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Highlights (each 85 characters maximum including spaces) 

 Auditing is lagging behind in the use of valuable big data techniques. 

 There are many opportunities for greater use of big data techniques in auditing. 

 More research is needed to further align theory and practice in this area. 

 Research suggests combining multiple big data models with human expertise. 

 

 

 

Abstract 

This paper analyzes the use of big data techniques in auditing, and finds that the 

practice is not as widespread as it is in other related fields. We first introduce contemporary 

big data techniques to promote understanding of their potential application. Next, we review 

existing research on big data in accounting and finance. In addition to auditing, our analysis 

shows that existing research extends across three other genealogies: financial distress 

modelling, financial fraud modelling, and stock market prediction and quantitative modelling. 

Auditing is lagging behind the other research streams in the use of valuable big data 

techniques. A possible explanation is that auditors are reluctant to use techniques that are far 
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ahead of those adopted by their clients, but we refute this argument. We call for more 

research and a greater alignment to practice. We also outline future opportunities for auditing 

in the context of real-time information and in collaborative platforms and peer-to-peer 

marketplaces. 

 

Keywords 

Auditing; Big Data; Data Analytics; Statistical Techniques 

 

[Graphical Abstract provided in separate file] 

[Bullet-Point Highlights provided in separate file] 

1. INTRODUCTION 

This paper analyzes the use of big data techniques in auditing, and finds that the 

practice is not as widespread as it is in other related fields. We first introduce contemporary 

big data techniques and their origins in the multivariate statistical literature to help unfamiliar 

auditors understand the techniques. We then review existing research on big data in 

accounting and finance to ascertain the state of the field. Our analysis shows that – in 

addition to auditing – existing research on big data in accounting and finance extends across 

three other genealogies: (1) financial distress modelling, (2) financial fraud modelling, and 

(3) stock market prediction and quantitative modelling. Compared to the other three research 

streams, auditing is lagging behind in the use of valuable big data techniques. Anecdotal 

evidence from audit partners indicates that some leading firms have started to adopt big data 

techniques in practice; nevertheless, our literature review reveals a general consensus that big 

data is underutilized in auditing. A possible explanation for this trend is that auditors are 
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reluctant to use techniques and technology that are far ahead of those adopted by their client 

firms (Alles, 2015). Nonetheless, the lack of progress in implementing big data techniques 

into auditing practice remains surprising, given that early use of random sampling auditing 

techniques put auditors well ahead of the practices of their client firms.  

This paper contributes to bridging the gap between audit research and practice in the 

area of big data. We make the important point that big data techniques can be a valuable 

addition to the audit profession, in particular when rigorous analytical procedures are 

combined with audit techniques and expert judgement. Other papers have looked at the 

implications of clients’ growing use of big data (Appelbaum, Kogan, & Vasarhelyi, in press) 

and the sources of useful big data for auditing (e.g., Vasarhelyi, Kogan, and Tuttle (2015); 

Zhang et al. (2015)); our work focuses more on valuable opportunities to use contemporary 

big data techniques in auditing. We contribute to three research questions regarding the use of 

big data in auditing, raised by Appelbaum et al. (in press) and Vasarhelyi et al. (2015): “What 

models can be used?”, “Which of these methods are the most promising?” and “What will be 

the algorithms of prioritization?” We provide key information about the main big data 

techniques to assist researchers and practitioners understand when to apply them. We also 

call for more research to further align theory and practice in this area; for instance, to better 

understand the application of big data techniques in auditing and to investigate the actual 

usage of big data techniques across the auditing profession as a whole. 

This paper also integrates research in big data across the fields of accounting and 

finance. We reveal future opportunities to use big data in auditing by analyzing research 

conducted in related fields that have been more willing to embrace big data techniques. We 

offer general suggestions about combining multiple big data models with expert judgement, 

and we specifically recommend that the audit profession make greater use of contemporary 

big data models to predict financial distress and detect financial fraud. 
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The paper proceeds as follows. Section 2 introduces big data techniques, including 

their origin in the multivariate statistical literature and relates it to the modern mathematical 

statistics literature. Section 3 offers a systematic literature review of existing research on big 

data in accounting and finance. This section highlights how auditing substantially differs 

from the other major research streams. Section 4 identifies novel future research directions 

for using big data in auditing. Finally, Section 5 concludes the paper with important 

recommendations for the use of big data in auditing in the 21st century and a call for further 

research. 

2. AN INTRODUCTION TO BIG DATA TECHNIQUES 

This section presents an overview of big data and big data techniques to promote a 

greater understanding of their potential application. Auditors that use more advanced 

techniques need to understand them (Appelbaum et al., in press). An introduction to big data 

provides the necessary background to present the main big data techniques available and the 

key information needed to determine which are appropriate in a given circumstance. 

Appendix A describes the main big data techniques, summarizes their key features and 

provides suggested references for readers who want more information. 

Big data refers to structured or unstructured data sets that are commonly described 

according to the four Vs: Volume, Variety, Velocity, and Veracity. Volume refers to data sets 

that are so large that traditional tools are inadequate. Variety reflects different data formats, 

such as quantitative, text-based, and mixed forms, as well as images, video, and other 

formats. Velocity measures the frequency at which new data becomes available, which is 

increasingly often at a very rapid rate. Finally, the quality and relevance of the data can 

change dramatically over time, which is described as its veracity. The auditing profession has 

a large and growing volume of data available to it, of increasing variety and veracity. Textual 

information obtained online is one new type of data, and we discuss this phenomenon later in 

ACCEPTED M
ANUSCRIP

T



 

6 

the paper. Auditors also face an increasing velocity of data, particularly in the context of real-

time information, and this is described in Section 4. 

Big data comes in a variety of flavors – “small p, large n”, “large p, small n”, and 

“large p, large n”, where n refers to the number of responses and p the number of variables 

measured at each response. These categorizations are important because they can influence 

which technique is the most suitable. The big data techniques described in Appendix A are 

suited to different categorizations; for instance, Random Forests1 is particularly useful for 

“large p, small n” problems. High-frequency trading generates massive data sets of both high 

volume and high velocity, creating major challenges for data analysis. Nevertheless, such 

“small p, large n” problems are perhaps the easiest of the three scenarios and the analytic 

tools used are, in the main, adaptations of existing statistical techniques. The “large p, small 

n” scenario is best exemplified by genomics. A single human genome contains about 100 

gigabytes of data. Essentially the data is a very long narrow matrix with each column 

corresponding to an individual and each row corresponding to a gene. The cost of sequencing 

a genome has now fallen to a point where it is possible for individuals to purchase their own 

genome. As a consequence, genomics is rapidly transitioning to the “large p, large n” 

scenario. Climate change research is another example of science at the forefront of the big 

data “large p, large n” scenario, with multivariate time-series collected from a world-wide 

grid of sites over very long time frames. 

