
1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 1

Assessing Invariant Mining Techniques
for Cloud-based Utility Computing Systems

Antonio Pecchia, Member, IEEE, Stefano Russo, Senior Member, IEEE,
and Santonu Sarkar, Member, IEEE

Abstract—Likely system invariants model properties that hold in operating conditions of a computing system. Invariants may be mined
offline from training datasets, or inferred during execution. Scientific work has shown that invariants’ mining techniques support several
activities, including capacity planning and detection of failures, anomalies and violations of Service Level Agreements. However their
practical application by operation engineers is still a challenge. We aim to fill this gap through an empirical analysis of three major
techniques for mining invariants in cloud-based utility computing systems: clustering, association rules, and decision list. The
experiments use independent datasets from real-world systems: a Google cluster, whose traces are publicly available, and a
Software-as-a-Service platform used by various companies worldwide. We assess the techniques in two invariants’ applications,
namely executions characterization and anomaly detection, using the metrics of coverage, recall and precision. A sensitivity analysis is
performed. Experimental results allow inferring practical usage implications, showing that relatively few invariants characterize the
majority of operating conditions, that precision and recall may drop significantly when trying to achieve a large coverage, and that
techniques exhibit similar precision, though the supervised one a higher recall. Finally, we propose a general heuristic for selecting
likely invariants from a dataset.

Index Terms—Invariants, Cloud, SaaS, Workload characterization, Anomaly detection.

F

1 INTRODUCTION

D YNAMIC INVARIANTS are properties of a program or a
system expected or observed to hold during executions.

Dynamic program invariants can be inferred from execution traces
as likely invariants [1], a relaxed form modeling properties which
hold during one or more executions, though not necessarily over
all possible executions. Program likely invariants have been shown
to support several software engineering activities [2] [3] [4] [5].

Likely system invariants [6] are attractive for modeling run-
time behavior of data centers and cloud-based utility computing
systems from a service operation viewpoint. They are operational
abstractions of their dynamics.

Due to the size and complexity of such systems, it is very
hard for human operators to detect application problems in real
time. Especially transient or silent errors occur rarely - e.g. in
case of overload, timing issues and exceptions - and often do
not cause an immediately observable failure such as a crash or
hang, hence are hard to detect. Typically, likely system invariants
hold in normal operating conditions; as such, their violations are
considered symptoms of execution malfunctions. By monitoring
execution and checking for broken invariants, it is possible to
automatically detect failures [7] and to request actions to the
operations personnel (e.g. jobs re-execution).

Defining invariants is pretty natural for cluster computing or
Software-as-a-Service (SaaS) platforms, and generally for sys-

• A. Pecchia is with the Consorzio Interuniversitario Nazionale per
l’Informatica (CINI), Via Cinthia, 80126, Napoli, Italy. E-mail:
antonio.pecchia@consorzio-cini.it.

• S. Russo is with Dipartimento di Ingegneria Elettrica e Tecnologie
dell’Informazione, Università di Napoli Federico II, Via Claudio 21, 80125
Napoli, Italy. E-mail: stefano.russo@unina.it.

• S. Sarkar is with the Birla Institute of Technology & Science, Pilani
K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa, India. E-mail:
santonus@goa.bits-pilani.ac.in.

Manuscript received July 30, 2016.

tems performing batch work, providing services to applications
often consisting of jobs, in turn comprising tasks. These systems
include monitoring and logging facilities1 collecting metrics -
e.g., job/task completion time, resource usage and status codes
- which can be used to establish invariants. Indeed, likely system
invariants have been shown to be effective for modeling execution
dynamics in a variety of service computing systems [8], and for
supporting a range of operational activities, including capacity
planning, detecting anomalous behaviors [9], silent failures [10],
and violations of service level agreements [11].

While previous scientific work has shown that invariant mining
techniques may be beneficial for the above goals, practitioners face
several problems, including (i) how to select a proper technique
for their analysis goals, (ii) how many invariants are needed, and
(iii) what accuracy they can expect. We cope with the challenge
of filling the gap between past studies and the concrete usage
of likely system invariants by operations engineers of cloud-
based utility computing systems. By empirically analyzing and
comparing techniques to mine invariants, we contribute to gain
quantitative insights into advantages and limits of such techniques,
providing operation engineers with practical usage implications
and a heuristic to select a set of invariants from a dataset.

The study focuses on three techniques: two unsupervised,
namely clustering and association rules, and one supervised, de-
cision list. They are applied to two independent datasets collected
in real-world systems: a cluster operated by Google, whose traces
from about 12,500 machines are publicly available, and a SaaS
platform in use by various medium- to large-scale consumer pack-
aged goods (CPG) companies worldwide. The datasets comprise
679,984 executions (correct and anomalous) of batch units of
work, namely jobs and transactions.

We explore the use of the techniques for two typical applica-
tions of invariant-based analysis, namely executions characteriza-

1. E.g., Nagios (www.nagios.org) and Ganglia (http://ganglia.info).

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 2

tion and anomaly detection. We assess them based on the widely
used metrics coverage, precision and recall. A sensitivity analysis
is performed to carefully explore the invariants returned by each
technique under different settings of the mining algorithms.

The key findings of the study are:

• The considered techniques provide a valuable support for
characterizing executions and detecting anomalies in an
automated way. For the SaaS cloud platform in particular,
using the mined invariants it was possible to provide
a valuable result to the service operation team of the
IT company, spotting true anomalies for a number of
transactions out of the seven month’s of operation data,
which were indeed missing and went unnoticed.

• A relatively small number of invariants hold in a majority
of system executions. For example, in the Google dataset
less than 10 invariants cover more than the 80% of job
executions (using association rules - Apriori algorithm).
Using further invariants does not increase coverage signif-
icantly. No few-fits-all invariants can be practically mined
to characterize all system executions. The coverage of the
correct executions is roughly 80%-90% for both datasets.

• Invariants are very sensitive to the coverage: small varia-
tions of the coverage impact significantly recall and preci-
sion. For instance, the recall of association rules (Apriori
algorithm) for the Google cluster drops from 0.54 to 0.33
when coverage increases from 68% to 77%; similarly,
when the coverage of clustering (DBSCAN algorithm)
raises from 87% to 92%, precision drops from 0.35 to
0.01 for SaaS. There seems to be a sort of threshold
phenomenon: recall/precision are strongly bound to the
coverage of the correct executions.

• Precision is surprisingly similar across the techniques; for
example, its maximum value in this study is about 0.7 in
the Google dataset.

• As for recall, the decision list supervised technique outper-
forms the unsupervised clustering and association rules.

• In spite of the best coverage, association rules are not well
suited for anomaly detection; notwithstanding the smaller
coverage, invariants mined by decision list achieve higher
recall/precision for anomaly detection.

• We propose a general heuristic for selecting a set of likely
invariants from a dataset.

The paper is structured as follows. Section 2 surveys related
work. Section 3 introduces the datasets used for experiments.
Section 4 presents the mining techniques. Section 5 describes the
evaluation metrics. Section 6 compares the techniques with respect
to typical applications of invariants, i.e., executions characteriza-
tion and anomaly detection. Section 7 provides practical recom-
mendations to practitioners and a heuristic to select invariants.
Section 8 discusses threats to the validity of the study. Section 9
contains concluding remarks.

2 RELATED WORK

Program invariants were introduced by Ernst et al., who presented
techniques for inferring likely invariants from program execution
traces [1]. Likely program invariants are a valuable support for
several software engineering activities, including selection of
test inputs [2], discovery of interface specifications [3], testing
compatibility of COTS components [4], enforcement of relational
database schema constraints [5].

System invariants have been shown by several authors to
be effective for modeling system dynamics and for detecting
anomalous behaviors. Jiang et al. [6] introduced the concept of
flow intensity in transactional systems, whose behavior depends
on user requests. They presented an approach for modeling the
relationships between the flow intensities, and demonstrated ex-
perimentally that flow intensity invariants do exist for distributed
transaction system. In [12] they used the technique for detecting
faults like memory leaks, missing files and null calls.

Sharma et al. [8] described positive experiences in a variety of
IT systems with the SIAT product built around the flow intensity
mining algorithms, used 24x7 for detecting invariants and locating
faults as well as for capacity planning; they reported that the
violation detection can be performed in seconds, after a training
in the order of minutes.

Lou et al. [9] discovered invariants from console logs of
Hadoop and CloudDB, revealing constant linear characteristics of
program work flows, used for detecting execution anomalies.

Miao et al. [10] described an approach for silent failure de-
tection in wireless sensor networks by finding correlation patterns.

In [11] we have described a framework to discover dynamic
invariants from application logs, and supporting the online detec-
tion of violations of Service Level Agreements in SaaS systems.

For all these applications, invariants were mined from various
types of data sources, mainly with techniques based on time series
analysis, possibly refined with graph-based techniques.

In their work on flow intensity invariants in transactional
systems, Jiang et al. [6] mine time series in monitoring data using
AutoRegressive models with eXogenous inputs (ARX) [13] to
learn linear relationships between pairs of flow intensities (called
local invariants). In the subsequent work [14] the computational
complexity of the invariant search algorithm is overcome with two
further algorithms which are approximate but more efficient.

The mining of flow intensity invariants suffers from the
combinatorial explosion of the search space when applied to
global invariants, i.e. to higher order correlations among system
attributes. Hence, in [15] a Bayesian regression technique was
proposed for global invariants: first a regression model is built,
whose solution is such that only spatially correlated attributes have
non-zero coefficients; then temporal dependencies of attributes are
considered. The application to a wireless UMTS system shows that
the technique achieves the detection rate 0.848; just a very rough
estimate is provided of the false positive rate (as low as 0.08).

