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a b s t r a c t 

Mobile crowd sensing has emerged as an appealing paradigm to provide sensing data for its efficient 

economy. A large number of incentive mechanisms has been proposed for stimulating smartphone users 

to participate in mobile crowd sensing applications. Different from existing work, in addition to sensing 

tasks with diverse weights, we uniquely take into consideration the crucial dimension of location informa- 

tion when performing sensing tasks allocation. However, the location-sensitive weighted tasks are more 

vulnerable to the real life where each sensing task has the evident distinction. Meanwhile, the location 

sensitiveness leads to the increase of theoretical and computational complexity. In this paper, we inves- 

tigate a truthful incentive mechanism which consists of two main components, winning bids determina- 

tion algorithm and critical payment scheme. Since optimally determining the winning bids is NP hard , 

a near-optimal algorithm with polynomial-time computation complexity is proposed, which further ap- 

proximates the optimal solution within a factor of 1 + ln (n ) , where n is the maximum number of sensing 

tasks that a smartphone can accommodate. To guarantee the truthfulness, a critical payment scheme is 

proposed to induce smartphones to disclose their real costs. Through both rigid theoretical analysis and 

extensive simulations, we demonstrate that the proposed mechanism achieves truthfulness, individual 

rationality and high computation efficiency. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Mobile crowd sensing with smartphones [1–4] has gradually

loomed into an appealing paradigm to collect various distributed

ensing data for purposes [5] . The main application can be associ-

ted with the development and promotion of mobile crowd sens-

ng systems such as the noise map calculation [6] , real-time traf-

c delay prediction [7] , citizen emergency monitoring [8] and so

orth. Embedded with a variety of sensors, like GPS(Global Posi-

ion System), microphone, camera, a smartphone can easily collect

he essential data for various applications. Especially, smartphones

ather ubiquitous data but only claim the little money, probably

eading to enormous economic as well as the improvement of life

uality [9] . 

A mobile crowd sensing system typically consists of a platform

esiding in the cloud, mobile smartphones and the platform users

ho consume sensing data. An example is illustrated in Fig. 1 . The

ssociated sensing tasks with diverse weights are released by the

latform once it receives new arriving sensing requests from the
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latform users. Then the platform determines the appropriate set

f smartphones to provide sensing services for new sensing tasks.

nce receiving the hiring decision from the platform, the chosen

martphone starts to collect the required sensing data. Later, it

ubmits the collected data to the platform, which aggregates the

ata to the platform user. Finally, the platform pays for the data.

his demonstrates that a mobile crowd sensing system with geo-

raphically distributed smartphones can support a wide range of

arge-scale monitoring applications [8,10] . 

Motivation: Stimulating smartphone users to participate in mo-

ile crowd sensing system is fairly significant to the success of mobile

rowd sensing with smartphones . As we know, it incurs some non-

egligible cost ( e.g., power consumption, bandwidth occupation)

n consideration of limited resources when a smartphone provides

ensing service for various applications [11,12] . Specifically, for our

ase, smartphones allocated to sensing tasks with higher weight

re paid for more money, in consideration of more spent cost( e.g.,

ime cost). Furthermore, smartphone users may suffer the risk of

rivacy breach when providing sensing service related to their cur-

ent location. Thus, smartphone users are usually reluctant to join

 mobile crowd sensing system without sufficient incentives as

ompensation. However, the hypothetical sensing applications fail

hen no enough smartphone users provide the desired sensing
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Fig. 1. An example of mobile crowd sensing applications. Smartphones are dis- 

tributed over a large city. The location of each smartphone is described by a 2- 

tuple, ( longitude, latitude ). Each sensing task is to collect air pollution data. One 

with higher weight indicates the location to collect data is more distant. A plat- 

form user advertises sensing tasks through the platform residing on the cloud, and 

smartphones can contribute to the sensing tasks by returning their sensed data ( e.g. , 

a photo of its surroundings) to the platform. 
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users have the same claimed bid price. 
service. Unfortunately, although a large number of mobile crowd

sensing applications [8,13–15] have been proposed, most of them

have assumed that smartphones voluntarily contribute to the mo-

bile crowd sensing system, which is not impractical in the real

world. 

The problem of stimulating smartphone users to participate in

mobile crowd sensing applications is highly complicated because

of smartphone user’s strategic behaviors. In general, strategic users

are selfish and self-interested. Thus, a smartphone user may mis-

report his real cost for maximizing his utility regardless of others’

utility. The mobile crowd sensing system may bear the enormous

economic loss in the long term. Furthermore, the cost information

is private and unknown to the platform, which has no access to re-

veal the real value. Thus, designing a truthful incentive mechanism

is non-trivial to induce smartphones to disclose their real cost. 

There have been several research efforts on developing incen-

tive mechanisms for mobile crowd sensing applications, which can

generally be divided into three categories. One category of existing

work [16,17] tends to adopt auctions for inducing cooperation from

smartphones. In [16] , Yang et al. design two incentive mechanisms

to maximize the platform utility. Zheng et al. [18] propose a single

parameter auction mechanism for the data procurement procedure

under the known cost distribution, aiming to minimize the ex-

pected payment. The second category of existing work [17,19] uti-

lizes the invisible indicator to stimulate cooperative behaviors of

selfish smartphone users. Zhang et al. in [17] provide an incentive

mechanism based on the repeated game to model the user’s rep-

utation. The final category of the existing work [9,20] designs an

incentive mechanism based on the estimations of quality of infor-

mation (QOI) submitted by smartphone users to avoid the strategy

behaviors of smartphones. 

In addition to sensing tasks with diverse weights, another signif-

icant observation is illustrated that location sensitiveness is central

to most mobile crowd sensing application . A sensing task typically

specifies the location where the sensing task should be performed.

This is because that the desired sensing data are closely related

to the specific location. A sensing data collected at an irrelevant

location is meaningless or even invalid. This practical considera-

tion on location sensitiveness caters to more meaning and accu-

rate matching between demands and supplies of sensing services . An-

other significant observation is that most smartphone users are
nly willing to provide sensing service in a crowded area, thus,

eluctant to spend more effort for sensing tasks with a remote lo-

ation. Furthermore, we emphasize that the sensing task in a re-

ote location has higher weight, indicating that it is more sig-

ificant to incentivize smartphones to participate in such sensing

ask. Unfortunately, most of existing designs of incentive mecha-

ism [21,22] have neglected this important dimension of location

nformation in their designs. 

In this paper, we introduce a practical reverse auction frame-

ork , in which the platform announces sensing tasks each of

hich has a location and weight attribute, and smartphones can

ubmit multiple bids for a set of tasks within their service coverage

ccording to the interest. Meanwhile, the corresponding claimed

ost is disclosed with each submitted bid. For minimizing the so-

ial cost, the platform determines the set of winning bids, allocat-

ng all sensing tasks to the associated winning smartphone users.

ll winning users are paid for the rewards according to their con-

ributions. 

To make this reverse auction framework actually work for mo-

ile crowd sensing with location-sensitive weighted tasks, we aim

t designing a truthful incentive mechanism by which each smart-

hone would truthfully disclose its real cost. For our known com-

inatorial auction problem, two critical problems have to be ad-

ressed: 1) A task allocation algorithm to determine the cost-

fficient bids has to be proposed, and 2) A payment decision

cheme to fight against the strategic behavior of smartphones has

o be proposed. Unfortunately, we prove that the optimal winning

ids determination problem is NP hard . Thus, in this paper we de-

ign a truthful incentive mechanism which consists of two main

omponents , the winning bids determination algorithm and criti-

al payment scheme. The first algorithm approximately determines

he set of winning bids, while the second algorithm determines

he critical payment for each winning bid. Furthermore, we prove

hat the near-optimal algorithm can approximate the optimal solu-

ion within a factor of 1 + ln (n ) , where n is the maximum number

f sensing tasks that a smartphone can accommodate. As an ad-

itional part, we theoretically prove that the number of winning

ids from the approximation solution has an upper bound α com-

ared to that of the optimal solution when all smartphone users

ave the same claimed bid price. After rigorous theoretical proof

nd extensive simulations, the results demonstrate that our mech-

nism achieves truthfulness, individual rationality, high computa-

ional efficiency and modest overpayment ratio. 

