2009; Harris et al, 2012; Rangaraju et al, 2014). Accordingly,

when the ability of neurons to generate sufficient ATP is compro-

mised (e.g. aging, ischemia, and neurodegenerative disorders),

synapses are vulnerable to dysfunction and degeneration (Harris

et al, 2012) (Fig 4). Many factors likely contribute to the age-

dependent brain hypometabolism. Clinical studies have shown a

negative correlation between cerebral blood flow and age (Schultz

et al, 1999; Fabiani et al, 2014). In addition, the permeabilities of

the BBB and BCSFB are greater in older compared to younger indi-

viduals (Rosenberg, 2012). Brain hypoperfusion and loss of BBB

integrity can result in diminished import of nutrients, and/or

removal of toxins. Furthermore, a compromised BBB allows the

parenchymal accumulation of blood-derived proteins (e.g., fibrinogen,

immunoglobulins, albumin, thrombin, hemoglobin), and immune

cells which can cause inflammation (Zlokovic, 2011). Studies of

humans and animals have clearly shown reduced expression of

glucose transporters in the brain with aging (Ding et al, 2013), as

well as changes in the expression of key enzymes involved in glyco-

lysis and oxidative phosphorylation (Meier-Ruge et al, 1980; Ulfert

et al, 1982; Bowling et al, 1993). Studies of mice have shown that

levels of ATP are reduced in white matter during aging, in correla-

tion with ultrastructural alterations in mitochondria, and a reduced

association of mitochondria with endoplasmic reticulum (Stahon

et al, 2016). NAD levels are critical for mitochondrial function and

ATP production (Bai et al, 2011; Pittelli et al, 2011). An increase in

the levels of NADH, with decreased total NAD and NAD+ levels,

has been shown in human brain during normal aging (Zhu et al,

Insufficient energy
supply

Loss of dendritic
arborization and synapses Neuronal impairment Cognitive deficits
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Figure 4. Age-related cognitive decline as a result of neuroanatomical changes driven by decreased energy supply.
The neuronal firing patterns that play an important role in normal cognitive processing rely on the neurons’ ability to exchange information across synapses. Compared to
young neurons (left), aging neurons (right) are characterized by a significant reduction of the dendritic tree, as well as changes in spines size, shape, density, and turnover. Age-
dependent diminished nutrient import, as well as changes in glycolytic and oxidative phosphorylation efficiency, results in decreased ATP production. The reduced energy
availability impairs the ability of aging neurons to preserve synapse homeostasis. The resulting structural changes lead to perturbations in neuronal function, and
impairments in memory and learning.
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2015). Experimental evidence supporting a causative role for hypo-

metabolism in cognitive impairment comes from recent studies

showing that mice with reduced GLUT1 levels display an age-

dependent decrease in cerebral capillary density, reduced cerebral

blood flow and glucose uptake, and increased BBB leakage (Winkler

et al, 2015). These metabolic and vascular alterations precede

dendritic spine loss in CA1 hippocampal neurons, and associated

behavioral impairments (Winkler et al, 2015).

Although we tend to think of age-related metabolic decline as a

“malfunction” of the brain, it is possible it represents an evolution-

ary adaptation. Human physiology is the result of millions of years

of evolution under challenging environmental conditions and

limited food availability. The drastic rapid changes in the lifestyle of

modern human societies have led to an increased incidence of meta-

bolic disorders (i.e., diabetes, obesity, metabolic syndrome, hyper-

lipidemia) that may be explained from an evolutionary perspective

by the so-called thrifty genotype hypothesis (Neel, 1962). The posi-

tive natural selection of genes that decreased metabolic rates while

maintaining cognitive efficiency would have allowed individuals to

survive times of limited food availability, but such genes may be

detrimental when food is abundant (Nesse & Williams, 1998).