In their work on the SIAT tool [8], Sharma et al. discussed
also two approaches to reduce noise in broken invariants so as
to support faults localization in a distributed sensors system: a
spatial approach exploiting a graph of the extracted invariants, and
a temporal approach which marks an invariant as actually broken
only if it is broken for three consecutive samples of a time series.

In the previous work [11] we too used an ARX model of
time series from 9 months of log events of a SaaS platform. With
respect to [8], we mined invariants with much higher goodness of
fit using a Recursive Least Square algorithm adapted from [13],
yielding a relatively small number of invariants whose violation is
directly indicative of the fault location.

In [16] we discussed accuracy and completeness of invariant-
based anomaly detection, showing that (i) a well tuned approach
can reach good completeness at an accuracy in the range 50-74%;
(ii) the sampling time can be set to find a tradeoff between the
mining time and the violation detection time, respectively in the
order of minutes and seconds, confirming what reported in [8].

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 3

As for the datasets used in this study, it is worth considering
various analyses of the publicly available Google cluster dataset
[17]. This is a trace log of one of Google cloud data centers; it
contains data of jobs running on 12,500 servers for a period of 29
days, accounting for 25 millions submitted tasks.

Di et al. [18] used a K-means clustering algorithm to classify
applications in an optimized number of sets based on task events
and resource usage; they also found a correlation between task
events and application types, with about 81.3% of fail events
belonging to batch applications. Chen et al. used the dataset for
analysis [19] and prediction [20] of job failures; Guan and Fu
[21] identified anomalies through Principal Component Analysis
of monitored system performance metrics. Rosà et al. [22] analyze
unsuccessful tasks/jobs executions and propose Neural Networks-
based prediction models. While these studies do not specifically
address invariants, some of their results about workload charac-
terization and failures identification are in line with the ones we
present based on the three mining techniques.

In summary, the literature shows that invariants can be mined
and used effectively for a wide range of computing systems -
data centers, cloud systems, web hosting infrastructures, wireless
networks and sensors-based distributed systems. We are not aware
of any work comparing mining techniques on different datasets,
so as to learn practical usage implications and general heuristics
useful for practitioners. This is the goal of the present study.

3 DATASETS

3.1 Google cluster
We provide a short description of the dataset, whose details can
be found in [17]. The workload consists of tasks, each running on
a single machine. Every task belongs to one job; a job may have
multiple tasks (e.g., mappers and reducers). There are six tables
in the dataset: Machine_events, Machine_attributes, Job_events,
Task_events, Task_constraints and the Resource_Usage. Every job
and every machine is assigned a unique 64-bit identifier. Tasks
are identified by means of the ID of their job and an index; most
resource utilization measurements are normalized.

Machines are described by two tables. Machine_events reports
addition, removal or update of a machine to the cluster, along
with its CPU and memory capacity. Machine_attribute lists key-
value pairs of attributes representing properties such as kernel
version, clock speed, and presence of an external IP address.
Attributes are integers if there is a small number of values for
the attribute; obscured strings based on a technique proposed
in [23], otherwise. The Job_events and Task_events tables describe
jobs/tasks and their lifecycle. They indicate transitions between
the states shown in Fig. 1. The Task_constraints table lists task

Fig. 1: State transitions of the jobs in the Google cluster dataset.

Fig. 2: High-level architecture of the SaaS platform.

placement constraints that restrict the machines onto which tasks
can be scheduled. Usually all tasks in a job execute exactly the
same binary with the same options and resource request. The
Resource_Usage table reports resource usage of the tasks.

3.2 SaaS platform
The SaaS platform we consider provides cloud-based data pro-
cessing and analysis capability to several consumer packaged good
(CPG) companies. The platform accepts and transforms data files
provided by customers through FTP servers or email attachments.

The data files, referred to as workitems, go trough processing
stages, such as format validation, verification, data extraction and
transformations. Once a data file is accepted by the SaaS platform,
a transaction is started: the processing stages of a workitem are
run in the context of the transaction. Based on the outcome of
the latest processing stage, the transaction is either continued or
aborted; it is completed if all the processing stages are accom-
plished successfully. At any time through all the elaboration, the
status of a transaction can assume one out of four values, i.e.,
in_process, user_error, exception, and processed. User_error and
exception denote the failure of the transaction.

A processing stage within a transaction can result in a success
or a failure: if successful, the transaction moves to the next stage.
Upon the failure of a stage (i) the platform generates an exception,
(ii) the transaction is aborted, and (iii) the customer is notified
about the problem for future resubmission or correction. Further
details of the platform can be found in [11]; a reliability analysis
of the operational failures is presented in [24].

Fig. 2 shows the high-level architecture of the SaaS platform.
The processing modules implement the above-mentioned stages;
management modules are responsible for handling the transactions
workitems pertain to, and monitoring the progression of the stages.
The platform relies on databases containing the configuration and
business rules (e.g., management of customers and data files); the
staging database maintains intermediate results/transformations
of the workitems and internal audit logs containing execution
informations and error events. Logs are stored as database tables.
Applications and DBs server are based on VMWare ESX VMs
running on Intel Xeon processors.

In this study we use the Details Log table. Each line (examples
are shown by Table 1) lists details and outcome of a processing
stage, such as the id of the workitem and start/end times. Important
fields are Stage (the processing stage), Status (the outcome of
the stage), and Fail Reason (a short textual description of the
outcome). The log has been collected during operation from April
to October 2012, covering a time frame of seven months.

TABLE 1: SaaS dataset: structure of the Details log.
Event Workitem Stage START time END time Fail Reason Status
4346482 308145 IT3 2012/05/02 01:57:54 2012/05/02 01:57:54 Corrupt_File L1_REJ
4346810 309135 IT3_PVLD 2012/05/10 10:24:32 2012/05/10 10:25:03 Invalid_File L1_REJ
4347484 309467 IT4_TRNF 2012/05/12 04:13:42 2012/05/12 04:13:45 System_Error SE

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 4

4 INVARIANT MINING

A workload unit W (i.e., a job in the datacenter or a processing
stage of a transaction in the SaaS platform) is abstracted by a set
of N attributes A1, A2, . . . , AN . These attributes represent the
computing resources used or parameters such as duration, priority
and return codes, being collected during the execution of W .
The attributes that characterize the execution of a workload unit
assume a value in the Cartesian product {VA1 × VA2 · · · × VAN

},
where VAj

denotes the set of the possible values of Aj(1 ≤
j ≤ N). The values of the attributes are extracted from the input
dataset to form an M×N attributes matrix, where M denotes
the total workload units Wi (1≤i≤M).

Fig. 3 shows the framework and steps that underlie invariant
mining. Given the input monitoring data at a given time ti, (i)
workload abstraction infers the M workload units Wi and the
values of the attributes for each Wi; (ii) invariant mining infers
the set of recurring relationships among the values of the attributes
from the data collected until ti, i.e., invariants Iti in Fig. 3. At
ti==t0 (where t0 denotes the time of the first ever mining), the set
of invariants available to operations engineers is I=It0 , which is
mined from the data at t0. Moreover, engineers will select a subset
of invariants in I , i.e., actionable invariants in Fig. 3, that will be
used for a specific application, e.g., anomaly detection.

Invariants might undergo reviews/changes upon feedback
by operations engineers. From a methodological standpoint the
framework encompasses the scenarios shown by Fig. 3: (i) re-
finement of the actionable invariants based on application results,
field experience or domain knowledge (e.g., to fix a rule that runs
in too many missed detections); (ii) entire update of I when
new incoming data become available at ti>t0 and, for example,
engineers deem the system has been subjected to major workload
changes or hardware/software upgrades. In the latter case I is
merged/replaced with the new set of invariants Iti

found at ti
(dotted box in Fig. 3); new actionable invariants are selected from
I for subsequent application.

In this study invariants are mined offline. Data available at t0
consist of the entire datasets described in Section 3; no more data
are fed to the framework beyond the datasets at t0. It should be
noted that invariant mining and application do not interfere with
the system operations because they work on attributes extracted
from the monitoring data.

Fig. 3: Framework to mine invariants and feedback mechanisms.

4.1 Workload Abstraction

A well-known concern in training and validating models used by
analysis techniques is the availability of the ground truth (also
known as class or label) for a data point [25]. The knowledge of
the label allows to (i) apply supervised techniques (decision list,
in this study), for comparison with unsupervised ones, and (ii)
carefully validate the findings.

We classify a workload unit to be correct, when it is correctly
executed by the system, anomalous otherwise. The Google dataset
indicates explicitly whether a job execution was correct, and con-
tains information about how many times tasks were resubmitted.
In the SaaS dataset, processing stages of transactions have an
exit code and an explanation; the assignment of the ground truth
(correct or anomalous) was done by the operation engineers.

4.1.1 Google dataset
The workload units consist of jobs, made of tasks. After filtering
out a small number of inconsistencies (e.g. malformed records
and blank attributes), we count 649,959 jobs. Of these, 372,688 are
finished, 267,464 are killed, and 9,807 are failed jobs. We consider
finished jobs as the correct class; killed and failed jobs build the
anomalous class. We characterize jobs by means of attributes - a
common practice in job-level analysis [26]. Attributes are:

• Tasks (T): number of tasks pertaining the job;
• Priority (P): priority of the job;
• Resubmissions (R): number of resubmissions of the tasks

until the completion of the job;
• Duration (D): total duration of the job;
• CPU usage (C): average CPU usage of the job;
• Server (S): the type of server(s) the tasks run on.

The values of the attributes of a job are extracted from the
tables described in Section 3.1. For practical mining purposes, the
huge space of numerical values taken by the attributes is mapped
to categorical values, beforehand. Categorization is usually done
in empirical assessments for summarizing workload parameters
through a small number of actionable classes (e.g., low, moderate,
medium, high), which can be easily applied/understood by prac-
titioners [27]. In order to establish the categories we analyze the
distribution of the attributes, beforehand.