We highlight the main intellectual contributions as follows. 

• We consider location sensitiveness as well as sensing tasks with

diverse weights in the design of a truthful incentive mecha-

nism for mobile crowd sensing with location-sensitive weighted

tasks. Especially, the consideration of location information es-

sentially increases the problem complexity of combinatorial

auction design. 

• We design an algorithmic mechanism for mobile crowd sens-

ing with location-sensitive weighted tasks. We prove that opti-

mally determining the winning bids with location sensitiveness

is NP hard . The proposed mechanism consists of a polynomial

time and near-optimal task allocation algorithm and a novel pay-

ment scheme that guarantees the truthfulness of the proposed

mechanism. 

• Through both rigid theoretical analysis and extensive simula-

tions with real trace data sets, we demonstrate that the pro-

posed mechanism achieves the desired properties of truthful-

ness, individual rationality and high computation efficiency. In

addition, we theoretically prove that the number of winning

bids from the approximation solution has an upper bound α
compared to that of the optimal solution when all smartphone
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Fig. 2. An example of service coverage of smartphones. The filled area denotes the 

service coverage of smartphone 1. Three sensing requests fall within the coverage of 

smartphone 1. Thus, smartphone 1 can provide sensing service to each of the three 

tasks t 1 , t 2 , t 3 . The sensing coverage of different smartphones can be different. 
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Table 1 

Key notations. 

Notation Description 

T Set of sensing tasks 

N Set of smartphones 

B Set of all submitted bids 

S Set of winning bids 

w i Task weight of category i 

B i Set of k i bids submitted from smartphone i 

βk 
i 

The k th tasks-bid pair from smartphone i 

T i Set of sensing tasks within geographical 

service coverage of smartphone i 

r i Maximum number of winning bids for 

smartphone i 

Q k 
i 

The batch of sensing tasks from βk 
i 

b k 
i 

The claimed cost of the subset of Q k 
i 

c k 
i 

The true cost of the subset of Q k 
i 

p k 
i 

The payment to winning bid βk 
i 

u i ( β
k 
i 
) The payoffs of user i for bid βk 

i 

Fig. 3. The interactions between the platform and smartphones within the reverse 

auction model. 
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Some preliminary results of this work were reported in the

ork [23] . The remainder of the paper is organized as follows.

n Section 2 , we first present the system model, the reverse auc-

ion framework and the mathematical problem formulation. Then,

he detailed design of our mechanism is described in Section 3 .

he theoretical analysis of the proposed mechanism is presented in

ection 4 . Next, we evaluate the performance of proposed mecha-

ism in Section 5 . Then, we review related work in Section 6 . Fi-

ally, we conclude the paper and discuss future research directions

n Section 7 . 

. System model and problem formulation 

.1. System model 

We consider a mobile crowd sensing system with smartphones

onsisting of a platform, platform user , and many smartphone users .

he platform resides in the cloud. The platform accepts sensing

equests from platform users who connect to the platform via the

loud. The platform periodically publicizes sensing tasks to be per-

ormed by smartphones. Let T denote the set of sensing tasks,

 = { t 1 , t 2 , · · · , t m 

} . A sensing task t i specifies the desired sensing

ervice, the corresponding location where the sensing data should

e collected and the task weight. Let p ( t i ) and w ( t i ) denote the lo-

ation of the sensing task and the task weight respectively. Differ-

nt sensing tasks have a respective weight for platform users , indi-

ating the corresponding significance. Especially, the higher weight

eans that the sensing location is more distant for noise mapping

pplication [6] . By carrying out the market techniques like survey,

e divide all sensing tasks into K categories. The corresponding

eight vector is denoted as W = (w 1 , w 2 , . . . , w K ) , where w i < w k ,

or all 1 ≤ i < k ≤ K . Note that a sensing task is atomic, meaning that

t is either entirely performed or it is not completed. The differ-

nce from our prior work [23] lies in our distinction with the task

eight, leading to more cost-effective task allocation. Thus, we ex-

and the earlier work to the generalized version, which is more

onsistent with the realistic condition. 

There are n smartphones which are interested in perform-

ng sensing tasks and the set of smartphones is denoted by N =
 1 , 2 , · · · , n } . Each smartphone i is aware of its own location l i ,

hrough Global Positioning Systems (GPS) or other localization

chemes [13] . Each smartphone i is intrinsically associated with

 geographical service coverage, denoted by ϑi (as illustrated in

ig. 2 ). Only those sensing tasks within the service coverage may

otentially receive sensing service of smartphone i . The key nota-

ions of this paper are listed in Table 1 . 

The service coverage can be different from smartphone to

martphone, and is dependent on the smartphone user and the as-
ociated preferences or restrictions. It is practical to assume that

he service coverage ϑi of smartphone i is dependent on the cur-

ent location l i of the smartphone. Thus, given the current location

 i of smartphone i , one is able to determine its service coverage

i . It is worth noting that each smartphone can have a different

unction mapping its current location to its service coverage ϑi . We

ssume that each smartphone in the system would share such in-

ormation with the platform. With ϑi , the platform is able to de-

ermine the subset T i of sensing tasks, T i ⊆T , that smartphone i is

ble to provide sensing service. Each smartphone should not mis-

eport its own service coverage. Misreporting may result in failure

f completing a sensing task and a serious penalty would be rein-

orced. Protection of location privacy of smartphones and is beyond

he scope of this paper and subject to future research. 

.2. Reverse auction framework 

In the mobile crowd sensing system, smartphones compete for

pportunities to provide sensing services. We introduce a reverse

uction framework for modeling the interactions between the plat-

orm and the smartphones, in which smartphones are the sellers

nd the platform is the buyer (buying sensing services). The frame-

ork is such called as it is a type of auction in which the roles of

uyer and seller are reversed. 

With the framework, the interactions between the platform and

martphones are described as follows, which is also illustrated in

ig. 3 . 

1. The platform advertises a set T of sensing tasks to all the smart-

phones in the mobile crowd sensing system. 

2. Each user i replies with a set B i of k i bids, each of which is a

tasks-bid pair βk 
i 

= (Q 

k 
i 
, b k 

i 
) , in which Q 

k 
i 

is a subset of sensing

tasks that are within its geographical service coverage, Q 

k 
i 

⊂ T i ,

and b k 
i 

is called claimed cost of the subset of tasks Q 

k 
i 

which

is reserved price that user i wants to charge for the service. In

addition, each user i submits a number r which is the max-
i 
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imum number of bids that it can accommodate. Note that a

smartphone user could not submit two bids for the same set

of sensing tasks. 

3. The platform determines whether a bid is winning or not, i.e. , it

selects a subset S from all submitted bids, S ⊆ ⋃ 

i ∈ N B i , in which

βk 
i 

∈ S indicates that smartphone i would perform the set of

sensing tasks Q 

k 
i 

in its bid βk 
i 

. 

4. Each smartphone i performs the sensing tasks in its winning

bids which are S 
⋂ 

B i and sends the sensed data back to the

platform. 

5. Each smartphone i is paid an amount of money p k 
i 

for its win-

ning bid βk 
i 
, for each βk 

i 
∈ S 

⋂ 

B i . 

Due to the distributed nature of mobile crowd sensing, the real

cost c k 
i 

of performing the set Q 

k 
i 

of the sensing tasks is private and

unknown to others. Each smartphone is owned by a selfish individ-

ual who always tries to maximize its own payoff. Thus, it is pos-

sible for a smartphone to manipulate the claimed cost for its own

good, i.e. , b k 
i 

may not be equal to c k 
i 
. This kind of behavior is typ-

ical strategic behavior . The existence of strategic behaviors makes

it difficult for the platform to hire those smartphones with lower

costs. 

Smartphones are strategic and hence each smartphone i claims

cost b k 
i 

for bid βk 
i 

that may be different from the real cost c k 
i 

for

maximizing its own payoff (or benefit). We define the payoff of a

smartphone as follows. 