Big data also refers to the techniques and technology used to draw inferences from the 

variety of flavors of data. These techniques often seek to infer non-linear relationships and 

causal effects from data which is often very sparse in information. Given the nature of the 

data, these techniques often have no or very limited distributional assumptions. Computer 

scientists approach big data from the point of view of uncovering patterns in the complete 

                                                 
1 Random Forests for regression-type problems uses bootstrap samples to develop multiple decision trees 

(usually thousands) and then aggregates them together by averaging. See Appendix A for more information. 
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record – this is often called the algorithmic approach. The patterns are regarded as 

approximations of the complexity of the data set. By comparison, statisticians are more 

inclined to treat the data as observations of an underlying process and to extract information 

and make inferences about the underlying process. 

The statistical techniques used in big data necessitate more flexible models, since 

highly structured traditional regression models are very unlikely to fit big data well. 

Furthermore, the volume (as well as variety and velocity) of big data is such that it is not 

feasible to uncover the appropriate structure for models in many cases. The popularity of 

more flexible approaches dates back to Efron’s (1979) introduction of the bootstrap at a time 

when increasing computer power made such new techniques feasible. The bootstrap is a 

widely applicable statistical tool that is often used to provide accuracy estimates, such as 

standard errors that can be used to produce confidence intervals. Regularization is another 

widely used technique which imposes a complexity penalty that shrinks estimated parameters 

towards zero to prevent over-fitting or to solve ill-posed problems. Ridge regression, which 

uses a L2 penalty2, was initially proposed by Hoerl and Kennard (1970) in the 1970s; 

however, it has only become popular in recent decades with the advent of increased 

computing power. More recently, regularization techniques have become popular 

alternatives, such as LARS (least angle regression and shrinkage) proposed by Bradley Efron, 

Hastie, Johnstone, and Tibshirani (2004) and Tibshirani’s (1996) Lasso (least absolute 

shrinkage and selection operator) which uses an L1 penalty3. The use of an L1 penalty is 

important because it is very effective in variable reduction and so results in sparse models 

that are easier to interpret. These simpler models are often easier to communicate to clients. 

Penalties that are a mixture of L1 and L2 are also available (Friedman, Hastie, & Tibshirani, 

                                                 
2 A L2 penalty penalises a model for complexity based on the sum of all the squared coefficients. 
3 An L1 penalty uses the absolute value of coefficients rather than the squared coefficients used in L2 penalties. 
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2010); indeed, contemporary statistics scholars continue to investigate new penalties for 

regularization.  

Supervised learning develops explanatory or predictive models from data with known 

outcomes to apply to data with unknown outcomes. Some popular ways to conduct 

supervised learning include artificial neural networks, classification and regression trees 

(decision trees), Random Forests, Naïve Bayes, regularized regression4 (as mentioned above), 

support vector machines, and multivariate adaptive regression splines (MARS). In contrast, 

unsupervised learning seeks to uncover patterns in unlabeled data. Popular methods are 

unsupervised neural networks, latent variable models, association rules, and cluster analysis. 

Machine learning is an overarching term that encompasses both supervised and unsupervised 

learning. The techniques mentioned in this paragraph are briefly described in Appendix A. 

3. THE USE OF BIG DATA IN ACCOUNTING AND FINANCE RESEARCH 

This paper offers a systematic literature review of the use of big data techniques in 

auditing research and practice and follows methodical steps for collecting data to arrive at a 

comprehensive data set of articles to include in the review. First, we searched the Social 

Sciences Citation Index for ‘big data’ papers, searching for articles that contained the key 

words “big data” or “analytics” or “data mining” in the title, abstract, or keywords. To ensure 

that the search was not too broad, we limited the search to articles that also contained the 

keywords “accounting” or “financ*” in the title, abstract, or keywords. Our search identified 

a total of 286 records as of November 2016. Next, we screened the resulting articles to only 

retain those of interest to the current research. This reduced the original article base to 45 

records. Excluded articles discussed other big data and quantitative applications in the 

context of business decision-making (e.g., improving customer retention in financial services, 

                                                 
4 Regularization is a general concept that can be applied to regression, but also commonly to the other models 

mentioned to help prevent over-fitting. 
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see Benoit and Van den Poel (2012)). Next, we conducted further searches via cited 

references and Google Scholar to manually add another 47 articles into the data set. The 

articles were then assessed by the author team and categorized according to their main 

research focus. The analysis revealed four main genealogies, which we review below: (1) 

financial distress modelling, (2) financial fraud modelling, (3) stock market prediction and 

quantitative modelling, and (4) auditing. We find that there has been much progress in the 

first three fields, but that auditors have been slow to implement research findings into 

practice. We then proceed to address the lack of uptake of big data measures.  

3.1 Financial Distress Modelling 

Papers in the financial distress modelling stream use data mining techniques to detect 

and forecast the financial distress (or financial failure) of companies and these techniques are 

also of interest to auditors to assist with their going concern evaluations.  

Multiple studies have used decision tree based models. Sun and Li (2008) apply data 

mining techniques based on decision trees in order to predict financial distress. Starting with 

35 financial ratios and 135 listed company-pairs, the researchers design and test a prediction 

model to show theoretical feasibility and practical effectiveness. Koyuncugil and Ozgulbas 

(2012b) use data mining methods to design a financial distress early warning system for 

small- to medium-sized enterprises. They test the model on over 7,000 small- to medium-

sized enterprises and develop a number of risk profiles, risk indicators, early warning 

systems, and financial road maps that can be used for mitigating financial risk. Similar work 

has also been undertaken by Koyuncugil and Ozgulbas (2012a) and Kim and Upneja (2014). 

Li, Sun, and Wu (2010) use classification and regression tree methods to estimate financial 

distress and failure for a sample of Chinese listed companies, while Gepp, Kumar, and 

Bhattacharya (2010) use US listed companies. 
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Chen and Du (2009) propose a different approach and apply data mining techniques 

in the form of neural networks to build and test financial distress prediction models. Using 37 

ratios across 68 listed companies, they demonstrate the feasibility and validity of their 

modelling. Additional research supports their approach and suggests that neural networks 

perform better for financial distress modelling than decision trees and alternative approaches 

such as support vector machines (Geng, Bose, & Chen, 2015). 

Zhou, Lu, and Fujita (2015) compare the performance of financial distress prediction 

models based on big data analytics versus prediction models based on predetermined models 

from domain professionals in accounting and finance. They find that there is no significant 

difference in the predictions. However, a combination of both approaches performs 

significantly better than each on its own (Zhou et al., 2015). Lin and McClean (2001) also 

find that a hybrid approach of professional judgement and data mining produces more 

accurate predictions. Kim and Han (2003) go one step further and argue that analyses should 

incorporate qualitative data mining approaches to elicit and represent expert knowledge about 

bankruptcy predictions from data sets such as loan management databases. 

