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In this review, we present a comprehensive and critical survey on image-based plant segmentation tech-
niques. In this context, ‘‘segmentation” refers to the process of classifying an image into plant and non-
plant pixels. Good performance in this process is crucial for further analysis of the plant such as plant
classification (i.e. identifying the plant as either crop or weed), and effective action based on this analysis,
e.g. precision application of herbicides in smart agriculture applications.
The survey briefly discusses pre-processing of images, before focusing on segmentation. The segmen-

tation stage involves the segmentation of plant against the background (identifying plant from a
background of soil and other residues). Three primary plant extraction algorithms, namely, (i) colour
index-based segmentation, (ii) threshold-based segmentation, (iii) learning-based segmentation are
discussed. Based on its prevalence in the literature, this review focuses in particular on colour
index-based approaches. Therefore, a detailed discussion of the segmentation performance of colour
index-based approaches is presented, based on studies from the literature conducted in the recent past,
particularly from 2008 to 2015. Finally, we identify the challenges and some opportunities for future
developments in this space.
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1. Introduction

1.1. Background and motivation

Weeds are one of the big challenges in agriculture because they
appear everywhere randomly, and compete with the plant for
resources. As a result of this competition for resources, crop yields
suffer. Yield losses depend on factors such as weed species, popu-
lation density, and relative time of emergence and distribution as
well as on the soil type, soil moisture levels, pH and fertility
(Papamichail et al., 2002). Numerous researchers have identified
a strong link between weed competition and crop yield loss, with
a wide range of crop varieties. For example, according to the study
by Stall (2009), an annual loss of 146 million pounds of fresh mar-
ket sweet corn and 18.5 million pounds of sweet corn for process-
ing occurred in the United States from 1975 to 1979 due to weed
competition, which corresponds to revenue losses of $13,165,000
and $9,155,000 respectively. Besides, the dry and head weight of
crop yield are measured to evaluate losses. Based on a study car-
ried out in 1996/1997 and repeated in 1997/1998 in central Jordan
(Qasem, 2009), it was found that the average reduction in shoot
dry weight and head yield were 81% and 89% respectively. An
effective and efficient weed management system is necessary to
minimise yield losses in valuable crops. The critical period for
weed control must be taken into account to enhance weed man-
agement strategies (Swanton and Weise, 1991), as the duration
of co-existence of weed and crop is an important indicator of yield
losses due to weed competition (Kropff et al., 1992).

Zimdahl (1988, 1993) defined the critical period of weed control
(CPWC) as ‘‘a span of time between that period after seeding or
emergence when weed competition does not reduce crop yield
and the time after which weed competition will no longer reduce
crop yield”. A more quantitative definition is as the number of
weeks after crop emergence during which a crop must be weed-
free in order to prevent yield losses greater than 5% (Hall et al.,
1992; Van Acker et al., 1993; Knezevic et al., 1994).

A number of studies have been carried out in many different
locations, under different environmental conditions in an attempt
to establish the CPWC. The studies are generally conducted by
keeping the crop free from weeds for a fixed period of time, and
then allowing the weeds to infest. Another approach used is grow-
ing weeds with the crop for certain predetermined durations, after
which all weeds are removed until the growing season ends (Nieto
et al., 1968). Some studies have reported that weeds that emerge at
the same time as the crop, or slightly after, cause greater yield loss
than weeds emerging later in the growth cycle of the crop (Dew,
1972; O’Donovan et al., 1985; Swanton et al., 1999). Most studies
recommended that crops should keep weed-free within the CPWC
in order to minimise yield loss (e.g. Karkanis et al., 2012).

Manual methods for weed control include hand weeding and
use of simpler hand tools. Hand weeding is a conventional weed
removal method that has been successfully used to control weeds
for many centuries, before any other methods existed, but is not
practical for large scale commercial farms because it is extremely
labour intensive, costly, tedious, and time consuming (USDA,
1996).

Mechanical methods for weed control (by tillage or cultivation
of the soil) are mostly applied in large areas for row crops such
as sugar beet, wheat, and corn for inter-row weed control. A num-
ber of studies have been carried out to evaluate the efficacy of
mechanical weed control methods. Forcella (2000) reported that
rotary hoeing yielded approximately 50% weed control alone with-
out using other weed control methods such as herbicides and man-
ual labour. Donald (2007) found that inter-row mowing systems
for controlling both winter annual and summer annual weeds
may reduce the use of herbicides by approximately 50%.

Mechanical weeding is particularly suited to organic fields for
weed control and can also be helpful in conventional fields. On
the other hand, the use of machinery may also have negative
effects on crops and the environment by causing damage and ero-
sion (Nelson and Giles, 1986; Eyre et al., 2011). Chemical weeding
is the most widely used method for weed control in agriculture
since the introduction of synthetic organic chemicals in the late
1940s, and farmers now rely heavily on herbicides for effective
weed control in crops (Gianessi and Reigner, 2007; Grichar and
Colburn, 1993; Bridges, 1992), particularly on large scale commer-
cial farms. Many studies have documented that the use of herbi-
cides is a more economical method for controlling weeds
compared to hand and mechanical weeding. With the help of her-
bicides, farmers in Mississippi were estimated to have saved $10
million per year compared to the cost of labour (Gianessi and
Reigner, 2007). Demand for chemicals by farmers has increased
the market size; according to a report carried out in 2014 by
BCC Research Chemical Report (2014), the biopesticide and
synthetic pesticide market are expected to reach up to $83.7 billion
by 2019.

Although herbicides are very effective at controlling weeds,
they have negative impacts on both the environment (through pol-
lution) and plant biology (development of resistance). Groundwa-
ter and surface water pollution has been reported in many cases
in recent decades, and excessive use of herbicide has often been
found to be the cause (Liu and O’Connell, 2002; Spliid and
Koeppen, 1998). To counteract these catastrophic environmental
effects, most European countries have introduced legislative direc-
tives to restrict the use of herbicides in agriculture (Lotz et al.,
2002). If there are means to accurately detect and identify weed
spatial distribution (weed patches), it is possible to limit herbicide
quantities by applying them only where weeds are located (e.g.
Lindquist et al., 1998; Manh et al., 2001; Berge et al., 2012;
Christensen et al., 2009; Jeschke et al., 2011). Heisel et al. (1999)
demonstrated a potential herbicide saving of 30–75% through the
use of appropriate spraying technology and a decision support sys-
tem for precision application of herbicides. This drives the need for
systems for more accurate identification of weed patches, and has
provided one motivation for development of image processing
methods for identification of weeds. Colour-index based segmenta-
tion methods have demonstrated a particular utility for weed iden-
tification, and hence are a particular focus of this paper.

Besides identification of weeds to permit precision weeding,
plant segmentation is also useful for other proposes, and applied
in several applications such as plant species recognition (Lei
et al., 2008), growing phase determination (Kataoka et al., 2003),
and plant disease detection (Camargo and Smith, 2009). While
weeding remains the most important motivator at present, these
other applications are growing in importance with increasing
interest in smart agriculture.
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1.2. Image processing challenges

Most recent studies have focused on chemical technology and
its applications for targeting weeds at close range to avoid dis-
turbing crop plants, and these studies have demonstrated that it
is feasible to accurately target weeds within 1 cm of crop plants.
Slaughter et al. (2008) considered image processing techniques
for detection and discrimination of plants and weeds in some
detail. Plant has to be segmented from background soil, consider-
ing all field conditions, because mis-segmentation could seriously
affect the accuracy of plant/weed detection. Among other things,
Slaughter et al. concluded that natural illumination plays a crucial
role in effective plant segmentation, and poor illumination con-
tributes to poor plant segmentation. They also found that most of
the available machine vision techniques are not robust for real
time conditions. High segmentation performance is required for
precision chemical application, and with good performance, the
volume of herbicides that are applied to the fields can be
minimised.