Definition 1 (Smartphone payoff) . The payoff of a smartphone is

the sum of payoffs of all its winning bids. The payoff of a winning

bid is the difference between the payment it receives and its real

cost. The payoff of the smartphone can be computed as follows, 

u i = 

∑ 

βk 
i 
∈ S ⋂ 

B i 

(p k i − c k i ) . (1)

2.3. Problem formulation 

We next give the mathematical formulation of the mechanism

design problem. In this work, the platform determines the winning

bids and allocates sensing tasks to the corresponding smartphones.

Definition 2 (Winning bids determination problem (WBDP)) . For

all submitted bids S of bids, the winning bids determination prob-

lem is defined as follows: 

min 

∑ 

βk 
i 
∈ S 

c k i (2)

s.t. | S ⋂ 

B i | ≤ r i (3)

⋃ 

βk 
i 
∈ S 

Q 

k 
i = T . (4)

Remarks. The definition of WBDP shows the objective of the plat-

form selecting the winning bids is to minimize the social cost

which is the sum of the real costs of smartphones completing all

the sensing tasks. The constraint (3) indicates that the number of

winning bids of user i could not exceed its maximum number r i .

The constraint (4) shows that the platform guarantees that each

sensing task is finished unless a sensing task is within less than

one submitted bids. Notice that if no bid that covers a sensing task

t j and then it is obvious that t j could not be finished. And we also

exclude the situation where only one bid covers the sensing task t j 
in order to prevent the monopoly. Thus, we assume that there are

enough smartphones within the system and more than one smart-

phones compete for each task. 
efinition 3 (Truthful mechanism design problem (TMDP)) . For

ach bid of smartphone i , let ˜ βk 
i 

= (Q 

k 
i 
, c k 

i 
) denote the truthful bid

nd βk 
i 

= (Q 

k 
i 
, b k 

i 
) denote the untruthful bid. The payoffs of user i

or the truthful bid and the untruthful bid is u i ( 
˜ βk 
i 
) = p i ( 

˜ βk 
i 
) − c k 

i 

nd u i (β
k 
i 
) = p i (β

k 
i 
) − c k 

i 
, respectively. The TMDP problem is to de-

ign a payment scheme such that 

 i ( 
˜ βk 
i 
) ≥ u i (β

k 
i ) . (5)

emarks. A payment scheme resulting from the TMDP can guar-

ntee that smartphones declare their costs truthfully. 

The goal of our work is to design a truthful mechanism that

olves the two problems defined above. This mechanism should

lso have the following desired properties. 

efinition 4 (Individual rationality) . The payoff of each bid of user

 is nonnegative, p k 
i 

≥ c k 
i 
. 

emarks. To stimulate smartphones to participate in the mobile

rowd sensing applications, each smartphone has non-negative

tility at least. 

efinition 5 (Computational efficiency) . An algorithm has the

roperty of computational efficiency if it terminates in polynomial

ime. 

emarks. The computational efficiency of the algorithms of solv-

ng WBDP and TMDP is of great importance in realistic scenarios.

ny optimal algorithm with high complexity is useless in reality. 

efinition 6 (Cost-efficient rank criterion) . For any bid βk 
i 

=
(Q 

k 
i 
, b k 

i 
) of each user i , the weight of any sensing task t i is w ( t i )

or any t i ∈ Q 

k 
i 

. Then the cost-efficient rank criterion r(βk 
i 
) of the

id βk 
i 

is defined as 

(βk 
i ) = 

b k 
i ∑ 

t i ∈ Q k i 

w (t i ) 
, (6)

emarks. The cost-efficient rank criterion is considered as the

nly recruiting rule for winning bids determination procedure. 

. Design of our mechanism 

Our mechanism consists of two components: The first compo-

ent solves WBDP to determine the winning bids, and the sec-

nd component is a payment scheme for solving TMDP. Before de-

cribing the algorithm for the first component, we first analyze

he complexity of solving the WBDP, i.e. , determining the winning

ids to minimize the social cost. We rigorously prove that WBDP

s NP hard. Then, we propose an algorithm that obtains a near-

ptimal solution with low computational complexity, which is dif-

erent from the traditional truthful mechanism. Finally, we propose

he payment scheme for solving TMDP to induce smartphones to

isclose their real costs truthfully. 

.1. Complexity analysis of WBDP 

It is very important to solve WBDP with a time efficient algo-

ithm. Unfortunately, as we are going to prove next, WBDP is NP

ard. 

heorem 1. The WBDP is NP hard. 

roof. To prove WBDP is NP-hard, we can prove that its deci-

ion version is NP-complete. For the decision problem, we should

emonstrate that it belongs to NP, and then find another known

P-complete problem that could be reduced to the decision ver-

ion of WBDP in polynomial time. 
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Fig. 4. The details of all submitted bids and sensing tasks to illustrate a simple 

example with approximation algorithm for WBDP. 
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The decision version of our problem is a modified minimum

eighted set cover (MWSC) problem in which some pairs of sub-

ets are mutually exclusive, i.e., they could not win simultaneously.

he decision problem belongs to NP as checking whether a solu-

ion is correct or not could end up in polynomial time. 

Next, we use the decision version of minimized weighted set

over as the known NP-complete problem. An instance of the

nown problem is defined as follows. 

efinition 7 (An instance of MWSC) . For a universe set U and a set

 = { s 1 , s 2 , · · · , s n } , each s i satisfies s i ⊆U and its weight is w ( s i ). The

uestion is whether exists a set Q ⊆S , the union 

⋃ 

s i ∈ Q s i of mem-

ers from Q covers all elements of the universal set U , and further∑ 

 i ∈ Q 
w ( s i ) ≤ K. We regard the instance as A in later discussion. 

Next, we change the instance of MWSC to an instance of our

roblem. Suppose that set T of the sensing tasks is the universal

et U , and the subset of tasks Q 

k 
i 

for each submitted bid is con-

idered as the element s i of set S . Meanwhile, the claimed cost b k 
i 

f each bid is the corresponding weight w ( s i ) of element s i . Thus,

e construct a set ˜ S = { s 1 , s 2 , · · · , s n , z} , z ⊂ U, w ( z ) > K and z could

ot be chosen together with each s i . Thus, we get an instance of

ur problem, which is denoted by B . 

Then, we can simply see that q is a solution of A if and only if

 is a solution of B . Moreover, the reduction from A to B ends in

olynomial time. �

emarks. The previous theorem shows that WBDP is NP hard even

hough each smartphone honestly declares their costs. This essen-

ially rules out the possibility of exploiting the traditionally VCG

echanism [24] for our problem. The VCG mechanism requires

hat the optimal set of winning bids must be selected, which is im-

ossible since there are no computationally efficient algorithms for

olving NP hard problems. Moreover, an approximation algorithm

ith the VCG mechanism could not guarantee truthfulness. 

Consequently, to compose a truthful and computationally effi-

ient mechanism, we have to propose a non-VCG mechanism. We

ext present the design of an approximate algorithm for solving

BDP. 

In fact, many existing approximation algorithms have been de-

eloped for solving the MWSC. They can be categorized into two

lasses. The first class is exact approaches. However, most exact al-

orithms require substantial computation time [25] , failing to effi-

iently solve the location-sensitive weighted task assignment prob-

em especially when the problem scale is large. For example, Chu-

ak et al. [26] regard MWSC as an integer programming (IP) prob-

em, and adopt the primal-dual algorithm to transfer the primal IP

roblem to the linear programming (LP) problem, and obtain the

nal integer solution through handling the fractional solution. Fur-

hermore, the integrality gap acts as the approximation ratio. As

nother example, Li et al. [27] achieve a comparable constant com-

etitive ratio according to the primal-dual algorithm. 

The other class is heuristic approaches [25] , generally used for

nding a near-optimal solution with reasonable time complexity.

he natural heuristic method is the greedy method because of its

implicity and convenient implementation. Similar to our work, the

xisting work [28] also adopts the greedy strategy to solve the

nown MWSC. However, we apply the greedy algorithm into solv-

ng the practical location-sensitive weighted task assignment prob-

em, and further achieve a constant competitive ratio. Some other

orks [29,30] have tried to improve the greedy method by intro-

ucing the perturbed weight. The theoretical proof demonstrates

hat the randomized greedy method achieves a better theoretical

ompetitive ratio than the pure greedy approach. Nevertheless, the

andomness in the modified greedy method may fail in the realis-

ic scenario, leading to the poor performance. Therefore, we adopt
 natural greedy method to solve WBDP. The details of the approx-

mation method will be shown in next section. 