The literature recognises that financial distress might not be limited to a company, but 

may also extend to corporate stakeholders. Khandani, Kim, and Lo (2010) use machine 

learning techniques to construct models of consumer credit risk at the level of the individual 

and the customer, rather than the corporation. They combine customer transactions and credit 

bureau data and are able to use machine learning to significantly improve classification rates 

on credit card default and delinquencies. Singh, Bozkaya, and Pentland (2015) were inspired 

by animal ecology studies to analyse the transactions of thousands of people; they found that 

individual financial outcomes are associated with spatio-temporal traits (e.g., exploration and 

exploitation) and that these traits are over 30% better at predicting future financial difficulties 

than comparable demographic models. 
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Auditors could harness big data techniques and methods for forecasting financial 

distress and, combined with their professional judgement, be better able to judge the future 

financial viability of a firm. This would improve the going concern evaluations required in 

audits by the Statement on Auditing Standards, No. 59 for public companies (AICPA, 1988). 

Incorporating big data models should help avoid the costly error of issuing an unmodified 

opinion prior to bankruptcy. Read and Yezegel (2016) found that this problem is particularly 

apparent in non-Big 4 firms within the first five years of an audit engagement. The authors do 

not offer an underlying reason, but it may be that smaller audit firms are reluctant to issue 

modified going concern opinions early in an engagement for fear of losing clients. If this is 

the case, then smaller audit firms may be better able to justify modified opinions to their 

clients by presenting them with objective results from big data models, and thereby 

increasing the independence of the going concern evaluations. The use of these models also 

represents an opportunity to increase the efficiency of the going concern evaluation part of 

the audit, notwithstanding the initial overhead cost of becoming familiar with big data models 

and techniques.  

Although it is likely that the focus will be on one-year predictions that relate to going 

concern opinions, financial distress models could also be used for longer forecasts. These 

longer forecasts could be used by internal auditors who tend to have longer time-horizons 

than external auditors. Financial distress models that are supplemented by the opinion of the 

internal audit team as to the veracity of the forecasts could provide valuable information for 

senior management and the Board of Directors. Longer range forecasts and opinions give 

management more time to make strategic changes to minimize the likelihood that predicted 

financial distress will occur.  
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3.2 Financial Fraud Modelling 

A second major research stream centers on modelling financial fraud, which can help 

auditors assess the risk of fraud (Bell & Carcello, 2000) when conducting fraud risk 

assessments. Section 200 of the Statement on Auditing Standards No. 122/123 requires that 

external auditors “obtain reasonable assurance about whether the financial statements as a 

whole are free from material misstatement, whether due to fraud or error” (AICPA, 2011). By 

adopting contemporary big data models, auditors could provide this assurance, 

notwithstanding the current debate as to the exact meaning of “reasonable assurance” 

(Hogan, Rezaee, Riley, & Velury, 2008). 

Financial fraud is a substantial concern for organizations and economies around the 

world.5 The Association of Certified Fraud Examiners (2016) estimates that the typical 

organization loses 5% of revenue each year to fraud. Applying this to the Gross World 

Product for 2014, global fraud loss amounts to nearly 4 trillion US dollars. These numbers 

have prompted researchers to consider the application of big data techniques to fraud 

detection, prediction, and prevention. For instance, R. Chang et al. (2008) suggest using 

visual data analytics to interactively examine millions of bank wire transactions—they argue 

that this approach is both feasible and effective. In contrast, Abbasi, Albrecht, Vance, and 

Hansen (2012) model financial fraud using meta-leaning, which is a specialized form of 

machine learning that combines the outputs of multiple machine learning techniques in a self-

adaptive way to improve accuracy. They find the method to be more effective than other 

single approaches. 

Other approaches use supervised neural networks (Green & Choi, 1997; Krambia‐

Kapardis, Christodoulou, & Agathocleous, 2010) or unsupervised neural networks based on a 

                                                 
5 An excellent review of financial fraud modelling using big data techniques is also provided by Ngai, Hu, 

Wong, Chen, and Sun (2011) who offer a classification framework for the existing literature. West and 

Bhattacharya (2016) also review computational intelligence-based approaches, such as neural networks and 

support vector machines. 
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growing hierarchical self-organizing map (e.g., Huang, Tsaih, and Lin (2014); Huang, Tsaih, 

and Yu (2014)) to build a financial fraud detection model. The approach proposed by Huang, 

Tsaih, and Lin (2014) involves three stages: first, selecting statistically significant variables; 

second, clustering into small sub-groups based on the significant variables; and third, using 

principal component analysis to reveal the key features of each sub-group. Huang, Tsaih, and 

Yu (2014) apply this model to 144 listed firms and find that the approach can effectively 

detect fraudulent activity. Ravisankar, Ravi, Rao, and Bose (2011) use neural networks, 

support vector machines, and genetic programming to identify firms engaging in financial 

fraud. They find that probabilistic neural networks and genetic programming outperform 

other methods and are similarly accurate. Building on the work of Busta and Weinberg 

(1998), Bhattacharya, Xu, and Kumar (2011) proposed a genetic algorithm to optimize a 

neural network based on Benford’s Law. They used simulated data to conclude that their 

algorithm showed promise for detecting fraud in financial statements. Meanwhile, Kirkos, 

Spathis, and Manolopoulos (2007) found a Bayesian network that outperformed an artificial 

neural network, as well as a decision tree. A support vector machine developed using the 

output from principal components analysis has also been studied (Sadasivam, 

Subrahmanyam, Himachalam, Pinnamaneni, & Lakshme, 2016). 

The best approach to financial fraud modelling is heavily debated. C. C. Lin, Chiu, 

Huang, and Yen (2015) compare the differences between data mining approaches and the 

judgement of experts, and find that neural networks and decision trees achieve a correct 

classification rate of over 90% on a holdout sample. The judgement of experts is shown to be 

more consistent with the decision tree approach. Perols (2011) reviews the performance of 

popular statistical and machine learning techniques and finds that logistic regression and 

support vector machines perform well relative to competing models such as neural networks 

and decision trees. Given that these papers come to opposing conclusions, there is clearly 
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uncertainty in the field. Chen (2016) constructs a financial statement fraud model using a 

two-stage process which appears to offer advantages over the one-step approach used in 

Ravisankar et al. (2011) and Perols (2011). The first stage involves selecting the major 

variables using two decision tree algorithms: classification and regression tree (CART) and 

Chi-squared automatic interaction detector (CHAID). The second stage constructs the 

financial fraud model using the variables from stage one. The second stage uses a number of 

approaches including the two approaches from stage one, as well as Bayesian belief network, 

support vector machines, and neural networks. Chen (2016) finds that the combination of 

CHAID in stage one and CART in stage two proves to be the most accurate methodology for 

detecting financial statement fraud. Zhou and Kapoor (2011) concur that a combination of 

professional judgement and big data techniques provides a more effective and efficient 

approach. 

There has also been research into the process of analyzing financial statement text for 

the purposes of detecting fraud, which is well summarized by Gray and Debreceny (2014). 