The frequency of tasks, resubmissions, CPU usage and du-
ration follows a strong power-law distribution. This finding has
been also noted for the same dataset by Di et al. [18] in their
jobs characterization, and in the failure analysis in [19]. Fig.
4a-4c show the cumulative distribution function (CDF) of tasks,
resubmissions and CPU usage. For example, Fig. 4a plots the
probability p a job consists of no more than t tasks. It is worth
noting that the majority of jobs contains a relatively small number
of tasks (e.g., the probability a job has no more than 100 tasks
is 0.9457). Similarly, Fig. 4b indicates that the probability a job
experiences no resubmissions is 0.9187.

Fig. 4: Cumulative distribution function (CDF) of tasks, resubmis-
sions and CPU usage; number (#) of jobs by priority value.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 5

TABLE 2: Google dataset: Attributes and ranges of values.
Tasks (T) Resub. (R) Priority (P)

(IG: 0.2071) (IG: 0.115) (IG: 0.119)
VT range VR range VP range
T0 [0;10] R0 0 low [0;3]
T1]10;1K] R1]0;100] medium [4;7]
T2]1K;5K] R2]100;1K] high [8;11]
T3]5K;+∞[R3]1K;+∞[

Duration (D) CPU (C) Server (S)
(IG: 0.113) (IG: 0.007) (IG: 0.181)

VD range VC range VS

D0 [0;50] C0 [0;0.05] A B
D1]50;100] C1]0.05;0.1] AB BC
D2]100;1K] C2]0.1;0.2] ABC C
D3]1K;+∞[C3]0.2;+∞[AC

We use four categories (X0 to X3) to discretize T, D, R
and C. Table 2 shows the mapping between the categorical and
the original values of the attributes (P and S will be discussed
later on in this Section). For instance, T assumes the categorical
values VT = {T0, T1, T2, T3}, whose ranges are shown in the
second column: a job consisting of 8 tasks resubmitted 10 times
until completion is assigned the values T0 and R1 for T and R,
respectively. Attributes have been discretized in a way to preserve
the inherent power-law variability of the data as follows. Fig. 4a-
4c suggest that the CDFs (i) increase sharply when the value of
the attribute is small and (ii) start flattering until they converge to
1 over a very wide range of values. For each attribute T, D, R and
C, the category X0 catches the initial increase of the CDF, while
X3 corresponds to the range of values where the CDF is almost
flat; X1 and X2 cover the range of values before and after the
knee-point, which characterizes the transition of the CDF from the
sharp initial increase to the flat part.

Priorities (P) have been grouped in low (0-3), medium (4-7)
and high (8-11). Fig. 4d shows the number of jobs by priority,
which suggests our discretization suits well the data. The type
of server (S) is categorical. There exists three types of servers
- A, B and C: the tasks of a job are allocated to one or more
of these servers. The servers are listed in the Machine_attribute
table; Garraghan et al. [28] describe how the types can be mapped
to physical machines. Values of VS in Table 2 were inferred based
on the server(s) the job was allocated to for execution.

It is worth investigating whether potential relationships among
jobs influence the data precision. To this aim we measured
the information content of the attributes through the notion of
information gain [29], used here to quantify the usefulness of
the attributes at predicting the label of the jobs (finished, killed,
failed). The gain (IG) per attribute is in Table 2. We believe that
no small subset of attributes predominates at predicting the label,
and we decided to keep all attributes in the mining step.

Sensitivity analysis. The percentage of jobs falling into the
categories of a given attribute (referred to as percentage cardinal-
ity in the following) depends on the ranges. For example, with the
ranges in Table 2, T0, T1, T2 and T3 contain the 76.64, 22.38, 0.93
and 0.05% of the total jobs, respectively. Although we arranged the
categories in a way to preserve the original power-law variability
of the attributes, a different selection of the ranges might impact
the cardinality and, in turn, invariants-related inferences made on
the categories. We assess the sensitivity of the cardinality with
respect to variations of the ranges shown in Table 2.

The assessment has been done as follows. It should be noted
that the ranges are uniquely determined by three bounds, i.e., b1,
b2, and b3. For example, the bounds of T and C are 10, 1K, 5K
and 0.05, 0.1, 0.2, respectively. Given an attribute and the bounds
bi (i=1,2,3), we compute the cardinality of the categories for each
bi ± bi

100 ·∆ (with ∆=[5;50] by step 5). In other words, for each
percentage variation ∆ we collect 6 observations per category.
Fig. 5 summarizes the results of the sensitivity analysis (y-axis is
in log-scale to better visualize X2 and X3). The dotted lines
represent the percentage cardinality of each category, obtained
using the bounds in Table 2; any other data point is the percentage
cardinality of a given category subject to the percentage variation
of the bounds reported by the x-axis. For example, when the
bounds of tasks vary by 50% (i.e., b1=[5;15], b2=[500;1,500] and
b3=[2,500;7,500]) the average cardinality of T0, T1, T2 and T3
is 77.66, 21.26, 1.01 and 0.07% (Fig. 5a), which is close to the
above-mentioned values obtained through the ranges in Table 2.
Similarly, the cardinality of C2 and C3 (Fig. 5c) - which would
seem the most variable categories due to the log scale - is 0.25
and 0.012 with our ranges selection, and, on average, 0.34 and
0.052 under a 50% variation of the bounds. The results suggest
that the variation of the bounds does not significantly impact the
cardinality of the categories. In this respect, it can be reasonably
stated that the results presented hereinafter for the Google dataset
hold under different selections of the bounds.

4.1.2 SaaS dataset
The workload unit in the SaaS dataset is the processing stage
of a transaction. We abstracted the processing stage through the
following attributes, available in the Details audit log (Table 1):
• Stage (S): the name of the processing stage;
• Exit code (E): the outcome returned at the end completion

of the stage (i.e., Status column);
• Reason (R): the reason leading to a given exit code (i.e.,

Fail Reason column).
Table 3 lists the top-8 occurring values of the stage (S)

attribute, the four possible exit codes (E), and typical reasons (R)
encountered in the dataset. Differently from the previous dataset,
all the attributes are categorical in the SaaS log. The label of each

(a) Tasks. (b) Resubmissions. (c) CPU Usage.
Fig. 5: Sensitivity of the cardinality (%) with respect to the percentage variations of the bounds of the categories.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 6

TABLE 3: SaaS dataset: Attributes and samples of values.
Stage (S): VS Exit (E): VE Reason (R): VR

IT3 IT4_L1 L1_REJ Invalid_File
IT3_PVLD IT4_TRNF L2_REJ System_Error
IT4 IT4_STG SE Move_Failed
IT4_L2 IT5 MIN_PP Corrupt_File

processing stage (either correct or anomalous), which denotes the
correctness of its execution, has been provided by the experts
of the IT company operating the SaaS platform. The execution
is anomalous (i.e., the stage belongs to the anomalous class) if
(i) reason is NULL when the stage exits with code L1_REJ or
L2_REJ; (ii) the exit code is not L1_REJ when the processing
stage is IT4_L1 and reason is File_Validation_Failure. Out of total
30,025 processing stages executions, 3,299 were anomalous.

4.2 Mining Techniques

The invariant mining step shown in Fig. 3 aims to infer recurring
patterns among the attributes of the workload units. Likely pat-
terns represent invariants, i.e., properties holding across different
executions of batch work.

Let us clarify the notion of invariants through examples. In the
Google dataset we noted that 54,976 jobs assume the values R0,
low and D0 for attributes R, P, and D, respectively, meaning that
a significant number of jobs experiencing no task resubmissions
have low priority and small duration. Similarly, in the SaaS
dataset, 10,701 processing stages assume the value IT3, L1_REJ,
Invalid_File (for S, E and R, respectively), indicating that the stage
IT3 exiting with code L1_REJ fail because of an invalid file.

There are a number of considerations underlying the choice of
the clustering, association rules and decision list mining tech-
niques. First, production systems might generate unlabeled work-
load data, which prevents the use of many machine learning tech-
niques. More important, as pointed out in [1], invariants should be
comprehensible and useful to practitioners. Alternative invariant-
based classifiers can been applied, e.g. neural or Bayesian net-
works; however, their output, e.g., probabilities and/or weights,
have small explicative power for practical purposes.

4.2.1 Clustering
The values of the attributes of each workload unit identify a point
in a N -dimensional space. Fig. 6 shows the 3D scatterplot of all
processing stages available in the SaaS dataset. It can be noted
that the 30,025 stage concentrate around a few tens data points.
A similar consideration can be done in the Google dataset. This
technique identifies clusters (also known as groups) of data points.
The technique has been applied through the well established
algorithms K-medoids2 [30] and Density Based Spatial Clustering
of Applications with Noise (DBSCAN) [31].

The number of clusters K the workload units will be assigned
to is an input parameter of K-medoids. The larger K, the finer
the clustering. The medoid of a cluster (representing its center) is
assumed to be the invariant that characterizes the data points of the
cluster. DBSCAN overcomes a number of limitations in clustering
large datasets: for instance, it does not require the knowledge of
the input number of clusters, it can discover clusters with arbitrary
shapes, and it encompasses the notion of noise.

2. K-medoids is a generalization of the K-means algorithm, which addresses
both numerical and categorical data.

Fig. 6: 3D scatterplot of the workload units in the SaaS dataset.

We assume that the points belonging to the same cluster
are characterized by the same invariant. Clusters are sorted by
decreasing size, beforehand: likely invariants are deemed to be the
ones representing larger clusters. Clustering is an unsupervised
technique (i.e., it does not require labelled training data). The
invariants obtained specify the values of all the attributes.