In this survey, we focus on recent studies that consider image
processing techniques that used for plant extraction and segmen-
tation under various field conditions and consider their perfor-
mance. Fig. 1 shows a block diagram of a general scheme for
segmentation, including a broad framework for evaluation of seg-
mentation algorithms. This typically includes a pre-processing
stage, followed by the core segmentation stage, which can be done
Fig. 1. General scheme for segm
using a variety of approaches (indicated by the ‘‘Algorithms” box
on the left hand side of Fig. 1). Evaluation is typically carried out
by comparing the output of the segmentation algorithm with a ref-
erence image that is treated as a ‘‘gold standard”, and by using a
suitable performance or quality metric. These steps will be
described in the following sections of this paper.

1.3. Paper organisation

This survey is organised as follows: a brief overview of image
processing approaches and a discussion of the pre-processing stage
are given in Section 2; Section 3 describes colour index approaches,
the most prevalent approach in the literature thus far; a compar-
ison of segmentation performance for colour index-based
approaches, based on recent studies from the literature, is given
in Section 4. Section 5 briefly discusses threshold-based and learn-
ing based-approaches. An overall discussion and conclusions are
given in Section 6, which also considers remaining challenges, lim-
itations, and recommendations.

2. Image processing overview

Machine vision technology has been widely used and studied in
agriculture to identify and detect plants (crops & weeds). It has
shown a potential for success in a number of case studies in robotic
weed control systems despite some serious challenges that will be
entation and its evaluation.
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discussed below. After many decades of study, machine vision has
improved the quality management of weed control systems
(Meyer et al., 1998; Onyango and Marchant, 2003; Søgaard,
2005; Schuster et al., 2007). Machine vision technology has also
been applied in other agricultural applications such as grading
and harvesting fruits (Slaughter and Harrel, 1989; Van Henten
et al., 2003; Abbasgholipour et al., 2011). As summarised in
Slaughter et al. (2008), many researchers have developed image
processing methods as guidance for machine vision, working in dif-
ferent fields and environments (under controlled and uncontrolled
conditions). Image-based segmentation techniques mostly involve
two main stages: pre-processing and pixel classification.

2.1. Pre-processing

Pre-processing involves some important initial processing on
the original image from the camera such as contrast enhancement
and removing noise.

Image enhancement is one of the important steps in computer
vision and it has played a significant role in various applications
such as medical imaging, industrial inspection, remote sensing,
and plant disease detection. Image enhancement is a process used
for enhancing and adjusting the contrast of the acquired image to
address the variability of luminance issues such as sunlight and
shadow (Jeon, 2014). Colour conversion is used to address lighting
problems in the scene of an image. For example, Perez et al. (2000)
applied Normalised Difference Index (using only green and the red
channel) to reduce the illumination effect and discriminate
between plants and background. Filtering is also one of the impor-
tant parts in image enhancement; in agricultural application, col-
our conversion and histogram equalization are used for plant leaf
disease detection (Thangadurai and Padmavathi, 2014). For
instance, Homomorphic filtering is a technique that has the ability
to minimise illumination issues and has been successfully applied
in outdoor images under various environmental conditions
(Pajares et al., 2005).

2.2. Segmentation

The initial goal in almost all image processing plant detection
approaches is to segment the different pixels which appear in
image into two classes: plant (crops and weeds) and background
(soil and residues). Background removal is an essential stage, and
it has to be done in an appropriate way to avoid any
mis-classification. Several methods have been developed for
segmenting crop canopy images. The common segmentation
technologies used for this purpose are: colour index-based
segmentation, threshold-based segmentation, and learning-based
segmentation. The next two sections consider colour index-
based methods, while Section 5 discusses threshold-based and
learning-based approaches.
3. Colour index-based approaches

Colour is one of the most common methods used to discrimi-
nate plants from background clutter in computer vision. Several
researchers have used colour to separate plant from soil e.g. colour
characteristics were used to distinguish green plants from soil and
estimate the leaf area (Rasmussen et al., 2007; Meyer and
Camargo-Neto, 2008; Kirk et al., 2009).

The colour of a region of interest can be accentuated, so the
undesired region (soil background region) will be attenuated. For
the majority of conventional visible spectrum cameras, the images
are output in the conventional RGB colour space. According to Tian
and Slaughter (1998), converting the RGB values into greyscale did
not result in good segmentation because plant and soil background
pixels had similar greyscale values. Therefore, in order to demon-
strate good segmentation, the RGB space is often converted to
alternative colour spaces. Several common green indexes (listed
according to date of publication) are as follows.

3.1. Normalised Difference Index (NDI)

The Normalised Difference Index was proposed by Woebbecke
et al. (1992). They tested three methods to distinguish plant mate-
rial from soil background in an RGB image. A range of difference
indices based on the R, G and B channels was evaluated e.g.
G � R, G � B, and G � R/G + R, with the third one demonstrating
the best separation of plant from background. This index is applied
to all pixels in the image, providing values ranging between�1 and
+1, but to display the image, these values must range between 0
and 255. Therefore, the index was further processed by adding 1
to it and then multiplied by a factor of 128 to provide a greyscale
image (0–255). Thus, the final formula for NDI is as follows:

NDI ¼ 128 � ðG� RÞ
ðGþ RÞ

� �
þ 1

� �
ð1Þ

The NDI index produces a near-binary image.

3.2. Excess Green Index (ExG)

Woebbecke et al. (1995) examined several colour vegetation
indices that were derived using chromatic coordinates and modi-
fied hue in separating green plant from bare soil (corn residue
and wheat straw residue). The colour vegetation indices that were
used include:

r � g ð2Þ
g � b ð3Þ
g � b
r � g

ð4Þ
2g � r � b ð5Þ
where r, g, and b are the chromatic coordinates:

r ¼ R�

ðR� þ G� þ B�Þ ; g ¼ G�

ðR� þ G� þ B�Þ ; b ¼ B�

ðR� þ G� þ B�Þ ð6Þ

where R�, G� and B� are the normalised RGB values ranging from 0 to
1, and are computed as follows:

R� ¼ R
Rmax

; G� ¼ G
Gmax

; B� ¼ B
Bmax

ð7Þ

where R, G and B are the actual pixel values from the images based
on each channel and Rmax ¼ Gmax ¼ Bmax ¼ 255 for a 24 bit colour
image (3 ⁄ 8-bit channels).

Among selected colour vegetation methods, Woebbecke et al.
found that the modified hue (2g � r � b), referred to as the Excess
Green Index (ExG), was the best choice for separating plants from
bare soil. This is because ExG provided a clear contrast between
plants and soil, and produced near binary images. The ExG index
has been widely used and has performed very well in separating
plants from non-plants (Meyer et al., 1998; Lamm et al., 2002;
Ribeiro et al., 2005; Guerrero et al., 2012).