More recently, Purda and Skillicorn (2015) developed a language-based tool that relies on 

data to identify important indicators of fraud (see also Van Den Bogaerd and Aerts (2011)). 

The language-based tool has an initial training period which uses a decision tree approach to 

analyze reports of known fraud firms and obtain a rank order list of words best able to 

distinguish fraud versus non-fraud. The second stage uses vector order machines to predict 

the fraud status of financial reports and assign a truth probability. The approach is able to 

generate correct classification rates of over 80%.  

The above review shows that studies have used big data techniques to model the 

occurrence of financial fraud as a binary dependent variable, which implicitly treats all fraud 

as equal. Even though the cost of financial fraud varies greatly between cases and has 

obvious economic implications, very few studies have modelled the cost of financial fraud. 
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There is also an opportunity for fraud models to take advantage of the fact that collusion 

between multiple offenders often occurs in fraud cases. Free and Murphy (2015) conclude 

that that the social nature of fraud may assist in identifying distinctive features. These 

features could be incorporated into fraud models to improve their accuracy. 

External auditors can improve their fraud risk assessments by using big data financial 

fraud models that advance standard regression models, such as the well-known F-score fraud 

model based on logistic regression (Dechow, Ge, Larson, & Sloan, 2011). These big data 

financial fraud models are developed using data from past frauds. They offer valuable 

information to auditors because past research has revealed that auditors often have little real 

experience of fraud (Humpherys, Moffitt, Burns, Burgoon, & Felix, 2011). Nevertheless, 

auditors tend to be reluctant to rely on decision aids to detect fraud (Eining, Jones, & 

Loebbecke, 1997), so there is an opportunity for future research to investigate how to best use 

big data fraud models in conjunction with auditor expertise. This research topic also 

encompasses how to best present the analysis and output from big data models to auditors. 

Hogan et al. (2008) also called for future research into incorporating more sophisticated fraud 

models into audits. This is particularly relevant because big data models offer different 

information than the more familiar and traditional regression models (such as the F-score 

model). 

Internal auditors could also use these models to draw attention to situations that 

require investigation. Forensic accountants and forensic auditors could also use these models 

to determine the probability of fraud having occurred, in order to provide initial 

corroboration.  

3.3 Stock Market Prediction and Quantitative Modelling 

In addition to the two research streams outlined above, a third stream is focused on 

stock market predictions and other quantitative modelling. This stream of research is 
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particularly interested in predictive analysis and providing investment advice to managers 

and investors. Although this stream is not directly relevant to auditing, relevant lessons will 

be uncovered from the ways in which big data techniques are applied in this area. 

Chun and Kim (2004) use neural networks and case-based reasoning, and a choice of 

two markets and a choice of passive or active trading strategy, to generate financial 

predictions substantially in excess of buy-and-hold returns. Lam (2004) employs neural 

networks and predicts market returns using financial ratios and macroeconomic variables. 

Chun and Park (2006) later find that a hybrid model further outperforms a pure case-based 

reasoning approach in predicting a stock market index, although the result is not statistically 

significant. Equity portfolios that outperform a benchmark index portfolio have also been 

constructed using popularity in Google searches (Kristoufek, 2013) and changes in Google 

search queries (Preis, Moat, & Stanley, 2013). Guerard, Rachev, and Shao (2013) also study 

equity portfolio construction and Pachamanova and Fabozzi (2014) review other studies on 

the topic. In addition, Zhang et al. (2015) use a genetic algorithm-based model to generate 

stock trading rules (quantitative investment), which outperforms both a decision tree and a 

Bayesian network. 

Curme, Preis, Stanley, and Moat (2014) find that an increase in Google and Wikipedia 

searches on politics or business are related to subsequent stock market falls. Li, Ma, Wang, 

and Zhang (2015) use the Google search volume index as a measure of investor attention and 

find a significant association between the search index and trader positions and future crude 

oil prices. Adopting a different approach, Sun, Shen, and Cheng (2014) use individual stock 

transaction data to create a trading network to characterize the trading behaviour of stocks 

investors. They show that trading networks can be used to predict individual stock returns. 

Shapira, Berman, and Ben-Jacob (2014) model the stock market as a network of many 

investors, while Gui, Li, Cao, and Li (2014) model it as a network of communities of stocks. 
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Many studies have analysed news articles in order to make stock market predictions. 

Tetlock (2007) uses daily content from a popular Wall Street Journal column and finds that 

when media pessimism is high stock prices decline but then return to fundamentals. 

Additionally, unusually high or low media pessimism helps predict high trading volume. 

Alanyali, Moat, and Preis (2013) find the daily number of mentions of a stock in the 

Financial Times is positively correlated with daily volume, both before and on the day of the 

news release. Piskorec et al. (2014) construct a news cohesiveness index based on online 

financial news and show that this is correlated with and driven by volatility in financial 

markets. Research has also examined the sentiment of news articles (Smales, 2014a, 2014b, 

2015). Jensen, Ahire, and Malhotra (2013) find a significant association between firm-

specific news sentiment and intraday volatility persistence, especially for bad news. Nardo, 

Petracco-Giudici, and Naltsidis (2016) review the literature and conclude that while there is 

merit in using online news to predict changes in financial markets, the gains from 

implementing such an approach are usually less than 5%. However, Ranco et al. (2016) find 

substantial benefit in coupling news sentiment with web browsing data. Some studies (Dhar, 

2014; Kao, Shyu, & Huang, 2015; Zheludev, Smith, & Aste, 2014) have also incorporated 

non-traditional online sources of information such as social media, blogs, and forums, and 

proposed many questions for future research. 

Other examples of quantitative modelling include: service architecture for capital 

market systems management (Rabhi & Benatallah, 2002); managing metadata in financial 

analytics software (Flood, 2009); identifying successful initial public offerings (Martens et 

al., 2011); high-frequency financial data mining (Sun & Meinl, 2012); identifying drivers of 

firm value (Kuzey, Uyar, & Delen, 2014); sentiment analysis for predicting economic 

variables (Levenberg, Pulman, Moilanen, Simpson, & Roberts, 2014); volatility of returns 

(Sun, Chen, & Yu, 2015); option pricing (Thulasiram, Thulasiraman, Prasain, & Jha, 2016; 
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Xiao, Ma, Li, & Mukhopadhyay, 2016); and market basket analysis (Videla-Cavieres & Rios, 

2014), which is the identification of sets of products or services that are sold together.  

Quantitative modelling and stock market prediction, particularly that which uses 

online textual information and sentiment analysis, is an active area of research that is 

leveraging the usefulness of big data techniques. This has been especially true in recent years; 

most of the articles mentioned above were published in or after 2013.  