Indeed, as described in the section on “healthy habits for a healthy

brain” below, the fundamental bioenergetic challenges that were a

driving force for brain evolution (i.e., fasting/starvation, and physi-

cal mental exertion) are exactly those that engage adaptive signaling

pathways that promote optimal brain health, and resistance to brain

injury and neurodegenerative disorders in modern humans.

Altered metabolism in neurodegenerative disorders

Neurodegenerative brain disorders are a broad spectrum of fatal

conditions characterized by progressive neuronal dystrophic struc-

tural changes and loss of function. AD and PD are the most common

neurodegenerative disorders, with ALS and HD being less prevalent.

These diseases share several mechanistic similarities at the subcellu-

lar levels including atypical protein aggregation, failure of protein

degradation pathways, impaired axonal transport, mitochondrial

dysfunction, and programmed cell death (Mattson et al, 1999).

Increasing evidence suggests that metabolic alterations strongly

influence the initiation and progression of neurodegenerative dis-

orders. Positron emission tomography imaging studies have docu-

mented reduced glucose utilization in brain regions affected in

patients with AD, PD, ALS, and HD (Hoyer, 1982b). Epidemiological

studies indicate that diabetes, obesity, high blood pressure, and

atherosclerosis are all risk factors for dementia (Kivipelto et al,

2006). Because each of the latter disorders involves impaired energy

metabolism, and/or adverse changes in the cerebral vasculature,

reduced energy availability to neurons in the brain may contribute

to increased vulnerability of the brain to cognitive impairment and

dementia. Considerable evidence suggests that the BBB integrity is

compromised in AD patients (Glenner, 1979, 1985; Powers et al,

1981; Zipser et al, 2007; Zlokovic, 2011). In patients with mild

cognitive impairment, or early stages of AD, the age-dependent

changes of the BBB permeability are accelerated compared to neuro-

logical normal individuals (Montagne et al, 2015; van de Haar et al,

2016). This suggests that neurovascular dysfunction may be an

early occurrence in the pathogenesis of AD. Additionally, changes in

nutrient transporter and metabolic enzyme expression levels, and/

or activities, have been reported in AD. For example, levels of

GLUT1 and GLUT3 are reduced in the brains of AD patients

(Simpson et al, 1994; Harr et al, 1995) and correlate with dimin-

ished brain glucose uptake and subsequent cognitive decline

(Landau et al, 2010). A precipitous loss of activities of phosphofruc-

tokinase (PFK), phosphoglycerate mutase, aldolase, glucose-6-phos-

phate isomerase, and lactate dehydrogenase occurs in brain tissue

samples of AD patients compared to age-matched controls (Iwangoff

et al, 1980). The activities of pyruvate dehydrogenase complex

(Perry et al, 1980; Sorbi et al, 1983), cytochrome oxidase (Kish

et al, 1992), and a-ketoglutarate dehydrogenase complex (Gibson

et al, 1988) are also decreased in the brains of AD patients. In

mouse models of AD, reduction of GLUT1 levels worsens amyloid

pathology, neurodegeneration, and cognitive function (Winkler

et al, 2015), while ketone and nicotinamide supplementation

reduces Ab and p-Tau pathologies and improves behavioral

outcomes (Kashiwaya et al, 2013; Liu et al, 2013).

Glucose hypometabolism in the brains of patients with PD has

been documented using magnetic resonance imaging and positron

emission tomography methods (Kuhl et al, 1984b; Borghammer

et al, 2010). Decreased levels of the PPP key enzymes glucose-6-

phosphate dehydrogenase and 6-phosphogluconate dehydrogenase

occur at early stages in the putamen and cerebellum of PD patients

(Dunn et al, 2014). The glycolytic enzyme glucose-6-phosphate

isomerase that catalyzes the conversion of G6P to F6P has been

recently identified as a conserved modifier of dopamine metabolism,

protein aggregation, and neurodegeneration in Caenorhabditis

elegans, Drosophila melanogaster, and murine neurons (Knight

et al, 2014). Furthermore, it was recently shown that plasma levels

of a-synuclein regulate glucose uptake in adipocytes (Rodriguez-

Araujo et al, 2013). Importantly, mutations in multiple genes that

cause early-onset inherited forms of PD (a-synuclein, Parkin, PINK1,
LRRK2, DJ-1) result in mitochondrial dysfunction (Pickrell & Youle,

2015). Moreover, interventions that bolster mitochondrial bioener-

getics can ameliorate neuropathology and motor deficits in animal

models of PD (Tieu et al, 2003; Yang et al, 2009).