3.3. Excess Red Index (ExR)

Meyer et al. (1998) inspired by the fact that there are 4% blue,
and 32% green, compared with 64% red cones in the retina of the
human eye, introduced ExR method and compared with ExG in
the experiment to segment leaf regions from the background.
Excess Red Index was able to separate the plant pixels from
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background pixels, but it was not as accurate as ExG. The formula
for ExR is defined as follows:

ExR ¼ 1:3R� G ð8Þ
ExGR ExG+Otsu NDI
Mean 88% 53% 54%
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Fig. 2. Comparison of the performance of selected colour indices: ExGR, ExG + Otsu,
and NDI � Otsu under greenhouse conditions. SD is indicted by error bar in the plot
(Meyer and Camargo-Neto, 2008). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
3.4. Colour Index of Vegetation Extraction (CIVE)

Colour Index of Vegetation Extraction (CIVE) was proposed by
Kataoka et al. (2003) based on a study carried out in soya bean
and sugar beet fields. This method was proposed to separate green
plants from soil background in order to evaluate the crop growing
status. The formula for CIVE is as follows:

CIVE ¼ 0:441R� 0:811Gþ 0:385Bþ 18:78745 ð9Þ
Kataoka et al. found that the CIVE has better plant segmentation
than Near-infrared (NIR) method because it provides greater
emphasis of the green areas.

3.5. Excess Green minus Excess Red Index (ExGR)

This method was introduced by Meyer et al. (2004), and combi-
nes two colour indices, namely, Excess Green Index (ExG) and
Excess Red Index (ExR). These methods were applied simultane-
ously to separate plants from the soil and residue, with ExG used
to extract the plant region and ExR used to eliminate the back-
ground noise (soil and residue) where green–red material (stems,
branches, or petioles) may exist. The ExGR is defined as follows:

ExGR ¼ ExG� ExR ð10Þ
where ExG and ExR are as previously defined.

3.6. Normalised Green–Red Difference Index (NGRDI)

The Normalised Green–Red Difference Index (NGRDI) was pro-
posed by Hunt et al. (2005) and tested on digital photograph of
crops such as corn, alfalfa, and soybeans, which were captured
by a digital camera mounted on the bottom of an aircraft fuselage.
The method of NGRDI was used to overcome the differences in
exposure settings selected by the digital camera when acquiring
aerial photography of the field. These differences may cause large
differences in colour bands that have the same reflectance. The for-
mula for NGRDI is as follows:

NGRDI ¼ ðG� RÞ
ðGþ RÞ ð11Þ

The G � R component is used to discriminate between green plants
and soil, and G + R is used to normalise for variations in light inten-
sity between different images.

3.7. Vegetative Index (VEG)

This was proposed by Hague et al. (2006) to separate plant (cer-
eal and weeds) pixels from soil pixels. The study was conducted
under field conditions, and the image was captured by a CCD cam-
era. To achieve segmentation, an RGB image was converted to
greyscale by using the following formula:

VEG ¼ G

RaBð1�aÞ ð12Þ

where a is a constant value equal to 0.667. Hague found that this
transformation demonstrated good contrast between plant and soil.
In addition, the VEG has a significant advantage because it is robust
to lighting change.
3.8. Combined Indices 1 (COM1)

Guijarro et al. (2011) selected four greens indices, ExG, CIVE,
ExGR, and VEG. These methods were applied simultaneously rather
than individually to improve segmentation quality:

COM1 ¼ ExGþ CIVEþ ExGRþ VEG ð13Þ
Guijarro showed that the combined method demonstrated better
results than when the approaches were applied separately. The
method has been tested in barley and corn fields and demonstrated
high reliability under various illumination conditions in outdoor
environments.

3.9. Modified Excess Green Index (MExG)

Modified Excess Green (MExG) Index was developed by
Burgos-Artizzu et al. (2011) and is defined as follows:

MExG ¼ 1:262G� 0:884R� 0:311B ð14Þ
Burgos-Artizzu conducted experiments under uncontrolled lighting
in real time. The proposed method successfully converted the
colour image into greyscale image, which was very easy to binarise
with a fast automatic threshold method. The discrimination
between plant and soil region was effective because the MExG
method was very robust to the changing illumination conditions.
Burgos-Artizzu found that MExG method demonstrated better
segmentation results then ExG.

3.10. Combined Indices 2 (COM2)

This was introduced by Guerrero et al. (2012) for analysis of
maize plants, and is quite similar to COM1 in the combination of
three colour Indices: ExG, CIVE, and VEG; ExGR was excluded
because it classified the shadow of the maize plant as part of plant.
Normalised Difference Index was also excluded because it may
segment soil regions as plant. The contribution of each selected
method is controlled by a weighting factor, with the weights sum-
ming to 1. The combined method is defined as follows:

COM2 ¼ 0:36ExGþ 0:47CIVEþ 0:17VEG ð15Þ
4. Evaluation of plant extraction based on colour indices

Segmentation-based colour indices have been widely used as a
benchmark by other researchers to evaluate the performance of
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Fig. 3. Comparison of the performance of selected colour indices: ExGR, ExG + Otsu,
and NDI + Otsu under actual field conditions. SD is indicted by error bar in the plot
(Meyer and Camargo-Neto, 2008). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Comparison of mis-classification of CIVE and ExG for both image types (NGV
& NGVS) (Zheng et al., 2009).
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their proposal methods for improving plant segmentation quality
against various lighting conditions and complex background. This
section draws together various recent studies that have used
colour-index based methods, and in particular, focuses on
the comparative performance of these methods. The discussion is
constrained by the selection of colour indices that have been
selected by the authors of the different studies considered;
however, all of the colour index methods have been evaluated in
at least one study.

In previous studies, evaluation has generally been done by cal-
culating the mean and standard deviation of an appropriately
defined segmentation quality factor. A high mean value and low
standard deviation of segmentation quality factor corresponds to
high demonstrated segmentation performance; a value of 1 for
the mean, and 0 for standard deviation represents perfect plant
segmentation. Meyer and Camargo-Neto (2008) compared three
green indices, namely, Excess Green minus Excess Red Index
(ExGR), Excess Green Index (ExG), and Normalised Difference Index
(NDI). The segmentation quality has been tested and compared for
both greenhouse and actual field of soybean images. In addition,
various backgrounds (bare soil, corn stalks, and wheat residue)
were considered. The segmentation quality for each applied
method was evaluated according to the approach described in
Bhanu and Jones (1993). The input parameters of the evaluation
method are two different binary images: one is extracted manually
using Photoshop as the annotated ‘‘gold standard”, and other
extracted by the colour index-based method under evaluation.
Thus, the evaluation method measures the segmentation accuracy
CIVE ExG CIVE ExG
SVGVG

Min 1.87% 3.35% 30.21% 18.32%
Med 6.34% 13.14% 65.58% 50.69%
Max 18.50% 17.82% 70.26% 61.09%
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Fig. 4. Comparison of mis-classification of CIVE and ExG for GV and GVS image
types (Zheng et al., 2009).
based on how similar the segmented image is to the annotated
image and gives the result as ratio of correct classification of pixels.
The greenhouse sets were analysed using ExGRwith a fixed thresh-
old of zero, NDI with a threshold of zero, and EXG with threshold
calculated according to Otsu’s method (Otsu, 1979). The field
images were examined with ExGR with a threshold of zero, NDI
with an Otsu threshold, and ExG with an Otsu threshold.