Big data sentiment analysis has potential applications in auditing. Negative sentiment 

appearing in online news, social media, and other online sources may influence a risk-based 

audit. For example, consistent negative sentiment about certain products might steer auditors 

to examine allowances for product returns or warranty claims. Online sentiment about a client 

might also influence an auditing firm’s decision to accept or continue an engagement. 

Conducting a sentiment analysis of company emails might help an auditor understand 

the company under review and reveal areas at higher risk of fraud. For instance, inconsistent 

email sentiment within a business unit could indicate internal disharmony and signal that 

internal controls have been breached or that fraud has occurred. When email sentiment at the 

senior management level of an organization is positive, but turns to negative at lower levels, 

this may signal that employees are aware of and unhappy that management has committed 

control breaches (or fraud). Similarly, an auditor might be encouraged to look more closely at 

a business unit that presents a profile of email sentiment that is inconsistent with that of the 

rest of the company. Sentiment analysis focused on the co-occurrence of words and social 

networks could also be used to search for collusive parties in internal or forensic audit 

investigations. These are a few examples of how auditors could benefit from sentiment 

analysis, and could be the subject of a thorough cost-benefit analysis in future research. 

ACCEPTED M
ANUSCRIP

T



 

19 

Other potential uses for sentiment analysis in auditing might be discovered by 

studying its application in other domains. Ravi and Ravi (2015) review a study that analysed 

Enron emails (Mohammad, 2012) to reveal marked differences by gender in the use of 

emotional words, particularly those about trust. Would knowledge of the pattern of use, and 

any outliers, help an audit team understand its client and the risks it faces when planning an 

audit? Additionally, would the outliers in email usage assist internal auditors to identify risks 

such as compliance or control breaches and unauthorised activities? 

Sentiment analysis is also an opportunity to add value to the audit service (external or 

internal) with novel and valuable information, such as providing clients with a list of their 

business units, ranked by employee sentiment. 

3.4 Auditing 

Given the well-developed literature on financial distress, financial fraud modelling, 

and stock market prediction, it is surprising that the auditing profession has been slow to 

adopt big data techniques. Anecdotal evidence from partners at some leading audit firms 

indicates they have begun to use big data, but the true extent of its use in practice is unknown 

and would be the subject of valuable future research. Many scholars have lamented the lack 

of big data in auditing (e.g., Acito and Khatri (2014); Alles (2015); Brown-Liburd, Issa, and 

Lombardi (2015); Cao, Chychyla, and Stewart (2015); Earley (2015); Griffin and Wright 

(2015); Krahel and Titera (2015); Werner and Gehrke (2015); Zhang, Yang, and Appelbaum 

(2015)). Earley (2015) acknowledges that big data could be a game-changer in auditing, and 

Schneider, Dai, Janvrin, Ajayi, and Raschke (2015) predict that data analytics will 

significantly change the way auditors work. Cao et al. (2015) contend that big data can 

improve financial statement audits. Furthermore, Griffin and Wright (2015) refer to the slow 

uptake of big data as possibly the greatest risk in the field and call for it to be more widely 

used in practice, education, and research. 

ACCEPTED M
ANUSCRIP

T



 

20 

Alles (2015) argues that, to maintain credibility, auditors need to be aligned with the 

practices of their clients. However, the argument for auditors to only use big data once their 

clients embrace it is not on a sound footing; indeed, auditors’ early use of random sampling 

techniques has already put them ahead of client firms. Furthermore, as data-driven 

approaches become more prevalent, audit clients are likely to view the use of big data 

techniques as commonplace. In fact, it is already happening in some places; the International 

Auditing and Assurance Standards Board has stated that clients in some regions are enquiring 

more about the use of data analytics, and in some cases are already expecting to see it used in 

audits (IAASB, 2016). Appelbaum et al. (in press) identify a growing use of big data by audit 

clients, which they link to an urgency for auditors to follow suit. 

Krahel and Titera (2015) argue that accounting and auditing standards have not kept 

up with technological change and still emphasize presentation, aggregation, and sampling. On 

the other hand, big data enables auditors to analyze the processes that generate data, including 

full population testing, which adds value to the auditing and accounting profession and to the 

clients for whom they work. The call for a change in standards is also taken up by Moffitt and 

Vasarhelyi (2013), Vasarhelyi et al. (2015) and Appelbaum et al. (in press), who point out 

that practitioners, academics, and students would all benefit from knowing more about big 

data. 

Brown-Liburd et al. (2015) examine the behavioral effects of big data on auditor 

judgement, and discuss issues such as information overload, information relevance, pattern 

recognition, and ambiguity. They conclude that adding big data techniques to the set of tools 

used in the audit process would add value. They also note that it is important to use the 

technique and data set most appropriate to each circumstance, which points to the need for 

more research in this area. Yoon, Hoogduin, and Zhang (2015) also argue that big data offers 

a complementary source of evidence for the audit function, and that its use should be 
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evaluated according to the audit evidence criteria frameworks of sufficiency, reliability, and 

relevance. Moffitt and Vasarhelyi (2013) also support the use of big data in new forms of 

audit evidence. 

In addition to financial distress modelling and financial fraud modelling, big data 

offers many other advantages to the audit profession. Process mining, which analyses the 

event logs of business systems (Jans, Alles, & Vasarhelyi, 2014), has been shown to improve 

audit results when tested on real world data sets (Werner & Gehrke, 2015). Big data video, 

audio, and textual information processing can also improve accounting and auditing functions 

(Crawley & Wahlen, 2014; Warren, Moffitt, & Byrnes, 2015). For instance, in addition to 

verifying transactions against invoices and receipts, auditors could also use non-traditional 

information such as photos, videos, and GPS location (Moffitt & Vasarhelyi, 2013). 

Overall, Hagel (2013) and Smith (2015) make a case for accountants and auditors to 

‘own’ big data, not just because it provides better information, but because doing so will help 

move the profession up the value chain to become a true business partner, rather than a 

transactional service provider. Examples of how auditors could use financial distress models 

and sentiment analysis to contribute to this aim have been provided in previous sections.  

4. DISCUSSION AND NOVEL RESEARCH DIRECTIONS 

R. M. Chang, Kauffman, and Kwon (2014) argue that there has been a paradigm shift 

in the research questions that can be asked and the research methods that can be used. They 

argue that social networks, blogs, political discourse, company announcements, digital 

journalism, mobile phones, home entertainment, online gaming, online financial services, 

online shopping, social advertising, and social commerce are just some of the new contexts in 

which research questions can be examined. This context, and big data analytic tools, provide 

researchers with opportunities to do frequent, controlled, and meaningful research on real 
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world issues. S. H. Kim (2000) also sees a paradigm shift, with big data offering the 

opportunity to harvest an ocean of online data, filter information, and generate new 

knowledge. D. S. Zhang and Zhou (2004) see big data as the way to find the ‘golden nugget’. 

Amoore (2011, p. 24) poetically describes the paradigm shift as ‘the analytic of the data 

derivative – a visualized risk flag or score drawn from an amalgam of disaggregated 

fragments of data, inferred across the gaps between data and projected onto an array of 

uncertain futures’. 