.2. Approximate method to solve WBDP 

To achieve the desired property of computational efficiency, we

ropose an approximate algorithm to solve WBDP. To make it un-

erstood easily, we first assume that each smartphone reports its

ids truthfully, and then demonstrate that each smartphone would

bey the rule of truthfulness in the next section. 

The algorithm adopts a greedy strategy to solve the problem.

he main idea is to pick the next most cost-efficient bid that

akes the towards finishing all sensing tasks until the all sensing

asks are assigned. Considering that each category i has its own

ask weight w i , we redefine the ranking criterion in definition 2.7.

s is different from our prior work, Feng et al. [23] regard each

ensing task as the same for location-aware collaborative sensing.

owever, for our case, the bid βk 
i 

= (Q 

k 
i 
, b k 

i 
) with high claimed cost

 

k 
i 

but high total task weights w (Q 

k 
i 
) = 

∑ 

t i ∈ Q k i 

w (t i ) where each task

 i is mapped to some category i and w (t i ) = w i may win. Thus, the

id with the minimal cost per weight would win in each selection.

ore specifically, for each bid βk 
i 

= (Q 

k 
i 
, b k 

i 
) , its progress towards

he goal is the ranking criterion r(βk 
i 
) and is computed as follows:

(βk 
i ) = 

b k 
i 

w (Q 

k 
i 

− ˜ Q ) 
, (7) 

 (Q 

k 
i − ˜ Q ) = 

∑ 

t i ∈ Q t s − ˜ Q 

w (t i ) , (8) 

here ˜ Q denotes the task coverage of all winning bids, i.e., ˜ Q =
 

Q 

s 
t and 

˜ Q = ∅ initially, βs 
t denotes each bid that has won before

k 
i 

. w (Q 

k 
i 

− ˜ Q ) denotes the total weights of sensing tasks each of

hich belongs to Q 

k 
i 

but not ˜ Q . In each iteration, ˜ Q and r(βk 
i 
)

s updated and all bids that could not be selected together with

xisting winning bids are deleted. The pseudo-code is shown in

lgorithm 1 . 

Illustrating example . Fig. 4 gives the settings of a simple ex-

mple. There are 6 sensing tasks, each weight of which is demon-

trated. Meanwhile, 4 bids are submitted in total on the platform.

or smartphone 1 , it bids for task 1 , 2 , 3 , 4 and claims a cost of 10 .

ccording to Algorithm 1 , smartphone 4 wins as the first winning

id because it has the lowest rank r 4 = 

2 
2+2 = 0 . 5 , however, the

anks of other smartphones are r 1 = 2 , r 2 = 

8 
3 , r 3 = 1 respectively.

imilarly, we select the next winning bid, smartphone 1 with rank

 1 = 2 . Then the approximation algorithm covers all sensing tasks

nd stops after 2 iterations. 
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Algorithm 1: Approximate Algorithm for WBDP. 

Input: set T = { t 1 , t 2 , · · · , t m 

} of sensing tasks, set B = 

⋃ 

i ∈ N B i 
of all submitted bids, maximum number r i of winning bids 

for user i , weight w (t i ) of each sensing task. 

Output: set S of winning bids, social cost ω, set W of total 

weight of cost-efficient subset of tasks corresponding to 

winning bids. 

// Initialization 

1: S ← ∅ , ω ← 0 , ˜ Q ← ∅ ; 
2: while ˜ Q 
 = T do 

3: for all βk 
i 

in B do 

4: if Q 

k 
i 

⊆ ˜ Q then 

5: Remove βk 
i 

from the set B ; 

6: else 

7: r(βk 
i 
) = 

c k 
i 

w (Q k 
i 
− ˜ Q ) 

; 

8: end if 

9: end for 

10: Sort r(βk 
i 
) for all βk 

i 
∈ B in the nondecreasing order and 

the list is denoted by R ; 

//Add a bid into the set of winning bids 

11: βt 
s denotes the head of R ; 

12: w (βt 
s ) = 

∑ 

t i ∈ Q t s − ˜ Q 

w (t i ) denotes the total weight 

corresponding to cost-efficient subset of tasks of Q 

t 
s − ˜ Q 

for winning bid βt 
s ; 

13: S ← S 
⋃ 

βt 
s , ω ← ω + c t s , ˜ Q ← 

˜ Q 

⋃ 

Q 

t 
s , 

W ← W 

⋃ 

w (βt 
s ) ; 

14: Remove βt 
s element from B ; 

//Delete bids that conflict with βt 
s 

15: for all βk 
i 

in B do 

16: if βk 
i 

conflicts with βt 
s then 

17: Delete βk 
i 

; 

18: end if 

19: end for 

20: end while 

21: return S, ω, W ; 
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3.3. Critical payment scheme 

The payment to each smartphone should be such determined

that it is guaranteed that each smartphone honestly reports its real

cost. The rule of critical payment introduced in [24] is used to de-

termine the payment to each smartphone. 

Each smartphone i is paid an amount of monetary reward for

each winning bid βk 
i 

. The amount is determined according to a

critical bid c(βk 
i 
) , which is determined as follows: if βk 

i 
satis-

fies r(βk 
i 
) ≤ r(c(βk 

i 
)) bid βk 

i 
wins, while the bid loses if r(βk 

i 
) >

r(c(βk 
i 
)) . The critical bid of each bid βk 

i 
is the first bid that makes

βk 
i 

fail. The bid βk 
i 

fails when no progress it could make towards

completing all sensing tasks, i.e., Q 

k 
i 

⊆ ˜ Q . The payment to βk 
i 

would

be related to the claimed cost of its critical bid c(βk 
i 
) and the pay-

ment is called critical payment. 

The critical bid of a bid βy 
x is the first bid βk 

i 
which makes βy 

x 

useless any longer, i.e., all existing winning bids could do all that

βy 
x could do. The basic idea of finding the critical bid is deleting βy 

x 

and greedily selecting other bids as shown in Algorithm 1 until βy 
x 

is useless ( Q 

y 
x − ˜ Q = ∅ ). We assume that βk 

i 
is the critical bid and

it wins in the q -th iteration. Then, the winning bid denoted by βy 
x 

is paid an amount of money which is proportional to the ranking

criterion of βk 
i 

in that iteration. If we denote the ranking criterion
f βk 
i 

in the q -th iteration as r q (βk 
i 
) , the critical payment is 

p c (β
y 
x ) = w (βy 

x ) · r q (βk 
i ) , (9)

here w (βy 
x ) denotes the total weight corresponding to its cost-

fficient subset of tasks Q 

y 
x − ˜ Q when bid βy 

x wins in Algorithm 1 .

he algorithm is shown in 2 . 

Algorithm 2: Critical payment scheme for TMDP. 

Require: bid βy 
x , total weight w (βy 

x ) of cost-efficient subset of 

tasks corresponding to bid βy 
x , other submitted bid 

B −(x,y ) = { βt 
s | s 
 = x 

∧ 

t 
 = y } . 
Ensure: critical bid c(βy 

x ) , critical payment p c (β
y 
x ) . 

1: p c (β
y 
x ) ← 0 , ˜ Q ← ∅ ; 

2: while ˜ Q 
 = T do 

3: for all βk 
i 

in B −(x,y ) do 

4: if Q 

k 
i 

⊆ ˜ Q then 

5: Remove βk 
i 

from the set B −(x,y ) ; 

6: else 

7: r(βk 
i 
) = 

c k 
i 

w (Q k 
i 
− ˜ Q ) 

; 

8: end if 

9: end for 

10: Sort r(βk 
i 
) for all βk 

i 
∈ B −(x,y ) in the nondecreasing order 

and the list is denoted by R ; 

11: βt 
s denotes the head of R ; 

12: if βt 
s conflicts with existing winning bids then 

13: CONTINUE; 

14: end if 

15: if Q 

y 
x ⊆ ˜ Q 

⋃ 

Q 

t 
s then 

16: c(βy 
x ) ← βt 

s , p c (β
y 
x ) ← w (βy 

x ) · r(βt 
s ) . 