The mean and standard deviation of the quality factor for the
colour indices considered for green house and field sets are shown
in Figs. 2 and 3 respectively.

From Fig. 2, it can be seen that ExGR with zero threshold pre-
sented the best segmentation performance, with mean quality fac-
tor of almost 90% with low standard deviation, while the
segmentation quality for ExG + Otsu and NDI � Otsu were quite
similar, around 50%. According to the results in Fig. 3, the perfor-
mance for ExGR and ExG + Otsu were similar at approximately
90%, while NDI + Otsu has the lowest performance.

Overall, ExGR demonstrated very good segmentation quality for
the images that were taken under different environments (green
house and field conditions), with various backgrounds. In addition,
ExGR was superior in plant separation over the ExG and NDI. ExG
also performed well in segmentation of plants in field conditions.
NDI gave the lowest accuracy.

Zheng et al. (2009) proposed an algorithm using a Mean-Shift
method and Back Propagation Neural Network (MS-BPNN) to
improve the segmentation quality of plant. To assess the perfor-
mance of the algorithm, two index-based methods (ExG and CIVE)
were used as a benchmark. The study was conducted in outdoor
environments, including variety of plant species, different
CIVE ExGR NDI
Mean 81.41% 80.92% 80.71%
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Fig. 6. The average segmentation quality for CIVE, ExGR, and NDI (Zheng et al.,
2010).
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illuminations, and different soil types. Before evaluating the seg-
mentation performance, each region in the test image of size
2 � 2 pixels was labelled by hand with ‘1’ for green region and
‘0’ for background and then compared that with segmented image.
The segmentation performance was assessed based on the mis-
segmentation rate for green and background region, in particular
the minimum (Min), median (Med), and maximum (Max) values
were evaluated. Moreover, the mean running time per image (T)
was used to evaluate the speed of MS-BPNNmethod. Four different
image types were tested, including: green vegetation with shadow
(GVS), green vegetation without shadow (GV), non-green vegeta-
tion with shadow (NGVS), and non-green vegetation without sha-
dow (NGV).

For GV and GVS images, the MS-BPNN method gave the lowest
Min, Med, and Max of mis-segmentation for GV: 0.19%, 2.53%, and
5.34%, respectively, and for GVS: 15.72%, 18.23%, and 34.13%
respectively. Of interest here are the performance figures for CIVE
and ExG shown in Fig. 4.

CIVE has lower mis-segmentation rate for GV images than ExG.
Both ExG and CIVE based have very high mis-segmentation rate for
GVS images. In general, ExG is more accurate for extracting plants
with shadow than CIVE. For NGV images, the MS-BPNN method
gives values of Min, Med and Max of mis-segmentation of 2.12%,
3.81%, and 5.26% respectively. These values are higher than those
for NGVS, where the algorithm gives values of 0.12%, 1.28%, and
4.93%. Again, what is of interest here is the performance for the col-
our indices considered; the mis-classification performance for CIVE
and ExG for NGV and NGVS images is shown in Fig. 5.

ExG demonstrated good segmentation results for NGVS images,
whereas the CIVE exhibited poorer performance. In addition, ExG
has shown lower mis-segmentation rate for NGV than the pro-
posed MS-BPNN method.

Of further interest is the fact that although Zheng’s proposed
method demonstrated better segmentation performance overall
than both ExG and CIVE, it gave the longest average computing time
for both types of tested images, which were: 91.9 s and 10.8 s. By
comparing the mean running time for colour index-based meth-
ods, ExGwas given slightly lesser than CIVE for both types of tested
images: (3.8 s and 0.5 s), (3.9 s and 0.6 s) respectively.

Zheng et al. (2010) introduced another method to improve the
quality of crop image segmentation. The proposed method was
based on the combination of two methods: one based on Mean
Shift (MS) and another based on Fisher Linear Discriminant
(FLD). The images that were used in the study were taken from dif-
ferent soybean fields, under actual field conditions, and at different
times of day. As a benchmark, three colour index-based methods
(NDI, ExGR, and CIVE) were compared with MS-FLD method to
COM1 CIVE ExGR ExG VEG
Mean 8.31% 10.37% 10.71% 11.10% 18.23%
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Fig. 7. Comparison of average error of greenness segmentation for COM1, CIVE,
ExGR, ExG, and VEG (Guijarro et al., 2011).
evaluate its performance. The method of Otsu was used to deter-
mine a threshold for use with all colour indices images for binari-
sation. In addition, an averaging filter was used to remove noise. To
evaluate the performance of the MS-FLD method and the three
colour index-based methods, each of the test images is labelled
manually with ‘1’ (white) for the green region, and with ‘0’ (black)
for background region. The study has shown that MS-FLD obtained
the highest average segmentation rate, at 97.98%. The performance
of the colour index methods (in terms of average value of correct
segmentation rate) are presented in Fig. 6.

It can be seen that all three colour indices performed well, and
average performance is quite high at approximately 80%. However,
according to Zheng, the colour index-based methods were not
stable for all tested images; some resulting images showed that
NDI and CIVE gave better segmentation than ExGR, whereas others
showed that ExGR produced better segmentation than NDI and
CIVE.

Again, it is of interest to compare the computation time of the
MS-FLD method with the simpler colour-index methods. While
MS-FLD demonstrated better segmentation performance than col-
our index-based methods, its average running time was higher
than that obtained by vegetation index-based methods: 3.3906 s
and 0.0156 s (averaged over the three colour indices), respectively.

Guijarro et al. (2011) tested four green colour indices (ExG, CIVE,
ExGR, and VEG) individually and simultaneously (using the COM1
combined index described above) to assess their performance for
better automatic segmentation of plant. As noted earlier, the study
by Guijarro found that when used individually, these indices may
create either over-segmentation or under-segmentation results;
when combined through COM1, these problems can be overcome.
The study was conducted in barley and corn fields under various
illumination conditions. Two scenes were taken into account:
one scenes contained plants and soil without sky and another
one contained plants, soil, and sky. The combination method was
proposed to increase the contrast between plant and soil, so the
probability of distinguishing between plant and background image
is increased. In order to accomplish this goal, the contrast was
measured based on the grey level histogram (minimum unifor-
mity). The uniformity was computed for each green image ðUGK Þ,
and the weight was obtained for each one ðWGK Þ, where k = {ExG,
CIVE, ExGR, VEG}. Besides, the combined greenness ðGÞ was com-
puted and the mean threshold was chosen instead of the Otsu
threshold to separate the plant region from the background. The
average error in pixel classification for segmentation of green areas
for each colour index based method is displayed in Fig. 7.

The results of this study showed that the combination method
(COM1) provided the lowest percentage of average error for
ExG ExGR VEG CIVE
Mean 89.98% 87.79% 87.43% 68.93%
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Fig. 8. Comparison of the mean and standard deviation of vegetation extraction for
ExG, ExGR, VEG, and CIVE. SD is indicted by error bar in the plot (Yu et al., 2013a).