It is clear that big data techniques represent a valuable opportunity for the auditing 

profession. However, this opportunity has not yet been capitalized on to the degree it has in 

related areas. As previously mentioned, auditing would benefit from adopting modern big 

data models to predict financial distress and detect financial fraud. Updated standards may 

help overcome the auditing profession’s apparent reluctance to engage with big data 

techniques. There is no doubt that having access to frequently updated big data sets that 

incorporate non-traditional information would be of great value to the audit function. As 

stated in Section 2, traditional tools are not adequate for analyzing big data, because it is so 

large, arrives so rapidly, and its variability or relevance changes dramatically over time. It is 

also known that auditors can have difficulty integrating multiple pieces of evidence in some 

circumstances (Moeckel, 1991), while big data techniques excel at integrating diverse pieces 

of information into decision aids. Hence, the big data techniques listed in Appendix A would 

be a valuable addition to the auditing profession and to audit research.  

Big data techniques can also be applied to traditional, smaller data sets to gain 

additional insights. For example, Read and Yezegel (2016) use logistic regression to analyze 

the relationship between audit tenure and audit reporting. The authors use squared terms in 

the model to control for a potential nonlinear relationship, but this still imposes the constraint 

of a quadratic relationship. The use of a non-parametric big data technique, such as a decision 
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tree or MARS (see Appendix A), could reveal the presence of any non-quadratic 

relationships. Furthermore, models produced using either of these techniques can be easily 

visualized, communicated and explained. Lennox and Kausar (2017) also use squared terms 

to consider potential nonlinearities in a supplementary analysis, but they also had to handle 

skewness in their data. However, decision tree models are unaffected by skewness and so this 

would not have been a concern for such models. A further example is Xu and Zhang (2009), 

who use a stepwise method to remove variables from their bankruptcy regression models 

because of highly correlated independent variables. An alternative would have been a Lasso 

regularized regression (see Appendix A), which has more flexibility to handle correlated 

independent variables. In addition to being able to exclude variables as done by stepwise 

methods, a Lasso regularized regression has the ability to shrink coefficients towards zero 

without removing them all together. 

The non-auditing research streams reviewed above are more developed in their use of 

big data techniques and offer some important findings relevant to auditing. 

1) Combining multiple techniques has been shown to outperform the use of a single 

technique (e.g. Abbasi et al. (2012); Chen (2016)).  

2) Big data techniques are best used to complement, not replace, human experts (e.g. Zhou 

et al. (2015)). This could be an important argument for overcoming reluctance to use big 

data techniques.  

3) Non-traditional sources of information such as text offer additional value (e.g., using 

online news to predict stock market movements). For instance, future research in auditing 

could benefit from advances in natural language processing (NLP), which is used to 

process and interpret natural language in context. A potential application is analyzing 

unstructured contracts in audits. Using the context of the text, NLP can be applied to 

automatically extract constructs such as company or person names, or key terms and 
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conditions, which could then be analyzed using other big data techniques. For instance, a 

network of extracted names could be used to identify those that appear in multiple 

contracts. Each name could also be matched against email correspondence and then 

sentiment scores computed based on associated emails and online information. Models 

could then risk-sort contracts either purely based on anomalies in the data mentioned or 

by also incorporating expectations based on the auditor’s knowledge of the particular 

engagement. NLP could also be used to advance fraud detection models that analyze text, 

from either emails (see Gray and Debreceny (2014)) or the Management Discussion & 

Analysis section of financial reports (Purda & Skillicorn, 2015). The NLP Group at 

Stanford University has made their CoreNLP software freely available6. This software 

can be applied to many different languages and can be tailored by training it on 

documents containing, for example, financial or legal language. This is important, 

because finance-specific language solutions have been shown to perform substantially 

better than general solutions when used in a finance context (Loughran & McDonald, 

2011). 

Other examples of future research directions include real-time accounting and 

financial information, and collaborative platforms and peer-to-peer marketplaces.  

4.1 Real-Time Accounting and Financial Information 

How would audits adapt in the face of a real-time information paradigm? People have 

become used to seeing their bank account information in real-time. The same sort of 

information could be provided by firms, superannuation funds, and governments. Big data 

techniques could allow financial information to be made available in real-time, instead of via 

traditional quarterly or annual reports. Real-time information also poses an important 

question about how to provide auditing and assurance services in such a setting. How do 

                                                 
6 See http://nlp.stanford.edu/software/. 
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auditing and governance practices handle a system where new information is available well 

before a traditional audit can take place? Real-time auditing processes are required. The 

existing literature on continuous auditing (Chiu, Liu, & Vasarhelyi, 2014) refers to a 

continuous cycle of auditing; this work could be enhanced by big data techniques that are 

well-suited to quickly analyzing and adapting to new data. As mentioned in Appendix A, 

there are big data techniques that can automatically and computationally efficiently handle 

new data sets with characteristics such as missing values, or irrelevant or highly-correlated 

data. These are important features for real-time systems in which such data issues cannot be 

manually addressed. 

Much has been written on the ‘user-unfriendliness’ of company financial reports, 

government budgets, and superannuation fund reports. Using big data tools, information that 

is collected in real-time could be displayed using state-of-the-art visualizations and 

customized dashboards in a way that is more user-friendly than traditional financial reports. 

Furthermore, the tools could be set to display changes over time, not just a snapshot, and this 

may influence market participants to be less focused on the short-term. The issue would then 

become how these new visualizations and dashboards would be audited for the assertions of 

existence, completeness, classification, and understandability, and accuracy and valuation. 

Changing the way such information is presented will likely require substantial shifts in audit 

procedures, although practices relating to the existence assertion might remain similar.  

Overall, real-time financial reporting to the public would necessitate a fundamental 

change for auditors, from providing assurances about numbers to assurances about real-time 

systems (that subsequently produce numbers). However, financial reporting to the public is a 

long way from being a reality. Corporations in many parts of the world still report less 

frequently than quarterly, including in Australia, New Zealand, and the United Kingdom. A 

sensible first step would be real-time financial reporting to senior management, who then 
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might be more likely to support real-time reporting to the public. Robust research on the 

impacts of such a change would also help provide confidence during what would be a 

paradigm shift.  

Real-time reporting to management still raises important questions for the financial 

statement audit. The information included on management’s real-time dashboard (or other 

visualization) could be used by the auditor to better understand the company and its 

environment, how it is managed, and its potential risks. For example, an energy company’s 

dashboard which includes substantial information about the derivatives market might indicate 

a high risk if the auditor discovers it is not predominantly for hedging purposes. In fact, that 

might have been the case for Enron, if real-time dash-boards had been available at that time. 