ALS patients are hypercatabolic and have increased energy

expenditure at rest (Desport et al, 2001; Funalot et al, 2009).

Glucose intolerance (Pradat et al, 2010), insulin resistance (Reyes

et al, 1984), and hyperlipidemia (Dupuis et al, 2008) have all been

reported in ALS patients. At a cellular level, ALS patients exhibit

altered endothelial transporter proteins (Niebroj-Dobosz et al,

2010), astrocyte end feet degeneration (Miyazaki et al, 2011),

increased permeability of the BBB/BCSFB resulting in abnormal

levels of blood proteins in the CSF (Leonardi et al, 1984; Annunzi-

ata & Volpi, 1985), and IgG and complement deposits in the spinal

cord and motor cortex (Donnenfeld et al, 1984). In superoxide

dismutase 1 mutant mice and rats, BBB/BCSFB breakdown occurs

prior to motor neuron degeneration and inflammation (Garbuzova-

Davis et al, 2007; Zhong et al, 2008; Nicaise et al, 2009; Miyazaki

et al, 2011). Collectively, these findings strongly suggest that altered

metabolic homeostasis plays a major role in ALS insurgence and

progression.

HD is a genetic disorder caused by trinucleotide repeat (CAG)

expansions in the huntingtin gene that causes early degeneration of

medium spiny neurons in the striatum, resulting in continuous

involuntary motor movements. Striatal metabolism is decreased
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well prior to atrophy, and the progression of the disease is more

strongly correlated with glucose hypometabolism than the number

of CAG repeats (Mazziotta et al, 1987; Grafton et al, 1992; Antonini

et al, 1996). HD patients at early stages of striatum degeneration

have normal total levels of glucose transporters (Gamberino &

Brennan, 1994), but diminished glucose uptake in the brain (Kuhl

et al, 1982; Ciarmiello et al, 2006). Immunohistochemical analysis

utilizing antibody raised against an extracellular epitope of GLUT3

recently showed a diminished cell surface expression in the striatum

and cortex of HD mice compared to wild-type mice (McClory et al,

2014). The diminished ability of neurons to uptake glucose can

explain the characteristic hypometabolism that precedes neuronal

loss. Interestingly, higher copy numbers of SLC2A3 (Glut3) delay

the age of onset in HD patients (Vittori et al, 2014). In fruit fly

models of HD, overexpression of GLUT3, PFK, and G6PD protects

against HD phenotypes and increases survival (Vittori et al, 2014;

Besson et al, 2015). Evidence suggests that the lysine deacetylases

sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) can preserve mitochondrial

function and protect striatal neurons against dysfunction and degen-

eration (Jeong et al, 2011; Jiang et al, 2011; Fu et al, 2012). Agents

that increase SIRT1 activity (e.g., SRT2104) attenuate degeneration

of striatal neurons and improve functional outcome in huntingtin

mutant mice (Jiang et al, 2014). It was also reported that an agent

that increases SIRT3 levels (viniferin) protects neural cells against

the toxicity of mutant huntingtin (Fu et al, 2012). Collectively, the

emerging data suggest that interventions that bolster neuronal

bioenergetics may delay disease onset or slow the progression

of HD.