Qseg Sr Qseg Sr
2102ataD1102ataD

ExGR 71.40% 75.40% 68.20% 76.70%
MExG 69.50% 73.00% 63.10% 69.40%
ExG 54.20% 56.00% 49.50% 52.50%
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Fig. 10. Comparison of the segmentation quality (Qseg & Sr) of plant extraction for
ExGR, MExG, and ExG for two different data sets under sunny conditions (Guo et al.,
2013).
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greenness segmentation, whereas VEG showed the highest. Each of
CIVE, ExGR, and ExG method gave similar values of average error.

Guijarro calculated the average weight of the four selected
indexes over the set of the 240 images to find out their contribu-
tions to the average percentage error. The average weights were
given: 0.12, 0.25, 0.30, and 0.33 for WGVEG , WGExG ;WGExGR ; and WGCIVE

respectively. He found that there was a reverse correlation
between the obtained average weights and the percentage of error
for greenness. For example, CIVE has given the highest average
weight (0.33) and resulted in the lowest average percentage error
over the others, whereas VEG has given the lowest average weight
(0.12) and caused the highest percentage error over the other
methods.

In conclusion, if the colour indices are applied simultaneously,
they produce better greenness segmentation quality rather than
when they are applied separately. CIVE’s contribution to the com-
bined method is greater than any other method while VEG was
the lowest. Both of ExG and ExGR have nearly the same
contribution.

There were one primary disadvantage associated with the com-
bined method, which was increased computational time.

Yu et al. (2013a) proposed a new method for crop segmentation
based on colour segmentation called Affinity Propagation-Hue
Intensity (AP-HI). Five other algorithms were compared with it to
judge its performance. Among these, three colour index methods,
namely, ExG, CIVE, ExGR were used with Otsu threshold and a
fourth (VEG) was used with mean threshold method. The fifth
method was a supervised learning algorithm called Environmen-
tally Adaptive Segmentation Algorithm (EASA) (Tian and
Slaughter, 1998). Two experiments were carried out in two maize
fields in China under different circumstances to identify the
growth stages of maize. The image samples were acquired under
various illumination conditions such as overcast, cloudy, and
sunny days. Difficult backgrounds such as shadow, straws, pipes,
and other equipment were included. The efficiency of each algo-
rithm was evaluated through computing the mean and standard
deviation (SD) of the quality factor defined in Xiao et al. (2011),
based on mis-classification error.

The results of the study have shown that AP-HI gave the highest
performance, at 96.68%. The performance of EASA was in second
place; it outperformed the colour index-based algorithms with
mean of plant extraction equal to 93.20%. The performance of col-
our index approaches can be seen in Fig. 8.

It can be seen that ExG demonstrated the highest mean of
greenness segmentation over the reminder of selected colour
indexes, whereas CIVE has shown the lowest at 68.9%. ExGR and
VEG showed similar performance.
Qseg Sr Qseg Sr
2102ataD1102ataD

ExGR 74.50% 78.40% 74.60% 83.60%
MExG 79.50% 84.40% 73.80% 81.17%
ExG 66.30% 69.40% 59.20% 63.30%
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Fig. 9. Comparison of the segmentation quality (Qseg & Sr) of plant extraction for
ExGR, MExG, and ExG for two different data sets under non-sunny conditions (Guo
et al., 2013).
In conclusion, all colour indices demonstrated good adaptability
in conditions of changing illumination (up to a certain degree of
illumination) and complex environments, however CIVE did not
perform as well as the other indices.

The AP-HI method was in dealing with various environment
conditions and complex background up to certain degrees. How-
ever, this method has limitations especially during day light where
some surfaces of the maize leaves acted like mirrors and reflected
light.

Guo et al. (2013) introduced a new approach called Decision
Tree based Segmentation Model (DTSM) for effective segmentation
of vegetation from plant images. The study was conducted in
wheat fields in Japan and the test images were taken under various
light conditions. Three colour indices (ExG, MExG, and ExGR) were
used as a benchmark to evaluate the performance of the proposed
method. The accuracy of the segmentation methods is assessed by
the same method that used in Meyer and Camargo-Neto (2008).
Moreover, two tasks of segmentation quality were adopted in the
study: one was based on the both plants and background regions
(include plant pixels or background pixels) which was denoted as
Qseg and another was based only on the plant region (including
only plant pixels) and was denoted as Sr . The training process
was carried out based on acquired images which were taken over
a period of two years under different illumination conditions
(sunny and non-sunny) in 2011 and in 2012 (henceforth referred
to as Data-2011 and Data-2012). Otsu’s method was used with
ExG and ExGR images for thresholding, while a zero threshold
was applied with MExG.
ExGR ExG+Otsu CIVE
Mean 62.00% 74.00% 77.10%
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Fig. 11. Comparison of the mean and standard deviation of segmentation for ExGR,
ExG + Otsu, and CIVE based on ATRWG metric. SD is indicted by error bar in the plot
(Bai et al., 2013).
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Fig. 13. Comparison of the mean and standard deviation of segmentation for ExGR,
ExG + Otsu, and CIVE based on evaluated method which is defined in Xiao et al.
(2011). SD is indicted by error bar in the plot (Bai et al., 2013).
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DTSM outperformed the three colour indices on segmentation
quality. The mean value of Qseg was 80.6% for the Data-2011 data
set and 76.7% for the Data-2012 data set. In addition, DTSM gave
the best mean of green segmentation quality ðSrÞ compare to the
colour indices methods, with 83.3% for Data-2011 and 83.1% for
Data-2012. The Qseg and Sr for applied colour indices under non-
sunny and sunny conditions are presented in Figs. 9 and 10
respectively.

According to the results presented in Fig. 9, the means of Qseg

and Sr for ExGR for the Data-2012 set are slightly higher than those
of MExG, whereas the means of Qseg and Sr of MExG were higher
than those of ExGR for the Data-2011 data set. The ExGmethod pro-
duced the lowest segmentation quality (Qseg & Sr) compared to
ExGR and MExG in both years.

According to the results presented in Fig. 10, the means of Qseg

and Sr for ExGR in both data sets under sunny condition were
higher than the other colour indices.

In conclusion, the three colour indices considered have better
segmentation qualities for Sr than Qseg under both conditions.
Comparing the results in Fig. 9 to those of in Fig. 10, the colour
indices performed better quality segmentation under non-sunny
conditions than under sunny conditions. This suggests that colour
index methods may in general perform more poorly under sunny
conditions. The advantage of the DTSM algorithm proposed on
Guo et al. (2013) is that no threshold adjustments are required
for plant segmentation, unlike colour index methods. However, a
disadvantage of DTSM is that it relies on training data.