These visualizations could also improve the efficiency of the audit process. For example, a 

dashboard that listed the age of each piece of inventory would help auditors substantiate 

inventory value. However, what tests would auditors need to conduct in order to be confident 

in the reliability of the dashboard? This question represents a shift towards providing 

assurances of systems, which, as mentioned above, would be needed for real-time reporting 

to the public. Thus, real-time reporting to management would likely also help auditors 

prepare for a potential move to real-time reporting to the public. 

The concept of real-time information is not limited to auditing. For example, fraud 

modelling should take advantage of additional information by using big data techniques set 

up to automatically update as new data becomes available. There are already examples of 

data sources moving to real-time information. The Federal Reserve Bank of Chicago provides 

financial statement data for holding companies on a daily basis in a simple downloadable 

format, although no summary statistics or visualizations are available7. Daily updates 

incorporate any revisions or new information that become available between the traditional 

                                                 
7 See https://www.chicagofed.org/banking/financial-institution-reports/bhc-data.  

ACCEPTED M
ANUSCRIP

T

https://www.chicagofed.org/banking/financial-institution-reports/bhc-data


 

27 

quarterly reports. Does this daily stream of information provide useful information for fraud 

detection models? Research should take advantage of this and other more frequently updated 

data. 

4.2 Collaborative Platforms and Peer-to-Peer Marketplaces  

Peer-to-peer marketplaces are changing the way business is done. Traditionally, firms 

made profits by standing in-between businesses and individuals wanting to sell and buy 

products and services, such as banking, insurance, employment, accommodation, and 

transport. The advent of big data means that buyers and sellers can be brought together via 

collaborative platforms. This eliminates the need for the middle broker. Insurance companies, 

banks, and other brokers who provide matching services represent some of the most 

profitable and successful business models; thus, the advent of peer-to-peer marketplaces has 

the potential to dramatically reshape the goods and services business landscape. Additionally, 

peer-to-peer marketplaces are not constrained to traditional (geographic) borders, which 

poses another line of research as well as different future data sources. For example, one of the 

most popular new ways to source accommodation is via Airbnb, which is a peer-to-peer 

marketplace that does not own any accommodation assets. 

As is often the case with new technologies, including those facilitated by big data, 

peer-to-peer marketplaces also present challenges about how we think about audit and 

verification to ensure confidence in the marketplace. What information do market participants 

use to assess the reliability of their counterparts and their financials? How can this 

information be verified and what role can audits play in providing meaningful assurances to 

market participants? Testing controls could be very important, because participants likely 

expect that they are implemented by the software in a standardized manner. However, does 

the vast number of market participants mean that going concern evaluations and fraud risk 

assessments primarily become outputs from big data models for predicting financial distress 
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and detecting fraud, respectively? There are many important questions such as these. 

Answering them will involve analyzing platforms and marketplaces which hold huge 

amounts of various types of data, much of which is changing in real time and does not 

involve primary documentation. Once again, big data techniques are well-suited to this 

analysis. One approach is to cross-reference information from multiple secondary sources to 

obtain a reasonable probability (assurance) of correctness, as is done in the Airbnb platform. 

5. CONCLUSION AND FUTURE OPPORTUNITIES 

This paper reviews research in accounting and finance concerning data analytics and 

big data in order to better understand the use of big data techniques in auditing. We first point 

out the origins of big data techniques in the multivariate statistical literature and then 

categorize big data accounting and finance research under several research groupings. Our 

analysis shows that, in addition to auditing, there are influential papers across financial 

distress modelling, financial fraud modelling, and stock market prediction and quantitative 

modelling. We review each of these streams of research to ascertain their main contributions 

and to outline knowledge gaps. Unlike financial distress and financial fraud modelling, 

auditing has been slow to make use of big data techniques. Auditing would greatly benefit 

from embracing the use of big data techniques, regardless of whether client firms are using 

them or not. Findings from accounting and finance research suggest combining multiple big 

data models instead of applying an individual model, and using big data models to 

complement human experts. 

There are many opportunities to use big data techniques in auditing, particularly when 

rigorous analytical procedures are combined with traditional audit techniques and expert 

judgement. Audits could benefit from harnessing the improvements in recent big data 

financial distress and financial fraud models. Sentiment analysis and natural language 
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processing are other promising auditing tools that require more research. There are also novel 

research directions for auditing which are well-suited to big data techniques, such real-time 

information settings, and collaborative platforms and peer-to-peer marketplaces.  

The rapid growth of big data across all fields means that academic publications have 

been leapfrogged by discourse in popular outlets Gandomi and Haider (2015). Going 

forward, there is a challenge to conduct robust research that better informs audit practice in a 

timely manner. This includes the future research suggested above that evaluates the 

effectiveness of different big data techniques in an auditing context, as well as associated 

cost-benefit analyses and studies that consider the best ways to combine big data modelling 

with expert judgement. 

Research has an important role to play in bringing theory and practice into closer 

alignment. Academic literature has lamented the slow integration of big data into auditing. 

However, anecdotal evidence from partners at some leading audit firms indicates they have 

begun to use big data. Indeed, the websites of some audit firms promote data analytics as part 

of their innovation in auditing. For example, KPMG describes their audit as “powered by 

Data & Analytics (D&A) innovations” (KPMG, 2016) and Deloitte’s Chief Innovation 

Officer mentions the use of natural language processing and other big data techniques in 

auditing (Raphael, 2015)8. On the other hand, while the academic literature had referred to 

big data as potentially a “game-changer” that represents a “paradigm shift”, one KPMG 

partner has stated that “From the perspective of an auditor, the rise of D&A does not 

represent a fundamental shift in what we do” (O’Donnell, 2016). This statement might not be 

representative, but it flags that practitioners do not yet realize the potential of big data. 

Overall, the prevalence of big data techniques in audit practice remains largely unknown. 

                                                 
8 The author does not use the term “big data”, but nevertheless discusses some big-data techniques. 
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To help align research and practice, it is important to understand the prevalence and 

nature of big data techniques in audit practice. A qualitative, interview-based study is needed 

to fill this knowledge gap. It should cover as broad a range of firms as possible, from Big 4 

through to small audit firms, because usage probably varies widely. Findings from such 

research could be used to direct future research towards scientifically (in-)validating the 

effectiveness of current uses, as well as providing clear guidance on the effectiveness of 

techniques not yet used. This might encourage research findings to be more quickly 

implemented in practice.  
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APPENDIX A: BRIEF DESCRIPTIONS OF COMMON BIG DATA TECHNIQUES 

Technique Brief Description 

Regularized Regression 

(also known as shrinkage) 

Aims to prevent over-fitting by shrinking variable 

coefficients towards zero. This shrinkage reduces the 

variance of the coefficient estimates that can adversely 

affect prediction accuracy, particularly with “highly 

correlated, large p” problems. It can also be used solve ill-

formed problems. 

 

Further reading: James, Witten, Hastie, and Tibshirani 

(2013, pp. 214-228) provide further detail in Chapter 6, 

particularly Section 6.2.  