17: RETURN c(βy 
x ) , p c (β

y 
x ) ; 

18: end if 

19: ˜ Q ← 

˜ Q 

⋃ 

Q 

t 
s ; 

20: Remove βt 
s from B −(x,y ) ; 

21: end while 

Thus, the payoff of each bid is derived as follows. 

 (βy 
x ) = 

{
w (βy 

x ) · r q (βk 
i 
) − c y x βy 

x ∈ S 

0 βy 
x 
∈ S 

, (10)

here βy 
x 
∈ S, u (βy 

x ) = 0 means that losing bids are associated with

o payment. The payoff of smartphone x is the sum of all its win-

ing bids, u x = 

∑ 

βy 
x ∈ S u (β

y 
x ) . 

Illustrating example . we have obtained the solution for win-

ing bids determination problem from Fig. 4 , i.e. , smartphone 4 , 1

in. Furthermore, we illustrate the payment scheme for all the

inning bids. For the payment of smartphone 4 , we excludes it

rom the bidding list. Then we run Algorithm 1 to pick the cur-

ent winning bid, smartphone 3 with rank r 3 = 1 . Fortunately, the

ubset of tasks according to its bid covers all the sensing tasks

martphone 4 bids for. Then the payment of smartphone 4 is

p c (4) = 4 ∗ 1 = 4 . Similarly, for another winning bid, the payment

or smartphone 1 is p c (1) = 5 ∗ 3 = 15 . 

. Theoretical analysis 

In the section we present theoretical analysis, demonstrating

hat our mechanism achieves the desired properties of truthful-

ess, individual rationality and computational efficiency. 

.1. Individual rationality and truthfulness 

To demonstrate that our mechanism is truthful, we should re-

eal that each smartphone will honestly disclose its real costs
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s  
hen the strategies of other smartphones are fixed. According to

24] , our proposed mechanism is truthful if and only if the follow-

ng two conditions hold: (1) the winning bids determination algo-

ithm for WBDP is monotonic , and (2) each winning bid is paid the

ritical value . 

Before showing our mechanism satisfies the two conditions, we

rst define the two conditions of monotonicity and critical value. 

efinition 8 (Monotonicity) . For each bid βk 
i 
, if βk 

i 
= (Q 

k 
i 
, c k 

i 
) wins,

hen bid 

˜ βk 
i 

also wins, ˜ βk 
i 

= (Q 

k 
i 
, c k 

i 
− δ) and δ > 0. 

efinition 9 (Critical value) . For each bid βk 
i 
, there is a critical

alue γ k 
i 

. If bid βk 
i 

declares a cost that is lower than or equal to
k 

i 
, it must win; otherwise; it will not win. 

Next, we prove our mechanism is truthful by showing that it

atisfies both the two conditions. 

emma 1. Algorithm 1 is monotonic. 

roof. Suppose bid βk 
i 

wins in the q -th iteration. In the previous

terations, a number of winning bids have been determined. Let

 sorted list L = (ξ 1 , ξ 2 , · · · ) store these winning bids in the order

hat they have been determined. Suppose βk 
i 

is in the q -th place in

he list. Assume bid βk 
i 

was replaced by another bid 

˜ βk 
i 

= (Q 

k 
i 
, ̃  b k 

i 
) ,

here ˜ b k 
i 

= b k 
i 
− δ. According to the rule of determining a winning

id in Algorithm 1 , we have the conclusion as follows: 

( ̃  βk 
i ) = 

˜ b k 
i 

w (Q 

k 
i 

− ˜ Q ) 
≤ r(βk 

i ) , (11)

here two ranking criterions have the same denominator, the to-

al weight of cost-efficient subset of sensing task Q 

k 
i 

− ˜ Q . Because

e pick the cost-efficient bid in each iteration, bid 

˜ βk 
i 

must have

on in the q -th or an even earlier iteration. This proves that

lgorithm 1 is monotonic. �

emma 2. Each winning bid is paid the critical value. 

roof. Assume that a winning bid βy 
x is (Q 

y 
x , p c (β

y 
x )) with the to-

al weight w (βy 
x ) corresponding to the subset of its cost-efficient

asks, and its critical bid βt 
s wins in the q -th iteration, according

o the payment rule from Algorithm 2 , we have p c (β
y 
x ) = w (βy 

x ) ·
 

q (βt 
s ) . It is obvious that a bid 

˜ βy 
x = (Q 

y 
x , p c (β

y 
x ) + δ) , δ > 0 whose

laimed cost is higher than βy 
x would lose, because 

 

q ( ̃  βy 
x ) = 

p c (β
y 
x ) + δ

w (βy 
x ) 

> r q (βt 
s ) (12)

hich means that its critical bid βt 
s will be picked according

o Algorithm 1 . Furthermore, bid 

˜ βy 
x could not win in the fol-

owing iterations because Q 

y 
x ⊆ ˜ Q 

q . On the contrary, a bid 

˜ βy 
x =

(Q 

y 
x , p c (β

y 
x ) − δ) , δ > 0 whose claimed cost is lower than βy 

x would

till win, because in the q -th iteration r q ( ̃  βy 
x ) < r q (βt 

s ) . The reason

s that our algorithm still selects the bid 

˜ βy 
x with the lower rank-

ng criterion and declines its critical bid βt 
s . This demonstrates that

p c (β
y 
x ) is the critical value. �

heorem 2. The proposed auction mechanism is truthful. 

According to [24] , this theorem easily follows from

emma 1 and Lemma 2 . 

heorem 3. The proposed auction mechanism has the property of in-

ividual rationality. 

roof. For a smartphone x that has no winning bids, its payoff is

ero, i.e. , u x = 0 . For a smartphone x with winning bids, its payoff

s u x = 

∑ 

βy 
x ∈ S u (β

y 
x ) . Next, we show that each u (βy 

x ) is nonnega-

ive, e.g., u (βy 
x ) ≥ 0 . In consideration of u (βy 

x ) = p c (β
y 
x ) − c 

y 
x , mean-

hile, we have p c (β
y 
x ) = w (βy 

x ) · r q (βt 
s ) and b 

y 
x = w (βy 

x ) · r q (βy 
x )
ccording to the payment rule and the allocation result from

lgorithm 2 and Algorithm 1 respectively. Because r q (βy 
x ) ≤ r q (βt 

s ) ,

urthermore, we prove that our proposed mechanism is truthful,

e have c 
y 
x = b 

y 
x . Thus, for each winning bid βy 

x , we have its crit-

cal value must be larger than its claimed cost, i.e., p c (β
y 
x ) ≥ c 

y 
x .

hen for each winning bid βy 
x that truthfully reports its real cost,

ts payoff is u x = p c (β
y 
x ) − c 

y 
x ≥ 0 . �

.2. Computational efficiency 

We next analyze the computation complexity of the two algo-

ithms proposed by our mechanism. 

emma 3. Algorithm 1 for winning bids determination has

olynomial-time computation complexity. 

roof. Since the computation complexity of the total weight ac-

ording to line 12 is O (1), it has no impact on the total com-

lexity. We neglect it in the next proof. The complexity of the

rst for loop (line 3–9) and the second for loop (line 15–19)

n Algorithm 1 is O (| B |). The operation of sorting in line 10 is

 (| B | · log | B |). Thus, the aggregate complexity of a single iteration

f the outer while is O (| B | · log | B |). Since the outer loop is run at

ost | T | times, it is easy to compute the total computation com-

lexity of Algorithm 1 which is O (| T | · | B | · log | B |). �

emma 4. Algorithm 2 for critical payment determination has

olynomial-time computation complexity. 

roof. The outer while loop is run at most | B | times because in

ome steps ˜ Q does not expand. In each iteration of the outer while

oop, there are two for loops and an operation of sorting. The com-

utation complexity of the first for loop is O (| B |). The computa-

ion complexity of the sorting operation is O (| B | log | B |). The com-

utation complexity of the second for loop (removing conflicting

ids in line 12) is O (| T |). Thus, the total computation complexity is

 (| B | · (| B | log| B | + | T | )) . �

.3. Approximation ratio analysis 

Next, we analyze the approximation ratio achieved by

lgorithm 1 . 

heorem 4. Algorithm 1 can approximate the optimal solution within

 factor of H ( m ), where m is the maximum number of sensing tasks

hat a smartphone can accommodate, i.e. , m = max 
βk 

i 
∈ B {| Q 

k 
i 
|} ≤ | T |

nd H(m ) = 

∑ m 

i =1 
1 
i 

≈ ln m . 

roof. When Algorithm 1 chooses a bid βk 
i 
, imagine that each

lement in the set Q 

k 
i 

− ˜ Q introduces a part of the social cost.

hen, the total social cost of all winning bids selected by

lgorithm 1 equals the amount of the sum of social cost introduces

n all iterations. 