Bai et al. (2013) introduced a new method for crop segmenta-
tion based on the CIE Lab colour space, using morphological mod-
elling. The study was conducted in a rice paddy field in China, and
the images were taken under various conditions for different
growth status of rice plant. To verify the robustness of crop seg-
mentation using the method under complex illumination, it was
compared with six plant segmentation methods that included:
three colour index based- methods (ExGwith Otsu threshold, ExGR,
and CIVE); Environmentally Adaptive Segmentation Algorithm
(EASA) (Tian and Slaughter, 1998); colour image segmentation
method using Genetic Algorithm with HSI colour space (GAHSI)
(Abbasgholipour et al., 2011); and colour image segmentation
method based on Affinity Propagation-Hue Intensity (AP-HI) (Yu
et al., 2013a). Two well-known skin segmentation methods (seg-
menting colour pixels as either skin or non-skin classes) were also
applied: Gaussian Mixture Modeling (GMM) (Bergasa et al., 2000;
Jones and Rehg, 2002) and the Hue–Saturation–Intensity and
B-Spline curve fitting method (HSI&B-Spline) (Kim et al., 2008).
Two approaches were used to measure the segmentation quality
Cloudy Overcast Sunny
CIVE 83.10% 74.50% 74.20%
ExG+Otsu 77.70% 69.00% 73.50%
ExGR 62.40% 58.00% 63.20%
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Fig. 12. Comparison of the mean plant extraction for ExGR, ExG + Otsu threshold,
and CIVE under cloudy, overcast, and sunny conditions based on ATRWGmetric (Bai
et al., 2013).
for the applied methods: one defined by ATRWG (Neto, 2004)
and other is given as in Xiao et al. (2011).

The segmentation performance for the referred methods was
evaluated in three ways. Firstly, the tested image were taken under
different light conditions and used ATRWG metric to measure the
performance. The study showed that Bai’s algorithm demonstrated
the highest segmentation performance, with mean value of 87.2%,
and standard deviation of 3.8%. The second highest performance of
segmentation quality was given by GMM method with mean of
83.9%, and standard deviation of 7.2%. The performance of the
three colour indices considered is shown in Fig. 11.

It can be seen that CIVE demonstrated the highest mean for seg-
mentation quality whereas ExGR gave the lowest mean of segmen-
tation quality. The method of ExG & Otsu also demonstrated good
segmentation quality.

Secondly, the test images were sorted based on their imaging
conditions; cloudy, overcast, and sunny. Each of set images was
evaluated separately by using ATRWG metric. The experiment
showed that Bai’s method also gave better segmentation quality
under different sky conditions than the other methods with mean
of segmentation quality of 85.7%, 86.0%, and 88.6% for cloudy, over-
cast, and sunny conditions, respectively. The segmentation quality
performance for ExGR, ExG, and CIVE are displayed in Fig. 12.

As can be seen from above figure, the best overall segmentation
quality under the three conditions was obtained by CIVE, whereas
the worst was obtained by ExGR. The ExG method demonstrated
reasonably good segmentation quality under all three conditions.
ustO+GxERGxE
Mean %02.67%03.26
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Fig. 14. Comparison of mean and standard deviation of plant extraction for ExGR
and ExG + Otsu. SD is indicted by error bar in the plot (Bai et al., 2014).



ExG NDI VEG CIVE
Mean 73.93% 79.35% 75.92% 86.84%
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Fig. 16. Comparison of mean and standard deviation of crop extraction for ExG, NDI,
VEG, and CIVE. SD is indicted by error bar in the plot (Ye et al., 2015).
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Thirdly, the test images were taken under different lighting con-
ditions and the method defined in Xiao et al. (2011) was used to
measure performance. In this evaluation, the proposed method
improved the mean of segmentation quality and reached up to
96.0% with standard deviation of only 1.5%.

The EASA, GAHSI, AP-HI, GMM, and HIS&B-spline gave mean of
segmentation qualities as: 93.9%, 92.4%, 92.5%, 95.2%, and 87.7%
respectively. The performance of the three colour indices consid-
ered is shown in Fig. 13.

It can be seen that CIVE demonstrated the highest mean for seg-
mentation quality among applied colour indexes; CIVE also gave
better performance that the other methods such as EASA, GAHSI,
AP-HI, and HIS&B-spline. ExGR gave the lowest mean of segmenta-
tion quality. The method of ExG with Otsu threshold also demon-
strated very good segmentation quality, at 91.80%.

Bai et al. (2014) proposed a new plant segmentation approach
based on Lab colour space and a clustering method, namely, Parti-
cle Swarm Optimization (PSO) based k-mean. The images that were
used in the study were captured under real conditions, in rice and
cotton fields. Three segmentation approaches (ExG and Otsu, ExGR,
and EASA) were used for benchmark purposes. Also, two methods
that had been previously applied for segmenting human skin
(GMM and ColourHist) were applied to assess the performance of
the Bai’s method. The ATRWG method was applied to evaluate
the quality of segmentation for each segmented image, and means
and standard deviations of the segmentation accuracies were cal-
culated. According to results of the study, Bai’s method obtained
the highest performance of segmentation quality over the others,
achieving 88.1% for the mean and 4.7% for standard deviation.

The method of GMM demonstrated very good performance
close to Bai’s method, with mean of 86.9% and standard deviation
of 6.9%. The method of ColourHist demonstrated good perfor-
mance, 82.1% for the mean and 6.4% for standard deviation.

The method of EASA provided also good segmentation results,
with mean of 80.2% and standard deviation of 7.8%. For the two col-
our index methods considered, ExGR and ExG with Otsu threshold,
the means and standard deviations of are shown in Fig. 14.

As it can be seen from Fig. 14, ExG with Otsu threshold demon-
strated higher mean of segmentation quality than ExGR.

The performance of colour index-based methods was poorer
than the other algorithms in the study. Bai et al. suggested this
poor performance was because ExGR and ExG with Otsu threshold
usually resulted in over-segmentation or under-segmentation. A
disadvantage of Bai’s method is that it requires a number of pro-
cessing steps, which may affect real time application.

Torres-Sánchez et al. (2014) measured the accuracy of vegeta-
tion fraction (VF) mapping for wheat fields at different numbers
ExG VEG COM1 COM2 ExGR NGRDI WI CIVE
Mean 90.20% 89.65% 89.19% 88.09% 89.09% 89.40% 85.73% 77.16%
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Fig. 15. Comparison of the mean and standard deviation of plant extraction for ExG,
VEG, COM1, COM2, ExGR, NGRD, WI, and CIVE of images were captured at 30 m flight
altitude (Torres-Sánchez et al., 2014).
of growing days after sowing from 35 to 75. The images of the
fields were taken by a camera mounted on a UAV at different flight
altitudes (30 m, 60 m). Six colour indices (ExG, ExGR, CIVE, Woeb-
becke Index as given in Eq. (4) (Woebbecke et al., 1995), NGRDI,
VEG, and two combined colour indices, COM1 (Guijarro et al.,
2011) and COM2 (Guerrero et al., 2012), were applied to evaluate
the VF mapping. The VF is the percentage of pixels classified as
vegetation in a given area. The mean accuracy (A) and standard
deviation (SD) were calculated for every index based on three fac-
tors: threshold, flight date, and altitude. In addition, the coefficient
of variation was calculated to get the best average accuracies of
every vegetation index along the six tested flight dates. According
to the results of the study, the highest mean accuracy was obtained
from the images that were captured at 30 m flight altitude, so only
results obtained at that altitude are considered here. The mean and
standard deviation of all colour indices are shown in Fig. 15.

ExG gave the highest mean accuracy over the other Vegetation
Index (VI) methods, at 90.20%, however, most of the other indices
gave quite similar levels of performance. CIVE has the lowest mean
accuracy over the other VI methods, at 77.16%.