4.2.2 Association Rules
The second technique is frequent itemset mining, which extracts
frequently observed patterns in a database in the form of itemsets
or association rules. This technique is well known in the field of
market basket analysis, where it is used to find out sets of products
that are frequently bought together [32]. We apply the association
concept to values of attributes.

Let B = {i1, ..., im} be a set of items, any S ⊆ B an itemset,
and T the bag of transactions under consideration (a transaction is
a set of items). The absolute support (the relative support) of S is
the number of transactions in T (the percentage of transactions in
T) that contain S. More formally, let U = {X ∈ T | S ⊆ T} be
the set of transactions in T that have S as a subset (i.e., contain all
the items in S and possibly some others). Then suppabs(S) =
|U | = |{X ∈ T |S ⊆ T}| is the absolute support of S, and
supprel(S) = |U |

|T | × 100% is the relative support of S. Here |U |
and |T | are the number of elements in U and T, respectively.

In this study, Apriori [33] and Generalized Sequential Patterns
(GSP) [34] are used to mine association rules. The attributes
matrix constructed through the workload abstraction step in Fig. 3
is assumed to be the above-mentioned bag of transactions T (i.e.,
each row of the matrix is a transaction).

We use Borgelt’s implementation of Apriori [35], which re-
turns the maximal itemsets in T whose relative support is larger
than a threshold. The support threshold (s) is an input of the
algorithm: the smaller it is, the larger the number of association
rules that will be returned by the algorithm. Differently from
Apriori, GSP performs different scans over T . At any scan k (with
k>1) GSP generates a set of candidate k-sequences from frequent
(k-1)-sequences; candidate k-sequences undergo a pruning step.
GSP stops when no more frequent sequences are found.

Association rules returned by either Apriori or GSP are as-
sumed to represent an invariant. Rules are sorted by decreasing
values of the support, i.e. by decreasing likelihood.

4.2.3 Decision List
A decision list is an ordered set of classification rules. Given a
workload unit abstracted by the value of the attributes, the list is
scanned until a rule is found that matches the attributes: the label

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 7

of the unit is assumed to be the one indicated by the rule. We
use two different algorithms to obtain a decision list. The former
is partial-decision-trees-based (PART) [36], combining the best
of C4.5 and RIPPER, which represent the primary approaches to
rule-based learning. The latter is the Decision Table / Naive Bayes
(DTNB) [37] algorithm, which combines a naive Bayes approach
with induction of decision tables.

Fig. 7 lists some of the 91 classification rules obtained for
the Google dataset with PART. For instance, a job where T=T2
and R=R0 is classified as KILLED regardless the value of the
remaining attributes because it matches the rule at line 2; similarly,
by looking at line 4 and 6 it can be noted that a job where T=T0
and R=R0 and P=High and D=D2 is classified as FINISHED if
(i) it has been run on the server type B (regardless the CPU usage)
or (ii) its CPU usage has been C0 in the case the server type is C.

Differently from clustering and association rules, decision list
is a supervised technique because the model is learned from a
labeled dataset (i.e., beside the attributes matrix, the construction
of the tree requires the knowledge of the label of each workload
unit). In this study, the rules in the list that aim to catch the correct
workload units are deemed to be invariants; they are sorted by
decreasing number of correct units they detect.

1 if (T=T2 and R=R1) then KILLED
2 else if (T=T2 and R=R0) then KILLED
3 / / omitted
4 else if (T=T0 and R=R0 and P=High and D=D2 and S=B)
5 then FINISHED
6 else if (T=T0 and R=R0 and P=High and D=D2 and C=C0
7 and S=C) then FINISHED
8 / / omitted
9 else if (P=MEDIUM) then FAILED

10 default FINISHED

Fig. 7: Examples of decision list rules for the Google dataset.

5 EVALUATION METRICS

The set of invariants I = {i1, i2, . . . , iI} returned by a mining
technique is assessed through widely established information
retrieval metrics, in order to quantify to what extent the invariants
are able to (i) abstract recurring properties of the executions of
workload units (i.e., jobs or processing stages), and (ii) discrimi-
nate correct/anomalous executions. The invariants in I are sorted
by likelihood, beforehand (as discussed in Section 4.2). We assess
how the metrics vary by using a progressively increasing number
of less-likely invariants from I: this strategy allows to establish the
number of invariants that properly characterize a dataset.

Let si (1≤i≤I) denote the subset of the top-i invariants. For
example, in the case I = {i1, i2, i3, i4} four sets are obtained, i.e.,
s1 = {i1}, s2 = {i1, i2}, s3 = {i1, i2, i3}, s4 = {i1, i2, i3, i4}.
It can be noted that si ranges between the sets {i1} and I , denoting
the most likely invariant and all the invariants in I , respectively.
Each subset si is run against the input dataset. A workload unit in
the dataset is assigned to one out of four disjoint classes based on
the result of the comparison between the (i) label and (ii) outcome
of the invariant-based checking. The sets (Fig. 8) are:

• true negative (TN): the workload units (W) with label
correct and matching at least one invariant in si;

• false negative (FN): set of W with label anomalous and
matching at least one invariant in si;

• false positive (FP): set of W with label correct and
matching no invariant in si;

• true positive (TP): set of W with label anomalous and
matching no invariant in si.

Fig. 8: Confusion matrix.

Given si, we compute the coverage (C) as the ratio between
the number of workload units matching at least one invariant in si

and the total number of workload units, and specificity (S), recall
(R), and precision (P) as follows:

S =
|TN |
|correct|

R =
|TP |

|TP |+ |FN |
P =

|TP |
|TP |+ |FP |

(1)

Specificity is the ratio between the number of correct workload
units detected by si and the total number of correct workload
units. Recall is the probability that an anomalous workload unit is
detected by si. Precision is the probability that a workload unit,
which matches no invariant in si, is actually anomalous. Coverage
can be computed also for unlabeled datasets.

Let us present an example. The use of clustering with K=10
for the Google dataset returns the invariants listed in Table 4 by
decreasing likelihood.
TABLE 4: Google dataset: invariants mined by clustering (K=10).

i1 Low, D2, T0, C0, c, R0 i6 High, D0, T0, C0, c, R0
i2 Med, D2, T1, C0, bc, R0 i7 Med, D0, T0, C0, c, R0
i3 Med, D2, T0, C0, c, R0 i8 High, D1, T0, C0, c, R0
i4 Low, D0, T0, C0, c, R0 i9 Med, D3, T1, C0, abc, R0
i5 High, D3, T0, C0, c, R0 i10 Med, D2, T1, C0, abc, R0

Based on these, it is possible to build 10 subsets si, whose C,
S, R, P are listed in the four rightmost columns of Table 5. Since
invariants in I are ordered by decreasing likelihood, the cardinality
of s indicates the invariants of I being assessed. For instance, s3

consists of the three most likely invariants {(Low, D2, T0, C0, c,
R0), (Med, D2, T1, C0, bc, R0), (Med, D2, T0, C0, c, R0)}, namely
i1, i2 and i3 in Table 4. They match a total of 160,560 jobs (|TN|
+ |FN|), with a coverage of 0.25; the specificity S equals 0.15
because s3 detects 57,117 TNs out of total 372,688 negatives. The
use of two further invariants, i.e. s5, would increase the coverage
from 0.25 to 0.38.

Throughout the rest of the paper we use the type of plots in
Fig. 9 to summarize the metrics for a set of invariants I . Fig. 9a
shows how coverage/specificity vary with the number of invariants
in I: the plot is useful to appreciate the number i of the top-
i invariants in I , which contribute most to the characterization

TABLE 5: Google dataset: values of the evaluation metrics for
invariants of Table 4.

s |TN| |FP| |FN| |TP| C S R P
1 38834 333854 64616 212655 0.16 0.10 0.77 0.39
2 40118 332570 94712 182559 0.21 0.11 0.69 0.35
3 57117 315571 103443 173828 0.25 0.15 0.63 0.36
4 108947 263741 105323 171948 0.33 0.29 0.62 0.39
5 135143 237545 111570 165701 0.38 0.36 0.60 0.41
6 162504 210184 114560 162711 0.43 0.44 0.59 0.44
7 194599 178089 114697 162574 0.48 0.52 0.59 0.48
8 218457 154231 117294 159977 0.52 0.58 0.58 0.51
9 218587 154101 118705 158566 0.52 0.59 0.57 0.51
10 218763 153925 124958 152313 0.53 0.59 0.55 0.50

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 8

(a) Coverage/specificity wrt the
number of invariants.

(b) Recall/precision wrt the
specificity.

Fig. 9: Plots to analyze the results of Table 5.

of executions. Fig. 9b shows how precision/recall vary with the
specificity: the plot allows appreciating the tradeoff between the
number of correct executions detected by I and the goodness
of the detection. Fig. 9 summarizes the values in Table 5: for
example, for the subset s3 discussed above, in Fig. 9a we see
C=0.25 and S=0.15; for s=0.15 (x-axis) in Fig. 9b, we obtain R
and P of the three invariants in s3 (0.63 and 0.36, respectively).

6 APPLICATIONS

The techniques are investigated in the context of two typical
applications of invariant-based analysis, namely executions char-
acterization and anomaly detection. We establish the best set
of invariants returned by K-medoids and Apriori through a sen-
sitivity analysis, beforehand; the comparison with the remaining
algorithms is presented in Section 6.2 and 6.3.

6.1 Sensitivity Analysis
We assess the sensitivity of K-medoids and Apriori with re-
spect to the input parameters K (number of clusters) and s
(relative support threshold), respectively. For example, in the
Google dataset the Apriori algorithm set with s=38% returns
the invariants {(T0,C0,c,R0), (D2,C0,R0), (Low,C0), (D2,T0,C0)};

invariants change to {(T0,C0,c,R0), (Low,T0,C0), (Low,C0,R0),
(D2,T0,C0,R0), (D2,C0,c,R0), (Low,C0,c)} if s=35%. Lowering
the support by 3% results into different sets of invariants.