Consider an arbitrary winning bid βk 
i 

= (Q 

k 
i 
, c k 

i 
) , Q 

k 
i 

=
 t n , · · · , t 1 } , βk 

i 
∈ I. Suppose that the elements of Q 

k 
i 

is cov-

red in the order of t n , t (n −1) , · · · . At the beginning of iteration

n which Algorithm covers t j of Q 

k 
i 
, at least j elements of Q 

k 
i 

s uncovered, i.e. , in Q 

k 
i 

− ˜ Q . Furthermore, any one x of j ele-

ents can be mapped to some category denoted by k x where

 x ∈ [1 , 2 , . . . , K] , indicating that the element x belongs to the

ategory k x with the corresponding weight w (x ) , x = 1 , 2 , . . . , j.

hus, if the algorithm chooses βk 
i 

in that iteration, element t j 

ntroduces at most 
c k 

i ∑ j 
x =1 

w (x ) 
. Different from Feng et al.’s work [23] ,

ach element t j has its own weight w ( t j ), introducing the diverse

ocial cost 
c k 

i ∑ j 
x =1 

w (x ) 
. However, for Feng et al.’s work [23] , the social
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cost introduced by element t j is 
c k 

i 
j 

in corresponding to each task

with weight 1. For the symbolic simplification, let the notation

w (x ) = w x , for any x = 1 , 2 , . . . , j. Let W denote 
∑ j 

x =1 
w (x ) . Then,

the social cost introduced by all elements in Q 

k 
i 

is computed as

follows: 

n ∑ 

j=1 

c k 
i 

W 

= 

c k 
i 

w 1 

+ 

c k 
i 

w 1 + w 2 

+ · · · + 

c k 
i 

w 1 + · · · + w n 
(13)

≤ c k 
i 

1 

+ 

c k 
i 

2 

+ · · · + 

c k 
i 

n 

(14)

= c k i ·
(

1 

1 

+ 

1 

2 

+ · · · + 

1 

n 

)
(15)

1 

1 

+ 

1 

2 

+ · · · + 

1 

n 

≈ ln ( n ) (16)

n ∑ 

j=1 

c k 
i 

W 

≤ c k i ln ( n ) = H ( n ) c k i (17)

In consideration of w x ≥ 1, the derivation from (13) to

(14) holds. Summing over each βk 
i 

∈ I, the social cost ob-

tained by Algorithm 1 is ˜ ω ≤ ∑ 

βk 
i 
∈ I H (n ) c k 

i 
≤ H (m ) 

∑ 

βk 
i 
∈ I c 

k 
i 

and m = max {| Q 

k 
i 
|} . The optimal social cost ω 

∗ is 
∑ 

βk 
i 
∈ I c 

k 
i 
, and

then, ˜ ω ≤ H(m ) · ω 

∗. �

4.4. The upper bound of sets analysis 

Finally, the maximum number of winning bids by the approx-

imation algorithm is discussed, inducing an upper bound α com-

pared to that of the optimal solution. 

Theorem 5. The number | S | of winning bids by Algorithm 1 has

achieved an upper bound α = ln (| �| ) compared to the number | O |

of the optimal solution, where � = 

∑ m 

i =1 w (t i ) is the total weights of

all sensing tasks T for any t i ∈ T, i.e., | S | ≤ ln (| �|)| O |, when all the sub-

mitted bids have the same claimed bid price. 

Proof. Compared to Feng et al.’s work [23] , we highlight the dif-

ference as the sensing task with diverse task weight. Therefore, we

have to convert different tasks to the virtual tasks with the same

weight 1. Consider all sensing tasks are T = { t 1 , t 2 , · · · , t m 

} with the

corresponding weight w ( t i ) for any t i ∈ T . Suppose that task t j has

weight w (t j ) = 1 , then t j ′ with weight w (t j ′ ) = k has k elements t j
respectably. Thus, sets of the original sensing tasks can be trans-

ferred into a universal set with the number | �| = 

∑ m 

i =1 w (t i ) of

elements with the same weight 1. When all the submitted bids

have the same claimed cost, according to Algorithm 1 , we have

the most cost-efficient bid is one with the most uncovered sens-

ing tasks. Furthermore, assume that the optimal solution produces

the number | O | of winning bids to cover all elements. Firstly, we

observe that the first set picked by Algorithm 1 covers at least | �| 
| O | 

elements. Otherwise, the number of winning bids obtained by the

optimal solution would exceed | O |. Then we have the remaining

uncovered elements | �1 | as follows: 

| �1 | ≤ | �| − | �| 
| O | (18)

Next, one of the remaining winning sets has to cover at least 
| �1 | | O |−1 

elements because of the limit of the number of given optimal bids

| O |. Thus, after Algorithm 1 chooses the most cost-efficient bid to

cover the maximum uncovered elements, we still have the uncov-

ered elements as follows: 

| �2 | ≤ | �1 | − | �1 | 
| O | − 1 

= | �1 | ·
(

1 − 1 

| O | − 1 

)
(19)
| �1 | ·
(

1 − 1 

| O | 
)

(20)

| �| ·
(

1 − 1 

| O | 
)2 

(21)

s a consequence, for any iteration i , the derivative result is shown

s follows: 

 �i +1 | ≤ | �i | ·
(

1 − 1 

| O | 
)

≤ | �| ·
(

1 − 1 

| O | 
)i +1 

(22)

urthermore, suppose that after k iterations, our approximation al-

orithm covers all elements of the universal set. Therefore, the

umber | S | of winning bids obtained by Algorithm 1 is equal to

 . According to the derivation from (22) , we have uncovered ele-

ents after k iterations as follows: 

 �k | ≤ | �| ·
(

1 − 1 

| O | 
)k 

(23)

inally, when the upper bound from (23) is less than 1, then

lgorithm 1 achieves all elements covered. The proof is derived as

ollows: 

 �| ·
(

1 − 1 

| O | 
)k 

≤ 1 (24)

1 − 1 

| O | 
)k 

≤ 1 

| �| (25)

1 − 1 

| O | 
)| O |· k 

| O | 
≤ 1 

| �| (26)

 

− k 
| O | ≤ 1 

| �| (27)

ln (| �| ) ≥ k 

| O | (28)

onsidering that we have known knowledge as follows: 

(1 − x ) 
1 
x ≈ 1 

e 
(29)

he derivation from (26) to (27) holds. Thus, we have k ≤ ln (| �|)| O |.

hen we prove that the number of winning bids achieved by our

pproximation algorithm has α = ln (| �| ) upper bound compared

o the optimal number | O |. �

. Performance evaluation 

.1. Methodology and simulation settings 

We evaluate the performance of the proposed mechanisms with

xtensive simulations based on a real data set of location traces.

he real location traces were collected from around 2600 taxis

n Shanghai, as used in prior studies [31,32] . For each taxi, its

PS coordinate (longitude and latitude) and the corresponding ID

ere recorded every 30 to 60 s. The taxis operate in Shanghai, the

argest city in China which covers an area of 6340 km 

2 . In a sim-

lation, we take the locations of a subset of the taxis at a certain

ime snapshot. For different simulations, we take different snap-

hots. We assume that a smartphone is carried by the passenger

r the driver of a selected taxi. 