Ye et al. (2015) introduced a novel method to improve the qual-
ity of crop image extraction under strong illumination conditions
such as shadow and highlighted region due to sunshine. Ye
suggested reasons for misclassification of crop extraction under a
variety of illumination such as cloudy, sunny, and over-sunny
weather. In cloudy weather, there are two factors that cause
classifying of soil pixels as crop. One is the reduction in the red
component in the image because of lack of illumination, the other
one is that the colour of soil is close to dark green. In sunny
weather, shadows generated depending on the relative position
of the sun and the object cause classification of shadow pixels as
plant pixels. In over-sunny weather, the dense sunshine produces
specular reflection (white light spots) in the leaf or soil. This leads
to mis-classifying of those pixels. Ye proposed a segmentation
method based on Probabilistic Superpixel Markov Random Field
(PFMRF). This was based on the assumption that colour gradually
changes of hue intensity between highlighted areas of crops and
neighbouring non-highlighted areas.

The images that were used in the experiment were taken from
two different crops (cotton and corn) at different stages of growth,
under actual field conditions including on dark and bright days. To
evaluate the performance of the PFMRF method, seven common
algorithms were selected for comparison. Among them, four colour
index-based methods (ExG, NDI, VEG, and CIVE) were applied. In
addition, two learning-based segmentation methods (EASA and
HI-AP) were applied. Hue Intensity and Probabilistic Super-Pixel
Markov Random Field (HI-MRF) proposed by Yu et al. (2013b)



Table 1
Comparison of plant segmentation methods based colour indices.

Author Method Description Advantages Disadvantages

Woebbecke et al.
(1992)

NDI Normalised
Difference Index

(1) Easy to compute
(2) Somewhat robust to lighting, except for extreme values

(1) Does not perform well when
the light is very high or very low
(2) Many false positives

Woebbecke et al.
(1995)

ExG Excess Green Index (1) Easy to compute
(2) Widely used
(3) Low sensitivity to background errors and lighting conditions
(4) Showed good adaptability in outdoor environment

(1) Does not perform well when
the light is high or low

Meyer et al. (1998) ExR Excess Red Index (1) Easy to compute
(2) Although it relies only on red component, it still extracts green pixels
(3) Segment soil texture

(1) Does not perform well when
the light is high or low
(2) It is not as accurate as ExG

Kataoka et al.
(2003)

CIVE Colour Index of
Vegetation
Extraction

(1) Low running time
(2) Showed good adaptability in outdoor environment

(1) Performs poorly when light is
weak or strong
(2) Has poor adaptability with
shadow

Neto (2004) ExGR Excess Green
minus Excess Red
Index

(1) Showed good adaptability in outdoor environments
(2) Can do two tasks: extracting green by ExG and eliminating background
noise by ExR

(1) Does not perform well when
the light is high or low
(2) Segments the pixel of shadow
as plants (over-segmentation)

Hunt et al. (2005) NGRDI Normalised
Green–Red
Difference Index

(1) Reduces the differences in exposure settings selected by the digital
camera
(2) Consists of two components (8): one is used to discriminate between
green plants and soil, and other is used to normalise for variations in light
intensity between different images

(1) Does not perform well when
the light is high or low
(2) Limited use

Hague et al. (2006) VEG Vegetative Index (1) Invariant to the colour temperature of a black body illuminant
(2) Insensitive to the amplitude of the illumination
(3) Requires a single threshold

(1) Does not perform well when
the light is high or low. Complex to
implement

Guijarro et al.
(2011)

COM1 Combined ExG,
ExGR, CIVE, and
VEG indexes

(1) Showed very good adaptability in outdoor environment (1) Increase of computational time
(2) Does not perform well when
the light is high or low
(3) Segments shadow as part of
plant because of CIVE

Burgos-Artizzu
et al. (2011)

MExG Modified Excess
Green Index

(1) Showed very good adaptability in outdoor environment (1) Does not perform well when
the light is high or low

Guerrero et al.
(2012)

COM2 Combined ExG,
CIVE, and VEG
indexes

(1) Showed very good adaptability in outdoor environment (1) Increased computational time,
but less than COM1
(2) Does not perform well when
the light is high or low
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was also applied. A performance measure (k) (Xiang and Tian,
2011) based on the misclassification error was used.

The results of the study showed that the proposed PFMRF
method gave the highest performance over all applied algorithms,
with mean of 92.29%, and with the lowest SD, at 4.65%. The perfor-
mance of HI-AP was in second place, at 88.52%, while the perfor-
mance of EASA was almost the same, at 88.42%. The performance
of HI-MRF was also high, at 87.74%. The performance of the four
colour index-based methods can be seen in Fig. 16.

As it can be seen from Fig. 16, CIVE demonstrated the best per-
formance among colour index-based methods, at 86.8%, whereas
ExG showed the lowest. Both NDI and VEG demonstrated good per-
formance. All colour index-based methods demonstrated good
adaptability in light changing, but failed when shadow and high-
light conditions occur.

A summary of the established colour index-based segmentation
methods, highlighting their primary advantages and disadvan-
tages, is presented in Table 1.
5. Other segmentation approaches

The previous two sections have considered colour index-based
segmentation methods in some detail, including their perfor-
mance. This section briefly discusses some of the other
segmentation approaches that have been recently proposed, in
particular based on thresholding, and machine learning.

5.1. Threshold-based approaches

Threshold techniques that are applied in plant/weed detection
based on image segmentation have generally assumed a two class
problem, namely, plant vegetation class and soil background class.
Thresholding is generally applied to a transformation of the origi-
nal image in order to determine the class; for example, many of the
colour-index based approaches considered earlier used either zero
threshold or a threshold based on Otsu’s method. However, other
more sophisticated approaches for threshold selection exist.
Choosing the proper threshold plays an important role in segmen-
tation. For example, if the threshold value is set too high, some
important regions (plant pixels) may be merged with other regions
(background pixels) which leads to under-segmentation, while a
low threshold that is set too low may lead to over-segmentation.
Thus, numerous researchers have applied different threshold tech-
nique to address these problems. These techniques are given as fol-
lows. Dynamic thresholding was applied in Reid and Searcy (1987).
Hysteresis thresholding was applied in Marchant et al. (1998).
Fixed threshold is also a technique which was utilised in many
studies such as Hemming and Rath (2001) and Aitkenhead et al.
(2003). Tellaeche et al. (2008) applied entropy of a histogram to



Table 2
Comparison of threshold based segmentation methods.