For the Google dataset, Fig. 10a and 10e show how recall
and precision vary with respect to the specificity for invariants
obtained under different values of K. Analysis has been done with
2≤K≤20 by step 2; however, Fig. 10a and 10e show the results
for K=8,12,14,18 for better visualization. For example, the top-3
invariants obtained by means of K-medoids with K=12 (i.e., full
blue, 4-marked, series - third point from the left) have S=0.25,
R=0.65, P=0.39; on the other hand, the top-3 invariants in K=8
(i.e., dotted grey, �-marked, series - third point from the left) have
S=0.22, R=0.71, P=0.40. An optimal set of invariants, - the one
resulting into the best recall/precision with respect to specificity -
is obtained with K=14 (i.e., dotted black, ×-marked, series).

For any value of K, Fig. 10a indicates that recall (R) is a
monotonic decreasing function of the specificity. As shown by Eq.
1, while the denominator of R is constant regardless the number of
invariants (|TP|+|FN| is the total number of anomalous workload
units), the numerator of R, i.e., |TP|, decreases as specificity
increases3. Differently from recall, precision (P) might either
increase or decrease with the specificity.

Fig. 10b and 10f show recall and precision of the invariants
obtained through Apriori with different values of the support
threshold. Again, we explore values of the support generating from
2 to 20 invariants by step 2; however, a smaller subset is shown for
the sake of clarity. As a result, we choose the invariants obtained
with s=6% (dotted black, ×-marked, series).

For the SaaS dataset, Fig. 10c and 10g show recall and
precision of the invariants mined by K-medoids with K=8,10,12.
The best set is obtained with K=10 (dotted black, ×-marked,
series). On the other hand, s=12% is the value of the support that
allows obtaining the best set of invariants through Apriori, as it can
be noted from Fig. 10d and 10h (dotted grey, �-marked, series).

3. The larger the number of invariants (and the coverage), the smaller the
number of workload units that will be classified as anomalous (i.e., positive).

(a) Specificity/Recall (K-medoids). (b) Specificity/Recall (Apriori). (c) Specificity/Recall (K-medoids). (d) Specificity/Recall (Apriori).

(e) Specificity/Precis. (K-medoids). (f) Specificity/Precis. (Apriori). (g) Specificity/Precis. (K-medoids). (h) Specificity/Precis. (Apriori).

Fig. 10: Sensitivity of K-medoids and Apriori with respect to K and s. Google dataset: (a), (b), (e), (f); SaaS dataset: (c), (d), (g), (h).

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 9

6.2 Executions Characterization

We assess to what extent the invariants returned by the techniques
hold across the executions of different workload units. To this aim,
coverage and specificity are measured. Table 6 and 7 report the 6
(for Google) and 3 (for SaaS) most likely invariants returned by
the algorithms, respectively. The invariants mined by K-medoids,
DBSCAN and DTNB indicate the value of all the attributes;
Apriori, GSP and PART might specify only some attributes.

TABLE 6: Google dataset: top-6 invariants mined by algorithms.
K-medoids (K=14)

i1 Low, D2, T0, C0, c, R0 i4 Low, D0, T0, C0, c, R0
i2 High, D2, T0, C0, c, R0 i5 Med, D2, T0, C0, c, R0
i3 Med, D2, T1, C0, bc, R0 i6 High, D3, T0, C0, c, R0

DBSCAN
i1 Low, D2, T0, C0, c, R0 i4 Low, D1, T0, C0, c, R0
i2 High, D2, T0, C0, c, R0 i5 High, D3, T0, C0, c, R0
i3 Low, D0, T0, C0, c, R0 i6 Med, D0, T0, C0, c, R0

Apriori (s=6%)
i1 Low, D2, T0, C0, c, R0 i4 Med, T0, C0, c, R0
i2 High, D2, T0, C0, c, R0 i5 D3, T0, C0, c, R0
i3 D1, T0, C0, c, R0 i6 Low, D0, T0, C0, c, R0

GSP
i1 D2, T0, C0, c, R0 i4 T0, C0, c, R0
i2 D0, T0, C0, c, R0 i5 D2, T0, C0, R0
i3 D2, T1, C0, bc, R0 i6 D2, C0, c, R0

PART
i1 High, D2, T0, C0, c, R0 i4 High, D0, T0, C0, c, R0
i2 Low, D0, R0 i5 High, D3, T0, C0, c, R0
i3 Med, D0, T0, c, R0 i6 High, T0, C0, c, R0

DTNB
i1 High, D2, T0, C0, c, R0 i4 Med, D0, T0, C0, c, R0
i2 Low, D0, T0, C0, c, R0 i5 High, D0, T0, C0, c, R0
i3 High, D3, T0, C0, c, R0 i6 High, D1, T0, C0, c, R0

TABLE 7: SaaS dataset: top-3 invariants mined by algorithms (IF:
Invalid_File; FVF: File_Validation_Failure).

K-medoids (K=10) DBSCAN
i1 IT3, IF, L1_REJ i1 IT3_PVLD, IF, L1_REJ
i2 IT3_PVLD, IF, L1_REJ i2 IT3, IF, L1_REJ
i3 IT4_L2, FVF, L2_REJ i3 IT4, NULL, L2_REJ

Apriori (s=12%) GSP
i1 IT3_PVLD, IF, L1_REJ i1 IF, L1_REJ
i2 IT3, IF, L1_REJ i2 FVF, L2_REJ
i3 L2_REJ i3 NULL, L2_REJ

PART DTNB
i1 IF i1 IT3_PVLD, L1_REJ
i2 FVF, L2_REJ i2 IT3, L1_REJ
i3 FVF, L1_REJ i3 IT4_L2, L2_REJ

Fig. 11 shows how the coverage varies with respect the
number of invariants by technique and dataset. For each n along
the x-axis, the y-axis is the value of the coverage achieved by the
n most likely invariants. For example, the most likely 5 invariants
returned by Apriori obtain a coverage of 0.60 in Google as it
can be noted from Fig. 11b (4-marked series), i.e., they hold in
389,029 out of total 649,959 job executions; similarly, the most
likely 3 invariants returned by K-medoids in SaaS hold in 22,912
out of 30,025 processing stages, i.e., coverage is 0.76, such as
shown by Fig. 11d (4-marked series).

The plots indicate that, for any technique/dataset, coverage
flattens sharply after a relatively small number of invariants (i.e.,
roughly 8-9 in Google and 2-3 in SaaS): the use of an arbitrary
large number of invariants does not help improving coverage
significantly. For example, K-medoids starts flattening at the 9th

(a) Clustering. (b) Association rules. (c) Decision list.

(d) Clustering. (e) Association rules. (f) Decision list.

Fig. 11: Coverage of the techniques: Google (a-c), SaaS (d-f).

(a) Clustering. (b) Association rules. (c) Decision list.

(d) Clustering. (e) Association rules. (f) Decision list.

Fig. 12: Specificity of the techniques: Google (a-c), SaaS (d-f).

invariant in Google, where coverage is 0.66: 5 more invariants
contribute to increase the coverage by only 0.03, i.e., data point
(14, 0.69) - K-medoids in Fig. 11a; similarly, the coverage of the
top 4 GSP invariants in Google is 0.79, while 10 more invariants
contribute to increase the coverage by roughly 0.1, i.e., Fig. 11b.
The techniques achieve a rather different maximum coverage in
Google, which ranges from 0.50 (DTNB) to 0.87 (Apriori).

In spite of the different coverage, the techniques converge to
similar specificity (coverage of the correct executions), roughly
0.85 for Google and 0.9 for SaaS (Fig. 12). For instance, the
coverage of PART is about 0.53 for Google, and its specificity
is 0.8, i.e. 80% of correct executions match some invariant. The
maximum specificity (0.97) is observed with GSP. No few-fits-all
invariants can reasonably be mined for all the correct executions.

6.3 Anomaly Detection

Likely invariants have been used in past studies for anomaly detec-
tion. Properties that are likely invariants hold in regular operating
conditions; their violation is considered symptom of execution
malfunctions. This is a common practice in unsupervised learning,
where the assumption is made that correct instances are far more
likely than anomalies [25].

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 10

(a) Clustering. (b) Association rules. (c) Decision list.

(d) Clustering. (e) Association rules. (f) Decision list.

Fig. 13: Recall of the techniques: Google (a-c) and SaaS (d-f).

(a) Clustering. (b) Association rules. (c) Decision list.

(d) Clustering. (e) Association rules. (f) Decision list.

Fig. 14: Precision of the techniques: Google (a-c) and SaaS (d-f).

The top invariants used for anomaly detection are shown in
Tables 6 and 7. Fig. 13 plots how recall varies with respect to the
specificity by technique and dataset. The plots indicate that, for
any technique/dataset assessed in this study, recall decreases as
the specificity (or, indirectly, the number of invariants) increases.
Increasing the number of invariants allows inferring properties
holding in more and more executions; however, it also increases
the chance of misclassifications because it is likely that anomalous
workload units will eventually match at least one invariant.

We plot recall (and, later, precision) with respect to the
specificity rather than the number of invariants. This is because
for the same number of invariants the techniques exhibit different
coverage - as shown by Fig. 11. Rather than comparing them
under different numbers of matching workload units, plotting
recall/precision vs specificity allows to compare techniques when
they match the same number of correct executions4.