Healthy habits for a healthy brain

In the not too distant past, our ancestors were regularly challenged

to locate and acquire food, while avoiding hazards. Assumedly,

individuals whose brains and bodies functioned well/optimally

when they were in a fasted state (i.e. when they had to make critical

decisions on how to acquire food) had a survival advantage over

those whose brains functioned less well in a state of prolonged

negative energy balance. This bioenergetic challenge-based hypothe-

sis of brain evolution is supported by empirical evidence that dietary

energy restriction/fasting and exercise enhance synaptic plasticity,

neurogenesis, and cognitive performance in animals (Mattson,

2015a). For example, running wheel exercise and food restriction

each increase dendritic spine density in hippocampal neurons, and

the combination of food restriction and running results in even

greater increases of spine density (Stranahan et al, 2009).

Hippocampal neurogenesis is also increased in response to exercise

and intermittent fasting (van Praag et al, 1999; Lee et al, 2002). In

Drosophila melanogaster, associative learning is performed in fasted

animals. One single training is sufficient for the flies to create a

“pleasant” association between a certain scent and food. However,

sequential multiple trainings are needed to establish an “aversive”

association between an odorant and an unpleasant stimulus (electric

shock). Fasting before training has been shown to increase long-

term memory formation for both “pleasant” and “aversive” experi-

ences (Hirano et al, 2013). The duration of fasting appears to be

crucial in determining the ability of the brain to prioritize the type

of memory to establish/consolidate, based on the available energy

and the most pressing survival need. Short-term fasting results in

increased long-term memory (Hirano et al, 2013), while protracted

fasting prevents “aversive”, but not “pleasant”, memory formation

(Hirano et al, 2013; Placais & Preat, 2013). From an evolutionary

point of view, it makes sense that starving flies would channel their

remaining energy in finding food, ignoring aversive/safety issues.

These findings support the idea that intermittent bioenergetic chal-

lenges are beneficial for brain performance.

In this section of our article, we highlight the importance of

“cerebro-bioenergetic resiliency”, the ability of the brain to respond

adaptively to bioenergetic challenges, in promoting optimal brain

function and resistance to stress, injury, and disease throughout life.

Cells and organisms have evolved the ability to respond adap-

tively to stress by activating intra- and intercellular signaling path-

ways that increase their resistance to that specific type of stress, and

stress in general. This property of biological systems is fundamental

to the concept of “hormesis” which is defined by a biphasic dose–

response curve in which low doses induce a stimulatory/beneficial

response, while high doses are damaging/toxic (Mattson, 2008,

2015b). Numerous studies have shown that when neurons and the

organism in which they reside are subjected to mild metabolic chal-

lenges, brain function is improved and resistance to dysfunction and

degeneration is increased compared to those that are unchallenged.

For example, when cultured neurons are first subjected to a mild

metabolic stress (e.g., glutamate, 2-deoxyglucose, or mitochondrial

uncoupling agents), they become resistant to subsequent exposure

to a high level of stress (e.g., metabolic, excitotoxic, or oxidative

stressor) that would have killed them had they not been previously

exposed to the mild stress (Marini & Paul, 1992; Lee et al, 1999; Liu

et al, 2015). A classic example of neuroprotection via hormesis

in vivo is ischemic preconditioning in which rats or mice that are

subjected to a mild cerebral ischemia prior to full-blown ischemic

stroke exhibit reduced brain cell damage and improved functional

outcome compared to animals not subjected to the preconditioning

ischemia (Dirnagl et al, 2009). Similar to ischemic preconditioning,

treatment of mice or rats with 2-deoxyglucose, an analog of glucose

that induces cellular metabolic stress, can protect neurons in the

brain and improve functional outcome in models of ischemic stroke,

excitotoxic seizures, and PD (Duan & Mattson, 1999; Lee et al,

1999; Yu & Mattson, 1999).

Lifestyle factors appear to be crucial to determine how healthily

our brain will age. Lack of physical activity, excessive calorie intake,

and cognitive apathy negatively influence brain aging (Mattson,

2015a) and are predisposing factors for neurodegenerative

disorders, such as AD and PD (Mattson, 2015a). Conversely, healthy

lifestyle habits including dietary energy restriction, macro- and

micronutrient diet composition, physical and mental exercise, and

reduction of life stress boost cognitive function (Mattson, 2015a).