To evaluate the performance of our mechanism, we use the fol-

owing metrics: social cost, overpayment ratio, individual rational-

ty, running time, approximation ratio and α-sets approximation ratio .

he overpayment is the difference between the total payment to
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Table 2 

Summary of default settings. 

Parameter name Default value 

Number of smartphones n 500 

Number of sensing tasks m 40 

Cost range R [0,50] 

Average cost μ 25 

Maximum number r i of bids a user could receive 3 

Fig. 5. Overpayment ratio vs. Number of smartphones n . 
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Fig. 6. Overpayment ratio vs. Number of sensing tasks m . 

Fig. 7. Overpayment ratio vs. Average cost μ. 

c  

t  

o  

b  

i  

o

 

t  

e  

r  

o  

o  

t  

s  

s

 

a  

1  

c  

c  

t  

c  

r  

c  

p  

μ  

r

 

c  

p  

b  

p  

t  

o  

w  

t  

o

ll contributing smartphones and the social cost. The overpayment

easures the cost paid by the platform (or smartphone sensing

pplications) to induce truthfulness of all smartphones. We define

he overpayment ratio to measure the overpayment. 

efinition 10 (Overpayment ratio) . The overpayment ratio is the

atio of overpayment to the social cost. It is computed as 

= 

P − ω 

ω 

, (30) 

here P denotes the total payment. 

In a simulation, location attributes of sensing tasks are uni-

ormly distributed in the whole area of the Shanghai. We gener-

te real costs of bids according to three distributions, i.e. , uniform

istribution (UNM), normal distribution (NORM) and exponential

istribution (EXP). Each experiment is conducted with each of all

hree distributions. In a simulation, we vary the mean μ of real

osts from 15 to 25. The normal distribution sets such a standard

eviation σ that 99.73% of samples falling within [ μ − σ, μ + σ ] ,

.e. σ = 

50 −μ
3 . Meanwhile, the weight of each sensing task is var-

ed with [1, 5] for simplicity. For another significant parameter, the

aximum number of sensing tasks that a smartphone can accom-

odate, in general, we stimulate it with 3. It is worth noting that

e assume that more than 2 smartphones bid for the same task for

educing the uncertainty of duopoly. The default settings of other

arameters are summarized in Table 2 . Each data point is the av-

rage of 20 independent runs under the same setting. 

.2. Evaluation of overpayment ratio 

Fig. 5 plots the overpayment ratio when the number of smart-

hones changes from 400 to 1,0 0 0. We can see that the overpay-

ent ratio keeps low when the number of smartphones increases.

he overpayment ratio is always lower than 3 for all three kinds

f distributions. The overpayment ratio of the exponential distri-

ution is larger than those of the other two distributions. This is

ecause, with the exponential distribution, if the real cost of its

ritical bid locates in the tail of the exponential distribution, the

verpayment is relatively large. The consequence occurs occasion-

lly when the number of bids corresponding to some sensing task

s near 2. The overpayment ratio of normal distribution is lower

han those of the uniform distribution and exponential distribu-

ion. With the normal distribution in our default settings, the real
ost of the critical bid of a smartphone is closer to μ. Meanwhile,

he smartphone has a real cost near to μ. However, the real costs

f a smartphone vary within cost range R for the uniform distri-

ution. Thus, The real cost of the critical bid for the smartphone

s possibly much larger than his claimed cost, inducing the high

verpayment ratio. 

Fig. 6 shows that with the increasing number of sensing tasks,

he overpayment ratio decreases and smoothes gradually close to

ach stationary point for all three distributions. The overpayment

atio of the normal distribution still holds down, however, that

f the exponential distribution fluctuates around the curve of the

verpayment ratio of the uniform distribution, indicating those of

wo distributions show the similar property. Meanwhile, we ob-

erve that the overpayment ratio under three distributions remains

mall as the number of sensing tasks becomes larger. 

Then, in Fig. 7 , the overpayment ratio is evaluated when the

verage of real costs increases. The mean of real costs varies from

5 to 25. Under the normal distribution, the overpayment ratio de-

reases slightly with the average of real costs increases. This is be-

ause, lower average of real costs produces higher standard devia-

ion σ according to σ = 

50 −μ
3 . Furthermore, larger σ produces real

osts of bids with large deviation, thus inducing high overpayment

atio. However, the overpayment of the exponential distribution in-

reases considerably because the claimed cost of winning bids is

ossibly much smaller than that of the critical bid with average

= 25 . Finally, from the figure, we can see that the overpayment

atio does not exceed 3 under three distributions. 

From Fig. 8 , we can observe that the overpayment ratio de-

reases with multiple changes of generative real costs diminish. In

articularly, the overpayment ratio under cost range R with lower

ound 0 is higher because our approximation algorithm tends to

ick the most cost-efficient bid with the real cost near to 0. Fur-

hermore, the much higher real cost of critical bid leads to higher

verpayment ratio. Meanwhile, we can see for the cost range R

ith lower bound 10, the overpayment ratio under the three dis-

ributions has a minor distinction because the generated real costs

f smartphones have little multiple difference. 
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Fig. 8. Overpayment ratio vs. Cost range R . 

Fig. 9. Social cost vs. Number of smartphones n . 

Fig. 10. Social cost vs. Number of sensing tasks m . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Social cost vs. Average cost μ. 

Fig. 12. Social cost vs. Cost range R . 

Fig. 13. approximation ratio vs. number of smartphones and sensing tasks. 
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5.3. Evaluation of social cost 

Fig. 9 depicts the performance of social cost with the number

of smartphones being varied from 400 to 1,0 0 0. The social cost de-

creases when the number of smartphones increases. This is be-

cause when there are more smartphones, the platform can find

more cheap smartphones to perform the sensing tasks. The so-

cial cost of the exponential distribution is lower than those of the

other two distributions since there exists a larger percent of smart-

phones of low real costs. The social cost of the normal distribu-

tion is much higher than those of other two distributions because

the real cost of most smartphones falls with [ μ − σ, μ + σ ] , thus

there are fewer smartphones with low real costs. Meanwhile, for

the exponential distribution and uniform distribution, the smooth

of two curves since the number of smartphones n > 800 is caused

by a large percent of smartphones with low real costs produced as

winning bids. 

Fig. 10 plots the social cost when the total number of sensing

tasks varies from 10 to 50. With more sensing tasks, the platform

must employ more smartphones. Thus, more resources are con-

sumed, incurring a higher social cost. The social cost of the expo-

nential distribution is smaller than those of the other two distri-

butions again because the exponential distribution produces more

smartphones with low costs. When the number of sensing tasks m

is larger, the social cost of the normal distribution is much larger

than those of other two distributions. The reason lies in a large
ercent of bids with high costs produced by the normal distribu-

ion. Meanwhile, we observe that the social cost of the uniform

istribution is slightly larger than that of the exponential distribu-

ion because of the real costs produced by the uniform distribution

ossibly with slightly less low costs. 

In Fig. 11 , the social cost rises with the average real cost in-

reases. When the average of real costs goes up, the mobile sens-

ng applications are less likely to find cheap smartphones, thus in-

urring a higher social cost. The increase of the exponential distri-

ution is rather smaller since there are more cheap smartphones

han that of the other two distributions. 

From Fig. 12 , we can observe that the social cost under cost

ange R with lower bound 0 is lower than that under R with lower

ound 10 because our approximation algorithm tends to pick the

ost cost-efficient bid with the real cost near to 0, inducing much

ower social cost. 

.4. Evaluation of approximation ratio 

We adopt the real costs subjecting to the uniform distribution

o conduct a series of experiments related to approximation ra-

io. Fig. 13 plots approximation ratios under different settings. The

ar of the theoretical approximation ratio ln ( m ) rises with m =
ax 

βk 
i 
∈ B {| Q 

k 
i 
|} , the maximum number of each sensing task that a

martphone can accommodate increases. For all five settings, m is

ncreased one by one. From Fig. 13 , we observe that each actual
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Fig. 14. Empirical CDF of payoffs for all smartphones. 