We observe that recall changes/converges sharply when the
specificity is about 0.8-0.9. For example, the recall of the invari-
ants returned by Apriori in the Google dataset drops from 0.54 to
0.15 when the specificity increases from 0.85 to 0.87, as it can

4. Fig. 13 is very close to the receiver operating characteristic (ROC) curve;
however, the x-axis is specificity rather than (1 − specificity) in order to
visualize the effect of increasing number of invariants from left to right.

be seen in Fig. 13b. This consideration applies also to clustering,
where recall stops varying sharply. Recall decreases much more
smoothly in decision list, until it stops at 0.8. These findings are
confirmed in the SaaS datasets, i.e., Fig. 13d-13f. This suggests the
possible existence of a threshold phenomenon in mining system
invariants. Recall is strongly bound to the coverage of the correct
executions; attempting to increase the specificity beyond a certain
threshold (0.8-0.9 in our study), can strongly distort the recall.

Differently from the recall, precision of all the techniques
increases as specificity increases; however, it stops, or even drops,
sharply after having reached a maximum value. This can be
clearly noted both in Fig. 14. Again, the threshold is represented
by the value 0.8-0.9 of the specificity. Surprisingly, precision
of supervised techniques, such as PART and DTNB, does not
outperform unsupervised algorithms, such as the ones used for
clustering or association rules mining. For example, in Google the
maximum value of precision obtained by PART/DTNB is around
0.75, while precision of Apriori and K-medoids is 0.72 and 0.70.
Although GSP might seem to achieve up to 0.89 precision, it must
be noted that the recall corresponding to such precision is only
0.3; in practice the precision of GSP cannot by pushed beyond
0.62 without compromising the recall.

The workload units have been closely investigated to gain in-
sights into recall and precision. We count the number of workload
units that assume a given combination of values of attributes, i.e.,
pattern, in the following. Due to the larger variability of the data,
we present the results from Google, for which we found out 565
distinct patterns. Fig. 15 shows the 100 most frequent patterns
by decreasing number of workload units. A point along the x-
axis denotes a pattern; the y-axis is the number of workload units
assuming the pattern broken down by correct (i.e., finished), and
anomalous (i.e., killed or failed) classes, in logarithmic scale. For
example, total 53,710 workload units assume the values (Low, D0,
T0, C0, c, R0), being represented by pattern #3 (third column
from the left). The top-10 patterns (i.e., the first ten columns at the
left side of the dotted vertical line in Fig. 15) sum up to 465,665
jobs. Although the most frequent patterns consist of almost all
correct workload units (i.e., finished in Fig. 15), they might still
contain a certain number of anomalous executions: invariants sup-
posed to catch the frequent patterns will inadvertently misclassify
anomalous executions, which affects the value of the recall. More
important, a very long tail of patterns encompasses a significant
number of correct executions. The remaining 555 patterns in Fig.
15 (i.e., right side of the dotted vertical line) account for total
47,053 correct executions. In order to correctly classify these
executions, invariants should be able to depict such a large number
of patterns. However, unfrequent patterns, although correct, would
not result into likely invariants: as a result, precision is impacted.

Fig. 15: Google dataset: number of workload units by pattern
(occurrences are given in logarithmic scale).

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 11

7 PRACTICAL IMPLICATIONS

Experimental results reveal pros and cons of widely-established
techniques in invariant-based analysis. We leverage the results to
infer practical implications that allow dealing with the concrete
selection of likely invariants by operations engineers. We address
the problems of (i) setting the input parameters of the mining
algorithms (K-medoids and Apriori) before the analysis and (ii)
selecting the optimal number of invariants out of the output
produced by a mining algorithm. We propose a heuristic that
can be used to select likely invariants. It is worth noting that our
heuristic does not require labeled data: in this respect, it can be
generally applied also to unlabeled datasets, where practitioners
are expected to make decisions without the knowledge of metrics,
such as recall and precision.

7.1 Invariants Selection

Invariants are inferred in two steps, i.e., (i) construction of I , i.e.,
the set of recurring properties (ordered by decreasing likelihood)
among the attributes in a given dataset, and (ii) selection of a
subset of invariants in I .

7.1.1 Setting of the mining algorithm

Algorithms, such as K-medoids and Apriori in this study, might
require the setting of an input parameter to mine invariants. We
measure how the invariants returned by an algorithm vary with
respect to variations of the input parameter; measurements are
used to infer an empirical rule that practitioners can use to set the
input parameter before invariant-based analysis.

Difference between set of invariants is computed by means
of the Jaccard coefficient (Jc). Jc is a widely adopted metric
of dissimilarity between sets [38]; the use of Jc is well-known
in clusters validation and quantifying feature similarities. The
coefficient is used here as follows. Let I1 and I2 represent two sets
of invariants. Jc is given by (1− |I1∩I2|

|I1∪I2|), where I1∩ I2 is the set
of attribute values contained by both invariant sets I1 and I2, while
I1 ∪ I2 is the set of values contained by either I1 or I2. It should
be noted that I1 ∩ I2 and I1 ∪ I2 contain no duplicated values
by notion of set. Jc quantifies the dissimilarity of the invariants
by means of the presence of given attribute values in I1 and/or
I2. For example, let I1 and I2 be composed by the following 2
and 4 invariants, respectively: I1={(T0, C0, c, R0), (D2, C0, R0)}
and I2={(T0, C0, c, R0), (D2, C0, R0), (Low, C0), (D2, T0, C0)}.
The value of Jc is 0.167 (i.e., 1-5/6) because I1 ∩ I2={C0, D2,
R0, T0, c} and I1∪I2={C0, D2, Low, R0, T0, c}. If I1 == I2 the
intersection of the sets is equal to their union: Jc=0. Conversely,
if I1 ∩ I2 = ∅, then Jc=1. Note that 0 ≤ Jc ≤ 1; moreover, the
larger Jc, the more diverse the sets of invariants.

Fig. 16 shows how Jc varies with respect to variations of the
input parameter of the mining algorithms. Given a set I consisting
of i invariants (i.e., i on the x-axis), the y-axis reports Jc measured
between I and the output set produced by the algorithm, when it
is configured in a way to return (i − 2) invariants. The value
of i=2 is set to 1 by construction; we tested the range 2-20 by
step 2. For example, Fig. 16a indicates that when the number of
invariants obtained through Apriori varies from 2 to 4, Jc goes
from 1 to 0.167 (please note that this datapoint corresponds to
the Jc example presented above); in order to discover two more
invariants, i.e., 4 to 6, support must be decreased from 38.0% to
35.5% and Jc goes from 0.17 to 0, accordingly.

(a) Google. (b) SaaS.
Fig. 16: Value of Jc by technique/dataset (percentages denote
supports; number of clusters, otherwise).

It can be noted that Jc decreases as the number of invariants
increases, which indicates that the sets I start stabilizing (i.e.,
the values of the attributes that characterize the invariants become
similar - small Jc -). In 3 out of 4 cases, the best set of invariants
selected according to the sensitivity analysis presented in Section
6.1, i.e., grey, �-marked points in Fig. 16, correspond to small
values of Jc, if not even 0, such as the case of K-medoids. As
a rule of thumb, we suggest to run a mining algorithm under
different values of the input parameters; values should be selected
in a way to allow the algorithm to return a progressively increasing
number of invariants. The computation of Jc between consecutive
sets I highlights the value of the input parameter where invariants
stabilize: according to our data, a good set of invariants is returned
by a configuration of the input causing Jc to be small.

7.1.2 Number of invariants
Beside the setting problem, which occurs for those algorithms
relying on an input parameter, practitioners are required to select
a subset of likely invariants out of the output of any mining
algorithm. Selecting the proper subset of invariants is critical: Fig.
11 and 12 indicate that few likely invariants contribute to increase
coverage/specificity sharply; Fig. 13 and 14 suggest that recall
and precision are negatively impacted by increasing values of the
specificity. The problem of selecting invariants is even exacerbated
in unlabeled dataset, where specificity/recall/precision cannot be
computed. We address the problem as follows.

Experimental results provide reasonable evidence of the fol-
lowing relationship among number of invariants, coverage and
classification-related metrics: selecting a number of invariants
where coverage is saturated, results in a value of specificity that
corresponds to the threshold where recall and precision start
decreasing sharply. This can be noted across different techniques
and datasets. We discuss a data point for the sake of clarity: the
coverage of K-medoids in Google enters saturation at the 9th
invariant, i.e., Fig. 11a. A number of invariants bigger than 9,
e.g., 12, obtains a specificity of 0.83, i.e, Fig. 12a: the value 0.83
denotes the point of the x-axis in Fig. 13a and 14a where recall
and precision of K-medoids have decreased/stopped sharply.

Let us denote knee-point of the coverage the number of
invariants where coverage stops increasing significantly: the knee-
point represents the beginning of the coverage saturation. For each
dataset/technique, Table 8 shows the knee-points (bold character)
and the points immediately before/after the knee, as it can be
inferred from Fig. 11; moreover, the table shows the value of
the metrics. It can be noted that, differently from a number
of invariants taken where coverage is saturated, the knee-points
represent a reasonably good tradeoff between recall and precision.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 12

Accordingly, we propose the following heuristic: a good number
of invariants is indicated by the knee-point of the coverage. The
heuristic is generally applicable in practice because the computa-
tion of the coverage does not require the knowledge of the label.

We note that association rules are not the best suited for
anomaly detection. Table 8 indicates that Apriori and GSP achieve
the minimum recall for the datasets. Nevertheless, given the
high coverage, association rules are still useful to characterize
the system execution (e.g., to support workload characterization,
usage profiling and capacity planning). On the other hand, decision
list is strongly recommended for anomaly detection; however, it
needs the label in order to be applied. Clustering might be used in
place of decision list to deal with unlabeled datasets.

TABLE 8: Number of invariants selected through the knee-point
heuristic, and values of evaluation metrics.