Regular aerobic exercise improves executive function, attention

processing, speed memory, and learning (Colcombe & Kramer,

2003; Curlik & Shors, 2013; Dresler et al, 2013). Neuroimaging stud-

ies have shown that exercise targets specific brain areas, namely

prefrontal and medial temporal cortices (Berchicci et al, 2013), and

hippocampus (Kerr et al, 2010; Erickson et al, 2011, 2014). Elderly

people that regularly exercise have increased brain volumes in these

critical network areas, compared to sedentary subjects that instead

undergo a significant volume decline (Colcombe et al, 2006;

Erickson et al, 2009; Kerr et al, 2010). Epidemiological and
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interventional studies in humans have shown that exercise can

increase one’s resistance to anxiety and depression, and possibly AD

and PD; exercise lessens symptoms in individuals suffering from

these medical conditions (Tordeurs et al, 2011; Mattson, 2012;

Paillard et al, 2015). The results of studies of animal models of anxi-

ety, depression, AD, PD, stroke, and traumatic brain injury have

established broad preventative and therapeutic benefits of aerobic

exercise (Greenwood & Fleshner, 2008; Yuede et al, 2009; Egan et al,

2014; Mattson, 2014; Holland & Schmidt, 2015; Ryan & Kelly, 2016).

The dysfunction and degeneration of neurons in these different disor-

ders involves impaired neuronal bioenergetics, whose onset and

progression varies markedly with regard to severity and duration (in-

sidious in AD and depression, and acute and dramatic in stroke and

traumatic brain injury) (Dirnagl et al, 2009; Marazziti et al, 2011).

A second lifestyle modification that promotes brain health is

dietary energy restriction that can be achieved by caloric restriction,

or by intermittent fasting (IF). IF can be operationally defined as an

eating pattern that includes extended periods of time (e.g. 16 h daily

or 24 h twice a week) during which no or very little food is

consumed. Most animal studies of IF have used alternate-day fasting

(ADF, alternating days of complete fasting and ad libitum feeding).

Mice or rats maintained on ADF exhibit reduced brain neuropathol-

ogy and improved functional outcomes in models of stroke, AD, PD,

HD, and epilepsy (Bruce-Keller et al, 1999; Duan & Mattson, 1999;

Halagappa et al, 2007).

Age-related cognitive decline can also be counteracted by inter-

ventions stimulating brain activity. Engaging in intellectual chal-

lenges “exercises” and reinforces neuronal circuitries. Different

types of cognitive training have been shown to improve specific

cognitive aspects such as learning (Bailey et al, 2010), executive

functions (Basak et al, 2008), and fluid intelligence (Jaeggi et al,

2008). In animal studies, environmental enrichment enhances cogni-

tive performance by promoting neurotrophin production, synaptoge-

nesis, dendrite formation, and arborization (van Praag et al, 2000;

Fratiglioni et al, 2004). Neuroimaging studies in humans have

shown that memory training increases hippocampal volume (Engvig

et al, 2012), as well as the thickness of brain areas involved in deci-

sion-making processing (i.e., lateral and fusiform orbitofrontal

cortex) (Engvig et al, 2010).

The importance of exercise, diet, and intellectual and social stim-

ulation in brain aging is emphasized by the results of a recent study

showing that changes in diet, exercise, and cognitive training slow

cognitive decline in elderly subjects (Ngandu et al, 2015). An addi-

tional advantage of this healthy lifestyle habit is that their combina-

tion appears to provide synergistic benefits (Schneider & Yvon,

2013). For example, adopting an exercise routine together with

cognitive training promotes memory performance (Fabre et al,

2002; Oswald et al, 2006). A recent study in elderly subjects

exposed to either moderate aerobic exercise or cognitive training, or

to a combination of both, showed a greater improvement in working

memory, long-term memory, and reaction times in the cohort

exposed to both trainings (Shatil, 2013).