Fig. 15. α-sets approximation ratio vs. number of smartphones and sensing tasks. 
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Fig. 16. Evaluation of computation efficiency (y-axis in log scale). 
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pproximation ratio is lower than the theoretical value, indicating

he correctness of our theoretical approximation ratio. We can see

hat the approximation ratio is slightly larger than 1, meaning the

alidity of our approximation algorithm. 

With the real location traces, the actual maximum number of

ensing tasks that a smartphone can accommodate is usually small

nd thus the upper bound of the approximation ratio is close to 1.

.5. Evaluation of individual rationality 

The basic property of an incentive mechanism is to guarantee

hat each smartphone is individually rational. In Fig. 14 , we plot

he empirical CDF of the payoffs for all smartphones. We can ob-

erve that the payoff of over 97% smartphones is equal to zero, in-

icating that only a few are selected as the winning bids. However,

here is a vast majority of smartphones competing for the same

ask so as to avoid the monopoly, which is consistent with our

ase. Finally, from the figure, we can see that no smartphone has a

egative payoff, thus demonstrating that our mechanism achieves

he property of individual rationality. 

.6. Evaluation of α-sets approximation ratio 

To prove the correctness of our analysis for the upper bound

f sets α, we utilize Fig. 15 to demonstrate α-sets Approximation

atio computed as α = ln (| �| ) , meaning that the upper bound of

ets of our approximation algorithm divided by that of the optimal

olution. According to Fig. 15 , we observe that each actual α-sets

pproximation ratio is lower than the theoretical value, indicating

he correctness of our theoretical α-sets approximation ratio. Thus,

ur simulation shows that our approximation algorithm only picks

· | O | winning bids at most, where | O | is the sets of the optimal

olution. 

.7. Evaluation of computation efficiency 

We compare the running time of our mechanism with the op-

imal VCG mechanism (denoted by OPT ). Since the problem is NP

ard , we can only obtain the optimal solution when the problem
cale is small ( e.g., n ≤ 120, m ≤ 9). The OPT employs a backtrack-

ng approach to find the optimal solution and a VCG-style payment

cheme to guarantee truthfulness. In Fig. 16 , we show the running

ime in various settings. We can clearly see that our algorithm uses

ignificantly shorter time than the optimal algorithm. For example,

n the 4th set of bars, our mechanism uses only 3 milliseconds, but

PT uses more than 2 min.. 

. Related work 

We review related work from two parts, deterministic alloca-

ion and mechanism design. The deterministic allocation only em-

hasizes on the task allocation and neglects the payment scheme.

owever, mechanism design contains both sides. In particular, we

ake a detailed introduction from three aspects, including incen-

ive schemes with strategic users, incentive schemes with cooper-

tive users, and privacy preservation. Other works like [33,34] ex-

loit the auction to employ the cloud application. 

.1. Deterministic allocation 

There have been many existing work [35–39] in the determin-

stic allocation. However, they only consider the task allocation,

eglecting the payment determination problem or only making a

imple payment scheme. The consideration is unrealistic and fails

o motivate users to work better for the platform. He et al. [37] of-

er a near-optimal allocation approach in consideration of user’s

ime budget and sensing task with a specific location, aiming to

aximize the reward of the platform. Although the crucial dimen-

ion of location information is taken into consideration, the ap-

roximation algorithm LRBA [37] proposed by them cannot be ap-

lied to our case. 

.2. Mechanism design 

Incentives mechanism with strategic behaviors : In [20] , Wen

t al. provide a novel incentive mechanism in consideration of

uality of information (QOI) returned by smartphones, and tend

o exploit quality-driven auction against the strategic behaviors

f users. Zhang et al. in [17] adopt repeated game to match

martphone users with platform users, taking the maintenance of

martphone users’ reputation model into consideration. In [16] ,

wo incentive mechanisms are designed for a user-centric model

nd a platform-centric model, respectively. In the platform-centric

odel, the platform first announces the total amount of money

hat the platform is willing to pay, and then each smartphone de-

ides the time it would like to provide the sensing service. In the

ser-centric model, the objective is system-wide. If a sensing task

s finished, it would receive some benefit. The goal is to select a

ubset of smartphones, maximizing the overall gain. 

However, they only consider the single preference of a user,

hich means a user only submits a single bid and it would win

or performing all sensing tasks in the bid or not at all. Such an
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assumption is not realistic for mobile crowd sensing with location-

sensitive weighted tasks, failing to make the best use of the sens-

ing capabilities of all smartphones. Similarly, they assume that

only a single bid is submitted by each user in other related work

[27,40] . Meanwhile, in [27] , Li et al. provide a randomized auction

but only achieve the approximate-truthfulness. 

In [22] , the authors design a truthful incentive mechanism for

three models of mobile crowd sensing applications. They assume

that only the collective effort s from winning service providers pro-

mote the success of service requester’s tasks. Each service provider

submits the interested tasks and claimed cost. The platform as

auctioneer decides the allocation algorithm and relevant payment

scheme. The allocation algorithm fails to take the location into

consideration and could not be applied to our problem because of

the NP-hardness of winning bids determination problem. 

Incentives schemes with cooperative users : Some related work

proposing to provide monetary rewards to generally cooperative

users, such as [41–44] . Users are supposed to be well motivated

because they receive some monetary rewards. In [44] , the author

proposes a cooperative scheme to induce the partners to negotiate

the payment. Meanwhile, the source determines the best rewards

to buy the service the partners provide. In [41] , a subset of users is

greedily selected according to their locations and the total budget.

The algorithm aims to cover the largest area. In [42] , the users sell

sensed data to a service provider and a dynamic pricing scheme

is designed to stimulate more participants, thus achieving a better

quality of service. In [43] , it considers that a selfish user has the

demand of consuming data, and how much service it could con-

sume depends on how much she or he contributes to the partici-

patory sensing system. Thus, they have to consider how to satisfy

all users fairly and how to achieve a desirable result (maximized

social welfare) for the whole system. These existing studies do not

consider that cost information is private, and that users may mis-

report their real costs in order to maximize their own payoffs. As

a result, these incentive schemes are not truthful. 

Privacy preserving schemes : Privacy preserving is crucial to

mobile crowd sensing with smartphones. It has attracted many

research efforts, such as [19,45,46] . One smartphone is supposed

to report its sensed data, but it is reluctant to disclose its pri-

vate information, such as location, and identity. In [47] the au-

thor adopts an efficient encryption technique to achieve the de-

sired data aggregation without the leakage of mobile user’s privacy.

Some other studies [4 8,4 9] add noise or perturbation to original

sensory data for the purpose of anonymity. These papers usually

utilize k-anonymity or entropy to measure the leakage of privacy.

Our work, which has focused on designing incentive mechanisms

for mobile crowd sensing with location-sensitive weighted tasks,

can benefit from these existing schemes for protecting location pri-

vacy. 

7. Conclusion 

In this paper, we have investigated a truthful incentive mech-

anism for stimulating smartphone users to participate in mobile

crowd sensing applications with smartphones. In addition to sens-

ing tasks with diverse weights, the crucial dimension of location

information is uniquely taken into consideration in our design

of incentive mechanism, which is more consistent with the real

condition. Based on the reverse auction framework, we have de-

signed a truthful incentive mechanism which consists of winning

bids determination algorithm and a critical payment scheme. With

polynomial-time computation complexity, the near-optimal algo-

rithm for determining the cost-efficient winning bids can approx-

imate the optimal solution within a factor of 1 + ln (n ) , where n

is the maximum number of sensing tasks that a smartphone can

accommodate. Meanwhile, despite the suboptimal approximation
lgorithm, the proposed critical payment scheme can guarantee

ruthfulness. As an additional part, after the rigorous analysis, we

rove that the number of winning bids from the approximation so-

ution has an upper bound α compared to that of the optimal solu-

ion when all smartphone users have the same claimed bid price.

fter rigorous theoretical proof and extensive simulations, the re-

ults demonstrate that our mechanism achieves truthfulness, indi-

idual rationality and high computational efficiency. 
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