Google dataset SaaS dataset
n C S R P n C S R P

K-medoids
8 0.62 0.76 0.57 0.64 1 0.35 0.40 1 0.17
9 0.66 0.82 0.56 0.70 2 0.71 0.80 1 0.38
10 0.66 0.82 0.56 0.70 3 0.76 0.86 1 0.46

DBSCAN
11 0.75 0.86 0.44 0.74 1 0.36 0.40 1 0.17
12 0.77 0.92 0.43 0.79 2 0.71 0.80 1 0.38
13 0.79 0.92 0.39 0.78 3 0.78 0.80 0.40 0.20

Apriori
6 0.68 0.84 0.54 0.73 1 0.36 0.40 1 0.17
7 0.75 0.85 0.38 0.66 2 0.71 0.80 1 0.38
8 0.77 0.85 0.33 0.63 3 0.85 0.88 0.40 0.29

GSP
3 0.58 0.69 0.56 0.58 - - - - -
4 0.79 0.93 0.39 0.81 1 0.71 0.80 1 0.38
5 0.82 0.96 0.37 0.87 2 0.78 0.88 1 0.50

PART
7 0.47 0.72 0.87 0.70 - - - - -
8 0.50 0.76 0.85 0.72 1 0.71 0.80 1 0.38
9 0.51 0.78 0.85 0.74 2 0.78 0.88 1 0.50

DTNB
7 0.45 0.72 0.90 0.70 1 0.38 0.42 1 0.18
8 0.48 0.75 0.89 0.73 2 0.75 0.84 1 0.44
9 0.49 0.77 0.89 0.74 3 0.80 0.90 1 0.55

7.2 Results Validation
The invariants selected with the proposed heuristic are used in
the Google dataset. Fig. 17 shows the frequency distribution
of the attribute values of the anomalous class (killed and failed
jobs), comparing the actual distribution (i.e., actually anomalous
jobs) to those obtained through K-medoids, GSP and DTNB. For
example, the CPU usage of 271,283 actual anomalous jobs is C0;
this value is 214,655 in K-medoids, 129,155 in GSP and 333,404
in DTNB. We note that DTNB infers a very similar distribution
when compared to the actual data series: in fact anomaly detection
done by means of this technique results into the maximum recall
and precision (0.89 and 0.73, respectively), as shown in Table 8.
These figures are consistent with [20], which proposes a failure
prediction study of the Google dataset. At the other end of the
spectrum, GSP produces a rather different distribution. For exam-
ple, although Low is the most frequent priority value of anomalous
jobs, GSP would erroneously suggest that the frequency of the
priority values of anomalous jobs is similar. K-medoids allows
preserving many of the characteristics of anomalous jobs. For
example, differently form GSP, it correctly infers that Low is the
most likely priority of anomalous jobs.

Fig. 17: Google dataset: frequency distribution of the attribute
values of the anomalous workload units.

Similarly, we analyze the anomalies detected through invari-
ants in the SaaS dataset. Discussion focuses here on decision list;
however, similar results have been noted in the other techniques.
The three invariants in Table 7 - i1, i2, i3 (PART) - detect 5,293
anomalous processing stages executions. We group the stages
assuming the same attribute values into the same class and obtain
total 24 classes. Table 9 shows the classes, whose cardinality is
reported by the leftmost column of the table. According to the
notion of invariant, none of the classes in Table 9 matches i1, i2,
i3. For instance, in no case Reason in Table 9 is Invalid_File.

Each class has been carefully reviewed by the SaaS service
operation experts of the IT company with the aim of validating
the results. For example, the top two classes, which account for
1,981 and 1,321 instances, respectively, are true anomalies because
they match the domain rules in Section 4.1.2. False anomalies
are denoted by × in Table 9: as also noted in Google, correct
executions that generate infrequent combinations of attributes will
likely cause false positives. For example, this is the case of the
classes assuming the value File_already_exist as Reason.

The experts team acknowledged that 5 out of 24 classes needed
further investigation: they are denoted by ‘!’ in Table 9. Beside the
ones encompassed by the domain rules, invariant-based analysis
detected total 461 stage executions reporting a NULL value for the
Reason. Our analysis revealed that the stages exiting with the SE
code might occasionally report no reason. Although this behavior
of the SaaS platform was unnoticed until our study, the experts
confirmed that it did not impact operations. On the contrary,
6 out of the above-mentioned 461 cases, i.e., the IT4, NULL,
MIN_PP class in Table 9, were taken on high priority because they
represented a silent data corruption leading to a system failure. The
operations team confirmed that during the month of September
6 transactions were erroneously handled because of the missing
Reason field from the processing stage. Overall, these findings
were valuable to the service operation team.

8 THREATS TO VALIDITY

As for any data-driven study, there may be concerns regarding the
validity and generalizability of the results. We discuss them, based
on the four aspects of validity listed in [39].

Construct validity. The study is based on two independent,
real-world datasets, representative of two important categories of
service computing platforms. Both sets contain data collected in
operation under the natural workload/faultload, and encompass
a total of about 680,000 data points concerning jobs, tasks and
processing stages. The study builds on experiments aiming to
infer possibly general insights, useful towards putting invariant-
based techniques into common practice. This is pursued by
considering well-established algorithms available in widespread

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 13

TABLE 9: Anomalies detected by decision list (PART) in SaaS
with three likely invariants. Answer by the SaaS experts: true
anomaly (

√
), false anomaly (×), needed further investigation (!).

Stage Reason Exit
code

Answer

1,981 IT4 NULL L2_REJ
√

1,312 IT4 NULL L1_REJ
√

555 IT3_PVLD Corrupt_File L1_REJ ×
554 IT3 Corrupt_File L1_REJ ×
350 IT4 NULL SE !
154 IT4_TRNF System_Error SE ×
92 IT4_L2 System_Error SE ×
79 IT4_STG NULL SE !
35 IT5 Load_failed SE ×
28 IT3_P File_is_not_movable SE ×
28 IT3 File_is_not_movable SE ×
24 IT5 System_Error SE ×
20 IT5 NULL SE !
19 IT4_STG System_Error SE ×
12 IT3_PP Move_Failed SE ×
12 IT3 Move_Failed SE ×
7 IT3_PVLD Infected_File L1_REJ ×
7 IT3 Infected_File L1_REJ ×
6 IT4_PREP NULL SE !
6 IT4_L1 File_Validation_Failure MIN_PP

√

6 IT4 NULL MIN_PP !
2 IT6 System_Error SE ×
2 IT3_P File_already_exist SE ×
2 IT3 File_already_exist SE ×

mining packages. More sophisticated techniques, such as feature
engineering, may complement invariant-based analysis. However
improving performance through ad hoc fine-tuning of algorithms
for the specific dataset at hand is not within the perspective of this
study, and it might have made the results tailored on the chosen
datasets. We are confident that the details provided support the
replication of our study by researchers and practitioners.

Internal validity. We used two different datasets and six
mining algorithms to provide evidence of the actual relationships
among the variables under assessment, such as number of in-
variants, coverage and information retrieval metrics. The use of
a mixture of diverse datasets and techniques mitigates internal
validity threats. The key findings of the study are consistent across
the datasets and techniques, which provides a reasonable level of
confidence on the analysis.

External validity. The steps of the analysis should be easily
applicable to similar systems/datasets supporting the abstraction of
workload units and attributes, such as systems performing batch
work. Attributes, such as computing resources, duration, priority
and return codes of jobs/tasks, are collectable by many established
monitoring tools or available through systems/applications logs.
For example, the simplest and most common way to extract
attributes from logs is to grep the messages tracking performance
and usage statistics [40]. Once mined, actionable invariants can be
implemented through regular expressions to monitor production
logs. Given the wide spread of log management tools, invariant
mining and related applications are reasonably feasible in practice.
The overhead entails the time required to establish the message
types of the log that contain the metrics of interest; this is done
once at the beginning of the analysis. Maybe more important,
invariant-based analysis does not interfere with the system oper-
ations; features extraction, invariants mining and application can
be entirely automated. Our findings, supported by measurements

on real data, are useful to get an overall understanding of the
characterization that can be performed through invariants and its
practicability and limitations in real-world systems. We provided
a number of practical suggestions in order to support the general-
ization of the analysis to both labelled and unlabeled datasets.

Conclusion validity. Conclusions have been inferred by as-
sessing the sensitivity of the results with respect to the exper-
imental choices. We assessed the sensitivity of the categories
with respect to the selection of the ranges in the Google dataset:
analysis indicates that the categories are not biased by the specific
selection of the ranges adopted in the paper. We replicated the
analysis under different configurations of key parameters, i.e.,
number of clusters and support. We assessed the sensitivity of
the evaluation metrics with respect to the setting of the underlying
mining algorithm: comparisons have been made across the optimal
set of invariants in order to ensure the findings have been not
biased by a particular configuration. Inferences made for the
Google cluster are consistent with those of other cited studies on
the same dataset. The validity of the invariant analysis for the SaaS
dataset involved direct communication with the cloud operations
team, which confirmed the anomalies went otherwise unnoticed.

9 CONCLUSIONS

L IKELY SYSTEM INVARIANTS can be mined for a variety of
service computing systems, including cloud systems, web

service infrastructures, datacenters, enterprise systems, IT services
and utility computing systems, network services, distributed sys-
tems. They represent operational abstractions of normal system
dynamics. The identification and the analysis of their violations
support a range of operational activities, such as runtime anomaly
detection, post mortem troubleshooting, capacity planning. In this
work we have used two real-world datasets - the publicly available
Google datacenter dataset and a dataset of a commercial SaaS
utility computing platform - for assessing and comparing three
techniques for invariant mining. Analysis and comparison was
based on the common metrics coverage, recall and precision.