- Ridge Regression 

Uses an L2 penalty based on the sum of squared 

coefficients, which performs well when all variables are 

likely to be important in relatively similar magnitudes. 

- Lasso/LARS 

Uses an L1 penalty based on the sum of the absolute value 

of coefficients. The important advantage of this penalty is 

that it is effective at variable selection and so results in 

simpler models that are often desirable for their improved 

interpretability. 

- Elastic-Net 

Uses a weighted average of the L1 and L2 penalty. The 

weighting can be automatically chosen based on the data 

using a process called cross-validation. This weighted 

average can result in substantially improved model 

accuracy in some cases. 

Tree-based Methods 

Comprise single tree model or an ensemble of them. Tree 

models are non-parametric models that are built in a 

recursive process of splitting the data into homogenous 

groups (usually two).  

 

Further reading: Rokach and Maimon (2014) cover single 

trees in detail, while Sutton (2005) also cover ensembles. 
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Technique Brief Description 

- Single Classification and 

Regression Trees (CART) 

also known as decision 

trees 

The advantages of a single tree are that they: are resistant 

to outliers and irrelevant variables, automatically model 

interactions between variables, and do not require any 

variable transformations. Relatively small models are also 

easy to interpret and display visually. However, single 

trees are very sensitive to changes in the data (as are some 

neural networks) and so have high variance.  

- Ensembles of decision 

trees including  

Random Forests 

(enhanced bagging)  

and  

Multiple Additive 

Regression Trees (MART 

or gradient boosting) 

Ensembles of decision trees that are combined through an 

averaging process (Random Forests) or iterative 

improvement process (MART). This reduces the high 

variance of individual trees and usually results in 

increased accuracy. Random Forests are particularly good 

at “large p, small n” problems. Ensemble models are 

inherently more difficult to interpret, but there are 

procedures to extract information in interpretable ways. 

Splines 

- Multivariate Adaptive 

Regression Splines 

(MARS) 

Splines involve dividing the range of independent 

variables into sections and fitting separate polynomials to 

each section. This is particularly useful when there are 

known breakpoints that separate different distributions. 

For example, the distribution for retail sales is different 

during holiday periods. Alternatively, MARS is one 

particular spline technique that automatically chooses the 

number of sections and where to place the breakpoints 

(and then fits linear models to each section).  

Other types of splines include natural regression splines 

and smoothing splines. Local regression is a popular 

alternative to splines.  

 

Further reading: James et al. (2013, pp. 271-282) cover 

splines and local regression in Chapter 7, particularly 

Sections 7.4–7.6. MARS is more complex and only 

covered in a more technical book by Hastie, Friedman, 

and Tibshirani (2009, pp. 321-329) in Section 9.4. 
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Technique Brief Description 

Support Vector Machines 

(SVMs) 

SVMs are popular for classification problems, but are not 

applicable to regression problems. SVMs place 

hyperplanes in the data to attempt to separate it into the 

desired groups. Kernel SVMs offer non-linear extensions. 

Major drawbacks include no variable selection and no 

easy way to calculate the associated probabilities of 

classification. Logistic regression with an L1 or L2 

penalty is an alternative to binary classification that 

overcomes these drawbacks. 

 

Further reading: Provost and Fawcett (2013, pp. 89-94) 

briefly introduce SVMs, starting with a comparison to 

standard logistic regression. 

Naïve Bayes and  

Bayesian (Belief) Networks 

A simple model that assumes the variables (or features) 

are (conditionally) independent. This assumption is almost 

always violated, but it can still perform well in some 

circumstances, because of the low variance associated 

with the simple assumption. It also easily handles “large 

p” problems. Bayesian belief networks are generalisations 

of Naïve Bayes that relax some of the independence 

assumptions by defining a network of conditional 

dependencies between variables. 

 

Further reading: Provost and Fawcett (2013, pp. 233-244) 

introduce the basic concepts of Naïve Bayes and Alston, 

Mengersen, and Pettitt (2012, pp. 348-360) cover 

Bayesian Networks in Chapter 20. 
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Technique Brief Description 

Genetic Algorithms (GAs) 

including Genetic Programming 

(GP) 

Types of evolutionary algorithms that are heavily based on 

Darwin’s survival of the fittest principle to evolve better 

solutions to a problem. They are non-parametric, and able 

to handle missing values and model interactions, but there 

are a large number of model parameters to set based on 

user expertise. GAs can be used for both supervised 

learning and unsupervised learning, and often to optimise 

the parameters of other models. 

 

Further reading: Negnevitsky (2011, pp. 219-257) cover 

evolutionary algorithms in Chapter 7. 

Artificial Neural Networks 

(ANNs), sometimes called 

Neural Networks or Neural Nets 

ANNs are non-parametric models designed on the inner 

processes of the human brain, primarily with respect to 

pattern learning. There are many different types of ANNs 

and they can be trained using supervised or unsupervised 

methods (such as self-organising maps). Procedures 

(such as genetic algorithms) are available to automate the 

numerous model parameters. Advantages include their 

ability to model non-linear relationships and handle highly 

correlated variables and outliers. However, the black-box 

nature makes interpretation difficult, although techniques 

are available to extract some information. 

 

Further reading: Negnevitsky (2011, pp. 165-217) 

provide more detail in Chapter 6. 

Association Rules 

Unsupervised learning approaches that attempt to find 

simple rules to describe frequently occurring patterns. For 

example analysing a department store database might 

reveal that customers who buy jeans also often buy music.  

 

Further reading: S. Zhang and Wu (2011) provide an 

overview of association rules. 
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Technique Brief Description 

Clustering or  

Data Segmentation 

A large collection of unsupervised learning techniques 

designed to find sub-groups within the data, such that the 

data is more homogenous within each sub-group. 

 

Further reading: Provost and Fawcett (2013, pp. 163-183) 

provide more detail in Chapter 6, particularly in the 

section titled “Clustering”. 

Latent Variable Models 

A class of models that assumes there are one or more 

influential quantities that are hidden and unobservable. 

Popular examples include principal components analysis, 

principal curves, item response theory and 

multidimensional scaling, which attempt to model the 

complete set of data with a smaller set of latent variables. 

Such methods can also be used as a first step that feeds 

into a second supervised learning step. 

 

Further reading: Finch and French (2015) provide 

information on a variety of latent variable models. 

Ensembles 

Many of contemporary techniques, including those listed 

above, combine the results of multiple underlying models. 

Other techniques to combine multiple models include 

averaging outputs, a majority vote decision, a hierarchical 

approach, and more sophisticated processes such as 

stacking, bagging, and boosting. Ensemble models often 

outperform individual models in terms of accuracy, but 

they are inherently more complex to interpret. 

 

Further reading: Sutton (2005) introduces bagging and 

boosting (in Sections 1.2, 5 and 6), two popular methods 

to create ensemble models. 

 

 

ACCEPTED M
ANUSCRIP

T