Studies of cell culture and in vivo models of bioenergetic stress-

induced neuroprotection have begun to elucidate the molecular

pathways that bolster neuronal resilience. They include activation

of transcription factors such as cAMP response element-binding

protein (CREB), nuclear factor jB (NF-jB), and nuclear factor

erythroid-derived 2 (NRF2) and induction of the expression of genes

encoding proteins that counteract cellular stress at multiple subcel-

lular sites, and by different mechanisms (Mattson, 2012) (Fig 5).

Exercise and IF can up-regulate the expression of various

proteins including antioxidant enzymes such as glutathione peroxi-

dase, superoxide dismutase 2 (SOD2), and heme oxygenase 1; anti-

apoptotic proteins such as B-cell lymphoma 2 family members;

proteins involved in mitochondrial biogenesis and stress resistance;

protein chaperones such as heat-shock protein 70 and glucose-regu-

lated protein 78; neurotrophic factors such as brain-derived neuro-

trophic factor (BDNF); and fibroblast growth factor 2 (Marosi et al,

2012; Mattson, 2012). Secreted neurotrophins can in turn activate

cytoprotective signaling pathways in adjacent or distant neurons,

thereby propagating adaptive cellular stress responses to cells

that themselves had not experienced the same metabolic stress

(Madinier et al, 2013). BDNF may play a significant role in several

neuronal activity-mediated effects of exercise and IF on neuronal

bioenergetics and stress resistance. BDNF stimulates neuronal

energy metabolism by increasing the expression of GLUT3, sodium-

dependent amino acid transport and protein synthesis (Burkahalter

et al, 2003), and ketone utilization via MCT2 (Robinet & Pellerin,

2010). Furthermore, running and BDNF induce the expression of

peroxisome proliferator-activated receptor gamma coactivator

1-alpha (PGC-1a) to increase mitochondrial biogenesis (Steiner

et al, 1985; Cheng et al, 2012). Interestingly, exercise, moderate

levels of glutamate receptor activation, and BDNF also induce the

expression of the DNA repair enzyme apurinic/apyrimidinic endo-

nuclease 1 (APE1), which plays a critical role in repairing oxida-

tively damaged DNA and protecting neurons against metabolic and

excitotoxic stress (Yang et al, 2010, 2014).

Peripheral signals elicited in response to vigorous exercise and

energy restriction/fasting may mediate some of the effects of these

bioenergetic challenges on neuroplasticity and stress resistance. In

addition to being used by neurons as an energy substrate, the

ketone body 3HB also boosts the function, plasticity, and stress

resistance of neurons in the brain by inducing the expression of

BDNF in vivo (Sleiman et al, 2016) and in vitro (Marosi et al, 2016).

3HB mechanisms of action involve the generation of mitochondrial

ROS and activation of the transcription factor nuclear factor jB (NF-

jB) (Marosi et al, 2016) (Fig 5), as well as the inhibition of histone

deacetylases (Sleiman et al, 2016). Metabolic challenges also trigger

peripheral cells to release into the circulation proteins that enter the

brain where they elicit adaptive responses in neurons. Levels of

cathepsin B, a predominantly lysosomal protein, are increased in

skeletal muscle and plasma in response to running in mice (Moon

et al, 2016). Cathepsin B induces the expression of BDNF in

hippocampal neural progenitor cells, and the abilities of running to

induce hippocampal neurogenesis and improve learning and

memory performance are attenuated in cathepsin B-deficient mice

(Moon et al, 2016) (Fig 5). Another muscle-derived factor that has

been suggested to mediate beneficial effects of exercise on neuro-

plasticity is irisin, which was reported to increase BDNF levels in

the brain (Wrann et al, 2013). It is therefore becoming clear that

bioenergetic challenges educe a complex array of brain-intrinsic and

peripheral signaling mechanisms that coordinate adaptive responses

of neurons and neural progenitor cells so as to optimize brain func-

tion and protect the brain against injury and disease.