The results provide insights into advantages and limitations
of each technique, and practical suggestions to practitioners to
establish the configuration of the mining algorithms and to select
the number of invariants. The high-level findings are the following.
A relatively small number of invariants allows to reach a relatively
high coverage, i.e. they characterize the majority of executions.
A small increase of the coverage of correct executions may
produce a significant drop of recall and precision. The techniques
exhibit similar precision, but the decision list supervised technique
outperforms the unsupervised ones in recall. Finally, we presented
a general heuristic for selecting a set of likely invariants from a
dataset. All these results aim to fill the gap between past scientific
studies and the concrete usage of likely system invariants by
operations engineers.

ACKNOWLEDGMENTS

The work by A. Pecchia and S. Russo has been supported by
the GAUSS national research project (CUP E52F16002700001),
funded by MIUR under the PRIN 2015 program.

The work by S. Sarkar has been initially carried out at Infosys
Labs, India. His later work at BITS Pilani has been partially
supported by a research grant from Accenture Technology Labs,
USA.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2679715, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, MONTH YEAR 14

REFERENCES

[1] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
Discovering Likely Program Invariants to Support Program Evolution,”
IEEE Trans. on Software Engineering, vol. 27, pp. 99–123, 2001.

[2] C. Pacheco and M. D. Ernst, “Eclat: Automatic Generation and Classi-
fication of Test Inputs,” in Proc. 19th European Conference on Object-
Oriented Programming (ECOOP), pp. 504–527, Springer, 2005.

[3] C. Csallner and Y. Smaragdakis, “Dynamically discovering likely inter-
face specifications,” in Proc. 28th Int. Conference on Software Engineer-
ing (ICSE), pp. 861–864, ACM, 2006.

[4] L. Mariani, S. Papagiannakis, and M. Pezzè, “Compatibility and re-
gression testing of COTS-component-based software,” in Proc. 29th Int.
Conference on Software Engineering (ICSE), ACM, 2007.

[5] J. Cobb, J. A. Jones, G. M. Kapfhammer, and M. J. Harrold, “Dynamic
Invariant Detection for Relational Databases,” in Proc. 9th Int. Workshop
on Dynamic Analysis, pp. 12–17, ACM, 2011.

[6] G. Jiang, H. Chen, and K. Yoshihira, “Discovering likely invariants
of distributed transaction systems for autonomic system management,”
Cluster Computing, vol. 9, pp. 385–399, 2006.

[7] H. Chen, H. Cheng, G. Jiang, and K. Yoshihira, “Invariants Based Failure
Diagnosis in Distributed Computing Systems,” in Proc. 29th IEEE Int.
Symp. on Reliable Distributed System (SRDS), pp. 160–166, IEEE, 2010.

[8] A. B. Sharma, H. Chen, M. Ding, K. Yoshihira, and G. Jiang, “Fault
detection and localization in distributed systems using invariant relation-
ships,” in Proc. 43rd IEEE/IFIP Int. Conference on Dependable Systems
and Networks (DSN), pp. 1–8, IEEE, 2013.

[9] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection,” in Proc. USENIX ATC, 2010.

[10] X. Miao, K. Liu, Y. He, D. Papadias, Q. Ma, and Y. Liu, “Agnostic
diagnosis: Discovering silent failures in wireless sensor networks,” IEEE
Trans. on Wireless Communications, vol. 12, no. 12, pp. 6067–6075,
2013.

[11] S. Sarkar, R. Ganesan, M. Cinque, F. Frattini, S. Russo, and A. Savi-
gnano, “Mining Invariants from SaaS Application Logs,” in Proc. 10th
European Dependable Computing Conference (EDCC), pp. 50–57, IEEE,
2014.

[12] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and Tracking of Trans-
action Flow Dynamics for Fault Detection in Complex Systems,” IEEE
Trans. on Dependable and Secure Computing, vol. 3, no. 4, pp. 312–326,
2006.

[13] L. Ljung, System Identification - Theory for The User. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2nd ed., 1998.

[14] G. Jiang, H. Chen, and K. Yoshihira, “Efficient and scalable algorithms
for inferring likely invariants in distributed systems,” IEEE Trans. on
Data and Knowledge Engineering, vol. 19, pp. 1508–1523, 2007.

[15] H. Chen, H. Cheng, G. Jiang, and K. Yoshihira, “Exploiting Local
and Global Invariants for the Management of Large Scale Information
Systems,” in Proc. 8th IEEE Int. Conference on Data Mining (ICDM),
pp. 113–122, IEEE, 2008.

[16] F. Frattini, S. Sarkar, J. Khasnabish, and S. Russo, “Using Invariants
for Anomaly Detection: The Case Study of a SaaS Application,” in
Proc. 25th Int. Symp. on Software Reliability Engineering Workshops
(ISSREW), pp. 383–388, IEEE, 2014.

[17] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema.” http://code.google.com/p/googleclusterdata/wiki/
ClusterData2011_, Nov 2011.

[18] S. Di, D. Kondo, and F. Cappello, “Characterizing Cloud Applications
on a Google Data Center,” in Proc. 42nd Int. Conference on Parallel
Processing (ICPP), pp. 468–473, IEEE, 2013.

[19] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure Analysis of Jobs in
Compute Clouds: A Google Cluster Case Study,” in Proc. 25th Int. Symp.
on Software Reliability Engineering (ISSRE), pp. 167–177, IEEE, 2014.

[20] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure Prediction of Jobs in
Compute Clouds: A Google Cluster Case Study,” in Proc. 25th Int. Symp.
on Software Reliability Engineering Workshops (ISSREW), pp. 341–346,
IEEE, 2014.

[21] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures,” in Proc. 32nd Int. Symp.
on Reliable Distributed Systems (SRDS), pp. 205–214, IEEE, 2013.

[22] A. Rosà, L. Y. Chen, and W. Binder, “Failure analysis and prediction for
big-data systems,” IEEE Trans. on Services Computing, 2016.

[23] V. Chudnovsky, R. Rifaat, J. Hellerstein, B. Sharma, and C. Das, “Mod-
eling and synthesizing task placement constraints in google compute
clusters,” in Proc. 2nd ACM Symp. on Cloud Computing, ACM, 2011.

[24] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, G. Goel, S. Sarkar, and
R. Ganesan, “Characterization of operational failures from a business
data processing SaaS platform,” in Proc. 36th Int. Conference on Soft-
ware Engineering (ICSE), pp. 195–204, ACM, 2014.

[25] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58, 2009.

[26] Z. Ren, J. Wan, W. Shi, X. Xu, and M. Zhou, “Workload analysis,
implications, and optimization on a production hadoop cluster: A case
study on taobao,” IEEE Trans. on Services Computing, vol. 7, no. 2,
pp. 307–321, 2014.

[27] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley
& Sons New York, 1991.

[28] P. Garraghan, I. Solis, Moreno, P. Townend, and J. Xu, “An Analysis
of Failure-Related Energy Waste in a Large-Scale Cloud Environment,”
IEEE Trans. on Emerging Topics in Computing, vol. 2, no. 2, pp. 166–
180, 2014.

[29] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[30] R. Xu and D. Wunsch, Clustering. Wiley-IEEE Press, 2009.
[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-

rithm for discovering clusters in large spatial databases with noise,” in
Proc. 2nd Int. Conference on Knowledge Discovery and Data Mining,
KDD’96, pp. 226–231, AAAI Press, 1996.

[32] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” ACM SIGMOD
Rec., vol. 26, no. 2, pp. 255–264, 1997.

[33] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proc. 20th Int. Conference on Very Large Data
Bases (VLDB), pp. 487–499, Morgan Kaufmann, 1994.

[34] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations
and performance improvements,” in Proc. 5th Int. Conference on Extend-
ing Database Technology: Advances in Database Technology (EDBT),
pp. 3–17, Springer-Verlag, 1996.

[35] C. Borgelt and R. Kruse, “Induction of Association Rules: Apriori
Implementation,” in Compstat - Proceedings in Computational Statistics
(W. Härdle and B. Rönz, eds.), pp. 395–400, Physica-Verlag, 2002.

[36] E. Frank and I. H. Witten, “Generating accurate rule sets without
global optimization,” in Proc. 15th Int. Conference on Machine Learning
(ICML), pp. 144–151, Morgan Kaufmann, 1998.

[37] M. Hall and E. Frank, “Combining naive bayes and decision tables,” in
Proc. 21st Florida Artificial Intelligence Society Conference (FLAIRS),
pp. 318–319, AAAI press, 2008.

[38] R. O. Duda and P. E. Hart, Pattern classification and scene analysis. J.
Wiley and Sons, 1973.

[39] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Kluwer Academic, 2000.

[40] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Commun. ACM, vol. 55, pp. 55–61, Feb. 2012.

Antonio Pecchia received the B.S. (2005), M.S.
(2008) and Ph.D. (2011) in Computer Engineering
from the Federico II University of Naples, where
he is lecturer in Advanced Computer Programming.
He is a post-doc at CINI in European projects,
and co-founder of the Critiware spin-off company
(www.critiware.com). His research interests include
data analytics, log-based failure analysis, depend-
able and secure distributed systems.

Stefano Russo is Professor of Computer Engi-
neering at the Federico II University of Naples,
where he teaches Software Engineering and Dis-
tributed Systems, and leads the DEpendable Sys-
tems and Software Engineering Research Team
(DESSERT, www.dessert.unina.it). He co-authored
over 160 papers in the areas of software engineer-
ing, middleware technologies, mobile computing.
He is Senior Member of IEEE.

Santonu Sarkar received the PhD in computer
science from the Indian Institute of Technology,
Kharagpur. He is professor of computer science
and information systems at BITS Pilani, K.K.Birla
Goa Campus. He has more than 20 years of ex-
perience in IT industry in applied research, product
development, project and client account manage-
ment. His current research interests include soft-
ware engineering techniques to ensure depend-
ability, performance, and ease-of-use of Cloud and

HPC applications. Prior to this, he had worked in the areas of software
metrics and measurement, software design and architectures, program
comprehension, reengineering techniques.