It seems unlikely that drugs can be developed that trigger the

complex, evolutionarily conserved mechanisms by which
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bioenergetic challenges promote brain health. However, preclinical

findings and the results of some clinical trials suggest the potential

for pharmacological interventions able to activate some of signaling

pathways induced by exercise, fasting, and intellectual challenges.

Ketogenic diets, ketone precursors (medium chain triglycerides),

and 3HB have been reported in clinical studies of subjects with

cognitive impairment, and AD (Reger et al, 2004; Henderson et al,

2009; Rebello et al, 2015), or PD patients (Vanitallie et al, 2005). It

is not known whether improvements in cognitive function in the

latter studies result from the utilization of 3HB as an energy
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Figure 5. Signaling pathways mediating adaptive responses of neurons to bioenergetic challenges.
Exercise and fasting affect subcellular processes in neurons by brain-intrinsic mechanisms mediated by increased neuronal network activity, and via signals coming from the
periphery including 3-b-hydroxybutyrate (3HB), cathepsin B, and irisin. Intellectual challenges involve increased neuronal network activity and consequent activation of
calcium-responsive pathways. BDNF expression is up-regulated by neuronal network activity, as well as 3HB, cathepsin B, and irisin, and BDNF is known tomediate, at least in
part, the enhancement of neuronal plasticity and stress resistance by exercise, fasting, and intellectual challenges. Exercise, fasting, and intellectual challenges result in the
activation of glutamate receptors at excitatory synapses, Ca2+ influx, and activation of Ca2+ calmodulin-dependent protein kinase (CaMK) which, in turn, activates the
transcription factor cyclic AMP response element-binding protein (CREB). CREB can directly and indirectly modulate mitochondrial biogenesis via expression of several genes
(i.e. BDNF, PGC-1a, NRF1, PPARa, and TFAM). Activation of glutamate receptors also induces the expression of the mitochondrial protein sirtuin 3 (SIRT3) which can protect
neurons by deacetylating superoxide dismutase 2 (SOD2) to increase its enzymatic activity, and thus reduce mitochondrial oxidative stress, and by inhibiting cyclophilin D
(CycD), a protein involved in the formation of membrane permeability transition pores (PTP). 3-b-Hydroxybutyrate (3HB) can induce BDNF expression in neurons via the Ca2+–
CREBpathway, and a pathway involvingmitochondrial reactive oxygen species (ROS) and activation of the transcription factor nuclear factor jB (NF-jB). BDNF is released from
neurons and activates the receptor tropomyosin receptor kinase B (TrkB), on the same neuron and adjacent neurons, engaging downstream intracellular pathways which
activate transcription factors that induce the expression of genes encoding proteins involved in synaptic plasticity, learning and memory, and neuronal stress resistance.
Abbreviations are as follows: Pgc1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; NRF1, nuclear regulatory factor 1; PPARa, peroxisome proliferator-
activated receptor a; TFAM, mitochondrial transcription factor A; GLUT3, glucose transporter 3; MCT2, monocarboxylic acid transporter 2; PI3K, phosphoinositide 3 kinase; Akt,
protein kinase B; ERK, extracellular signal regulated kinase; ETC., electron transport chain; ATP, adenosine-50-triphosphate; APE1, apurinic/apyrimidinic endonuclease 1.
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substrate and/or the activation of adaptive stress response signaling

in neurons. Caffeine, by stimulating Ca2+ release from the endoplas-

mic reticulum and increasing cyclic AMP levels, activates CREB

(Connolly & Kingsbury, 2010) and has been shown to enhance

memory consolidation in humans (Borota et al, 2014). Bitter chemi-

cals that function as natural pesticides/antifeedants activate NRF2

and have demonstrated efficacy in animal models of stroke, AD,

and PD; examples include sulforaphane, curcumin, and plumbagin

(Son et al, 2008, 2010; Mattson, 2015b). Randomized controlled

trials of such chemicals in human subjects with neurological disor-

ders remain to be performed. Transcranial direct current or

magnetic stimulation modulates BDNF levels (Müller et al, 2000)

and can improve cognitive performance in healthy subjects and

relieve symptoms in patients with depression and AD (Hsu et al,

2015; Brunoni et al, 2016). Noninvasive brain stimulation is a very

exciting area because of its safety and potential for selective activa-

tion or inhibition of neuronal circuits in a brain region-specific

manner.

Although promising, such approaches should not be considered

as substitutes for exercise, energy restriction, and intellectually chal-

lenging lifestyles. The adaptive cellular and molecular responses to

these physiological challenges are finely tuned and are centrally and

peripherally coordinated. They involve metabolic stress that occurs

predominantly in excitable cells—skeletal muscle, cardiac myocytes,

and neurons—and results in the activation or inhibition of numer-

ous signaling pathways in cells throughout the brain. There is much

that remains to be learned about these pathways: how they are acti-

vated, their molecular components, and how they interact to

promote neuroplasticity and stress resistance. We also have little

information concerning the intensities and durations of exercise and

energy restriction that promote optimal brain health, nor how such

regimens might vary depending upon one’s age, metabolic status, or

neurological disorders.

Conclusions and future directions

Emerging findings suggest that optimal brain health is promoted

by intermittent bioenergetic challenges that increase activity in

neuronal circuits, including intellectual challenges, restriction of

energy intake, and physical exercise. Studies of animal and cell

culture models have shown that such intermittent bioenergetic

challenges activate signaling pathways in neurons that bolster

mitochondrial health by, for example, stimulating mitochondrial

biogenesis and mitophagy. The neuronal activity-dependent and

cellular stress-responsive neurotrophic factor BDNF appears to play

key roles in the neuroplasticity-enhancing and neuroprotective

actions of bioenergetic challenges. Signals from peripheral organs

to brain cells may also contribute to the beneficial effects of exer-

cise and fasting on cognitive function and neuronal resilience.

During normal aging, there are decrements in the functionality of

several energy metabolism-related pathways in brain cells includ-

ing glucose transport, mitochondrial electron transport, DNA

repair, and neurotrophic factor signaling. Epidemiological, clinical,

and experimental evidence points to important roles for impaired

neuronal bioenergetics and reduced adaptation to stress in normal

aging, and preclinical stages of neurodegenerative disorders such

as AD and PD.

There is considerable complexity in the signaling pathways that

integrate cellular energy metabolism with adaptive structural and

functional responses of neuronal circuits to neuronal network activ-

ity. Future studies should be aimed at elucidating such intercellular

and subcellular pathways. As new mechanisms emerge, it will be

important to determine whether and how environmental and

genetic factors that positively or negatively impact brain health

influence brain cell energy metabolism. Translational research on

cellular energy metabolism and brain health has been meager

compared to efforts that focus on individual disease-specific molecu-

lar targets. The drug development approach has thus far failed for

AD, PD, and stroke. Indeed, the number of individuals living until

they are in the age range for neurodegenerative disorders is rapidly

increasing. The kinds of evidence from preclinical studies and

human subjects described above provide a rationale for moving

forward with randomized controlled trials of intermittent bioener-

getic challenges achieved physiologically (e.g. intermittent fasting

and exercise) or pharmacologically (e.g. mitochondrial uncoupling

agents) in humans at risk of or in the early symptomatic stages of a

neurodegenerative disorder, or during recovery from a stroke. As

elaborated elsewhere (Mattson, 2012), it would also seem prudent

to incorporate intermittent exercise and fasting protocols into physi-

cian training and healthcare practice, for disease risk reduction

and early intervention in acute and chronic neurodegenerative

conditions.
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