Author Method Description Advantages Disadvantages

Reid and Searcy
(1987)

Dynamic
threshold

Thresholds are dynamically set according to local
rather than global characteristics. The approach is to
partition the image into sub-images of size m �m
pixels, and then choose a threshold for each
sub-image

(1) Insensitive to shading or
gradually changing
illumination

(1) Increase in computation time since it
requires several steps

Marchant et al.
(1998)

Hysteresis
threshold

Includes two thresholds, high and low. This leads to
the creation of 3 classes: below low threshold (to be
removed), above high threshold (to be retained), and
between low and high thresholds (to be retained
only if connected to a pixel above high threshold)

(1) Effective in handling
overlap between the modes
in the histogram of an image

(1) Various morphological operations
were required to improve the
segmentation, increasing computation

Hemming and
Rath (2001)
and
Aitkenhead
et al. (2003)

Fixed
threshold

Empirical threshold selection (1) Simple (1) Sensitive to light changes

Tellaeche et al.
(2008)

Entropy of a
histogram

Can be chosen through the peaks of grey-level
histogram of an image

(1) Easy to choose a
threshold value when grey-
level histograms are bimodal
(plant and soil)

(1) It is hard to choose a threshold value
when the peaks vary significantly in size
and the distance between modes is
relatively large

Otsu (1979) Otsu
threshold

Based on finding the threshold that minimises the
weighted within-class variance

(1) Automatic method
(2) Widely used

(1) Can produce under-segmentation, i.e.
some green pixels were not identified in
some circumstances
(2) Slower than the mean intensity
method

Gebhardt et al.
(2006) and
Gebhardt and
Kaühbauch
(2007)

Homogeneity
threshold

Local homogeneity is calculated for an image pixel
and used to obtain a homogeneity threshold value to
derive binary images

(1) Helpful in recognising
small objects
(2) Since local information is
considered, may be useful to
address light changes

(1) Increase in computation time since it
requires several steps

Kirk et al. (2009) Automatic
threshold

The threshold value is selected based on Gaussian
distribution functions of intensities; the Gaussian
distribution with the lower mean represents the soil
and the one with the higher mean represents plant
vegetation

(1) Good in handling light
changes
(2) Automatic method

(1) Increase in computation time since it
requires several steps

Jeon et al. (2011) Automatic
threshold

The threshold value is determined by dividing the
pixel distribution of the image into two groups by a
pixel value ranging from 1 to 255. The pixel value
that minimises the variance sum of two groups was
used as the threshold value for each image

(1) Provides adaptive
segmentation
(2) Automatic method

(1) Requires threshold adjustment to
update segmentation limit especially for
high plant density
(2) High computation time since it
requires several steps
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distinguish plant vegetation pixels from soil pixels. Otsu’s method
is a threshold technique widely used in many applications of image
processing based-segmentation. According to a survey carried out
by Sahoo et al. (1988) to compare the segmentation accuracy of
nine threshold methods, Otsu’s method demonstrated the highest
accuracy value over the others. This has inspired numerous
researchers to utilise it particularly in plant and weed segmenta-
tion. Otsu’s method was applied by Ling and Ruzhitsky in (1996)
to segment tomato seedlings from background. It was also applied
in Shrestha et al. (2004) to separate the plant vegetation from the
background; it was preferred to remove the noise pixels instead of
using morphological dilation as it does not require as much com-
putation as dilation operations. Gebhardt et al. (2006) and
Gebhardt and Kaühbauch (2007) introduced an algorithm to seg-
ment weed leaves from grassland by converting RGB images into
greyscale image intensity and then calculating local homogeneity
images and obtaining a homogeneity threshold value to derive bin-
ary images. Finally, morphological opening was used to eliminate
the remaining blades of grass in the binary images. Kirk et al.
(2009) introduced a new algorithm for pixel classification (plant
or soil pixels) to work under a variety of illuminations. The algo-
rithm is based on greenness and intensity pixels, which are derived
from the combination of R and G pixel values, and an automatic
threshold was applied based on the assumption of two Gaussian
distribution functions of intensities; the Gaussian distribution with
the lower mean represented the soil distribution and the one with
the higher mean represented plant vegetation distribution. Jeon
et al. (2011) applied another threshold technique to automatically
segment plant pixels from soil pixels based on transformed RGB
image (nearly greyscale image).

Meyer and Camargo-Neto (2008) have examined the segmenta-
tion quality for some colour indices with using automatic Otsu
threshold and zero threshold methods; in particular, ExG and NDI
were tested with an Otsu threshold, and ExGR was tested with zero
threshold. The results showed that the fixed zero threshold was
sufficient for binarisation of ExGR images, so the Otsu’s method
was not required. Two different automatic threshold approaches
were used and evaluated for vegetation segmentation in Guijarro
et al. (2011): one was Otsu’s method and the other was based on
mean intensity. The results showed that the Otsu threshold pro-
duced under-segmentation, i.e. some green pixels were not identi-
fied. Besides, it was slower than the mean intensity method.
Therefore, the automatic threshold adjustment approach (the
mean intensity value) was adopted in the study as it produced fast
and robust segmentation. On the other hand, the mean intensity
value was not found suitable in Burgos-Artizzu et al. (2011) to
binarise a grey image which was generated by the combined colour
indexes, because its value was less than the threshold value
received with Otsu method. Therefore, the combination of Otsu
and a morphological operation were used instead. The advantages



Table 3
Comparison of learning based segmentation methods.

Reference Method Description Colour
model

Task Advantages Disadvantages

Tian and Slaughter
(1998)

EASA Environmentally
Adaptive
Segmentation
Algorithm

RGB space Detect plants (1) Adapts to most daytime
conditions in outdoor fields

(1) Only 45–66% of all the
cotyledons were recognised under
partially cloudy and overcast
conditions
(2) It requires sufficient training
data to obtain good segmentation
results

Meyer et al. (2004) FC Fuzzy Clustering RGB space Extract the plant
region of interest
from ExG and ExR
images

(1) Identifying green plants from
soil and residue

(1) When plant pixel coverage is less
than 10% in the image, there
apparently is not enough colour
information to cluster them

Ruiz-Ruiz et al.
(2009)

EASA Environmentally
Adaptive
Segmentation
Algorithm

Hue–
saturation
(HS) and
only hue
(H)

Plant image
segmentation
under complex
field conditions

(1) Reduced the computation time
(2) It is more robust to a variety of
illumination than the EASA in Tian
and Slaughter (1998)

(1) It is not effective to segment
plants at early growing stage where
the cotyledons start to appear

Zheng et al. (2009) MS-BPNN Mean-shift
algorithm with
Back Propagation
Neural Network

RGB and
HSI colour
space

Classify between
plant and non-plant
region

(1) Demonstrate good segmentation
performance under different
illuminations

(1) It suffers from long run time
(2) Suffers from low segmentation
rate on the green parts with
shadows

Zheng et al. (2010) MS-FLD Mean-shift
algorithm with
Fisher Linear
Discriminant

LUV space Separate green
from non-green
vegetation

(1) No longer suffers from the low
segmentation rate on the green
parts with shadows

(1) It suffers from long run time

Guerrero et al.
(2012)

SVM Support Vector
Machines

RGB space Classify between
masked (soil and
other materials)
and unmasked
(plants) plant
regions

(1) The method is able to identify
plants (weeds and crops) when they
have been contaminated with
materials coming from the soil, due
to artificial irrigation or natural
rainfall

(1) Relies on other steps (threshold)

Guo et al. (2013) DTSM Decision Tree
based
Segmentation
Model

RGB space Segment the
vegetation form the
background

(1) Addressing illumination
problem such as shadow and
specularly reflected regions
(2) Not requiring a threshold
adjustment for each image

(1) It relies on training data

Yu et al. (2013a) AP-HI Affinity
Propagation-Hue
Intensity

Hue–
Intensity
(HI) space

Separate the pixels
of crop and
background under
light conditions and
complex
environment

(1) Robust and not sensitive to the
challenging variation of outdoor
luminosity and complex
environmental elements

(1) Misclassifying highlighted
region in leaves

Bai et al. (2013) MM Morphology
Modelling

Lab colour
space

Distinguishes the
crop and
background pixels
under complex
illumination
conditions

(1) Robust to the variation of
illumination in the field

(1) Despite utilizing different sizes
of structure elements in the training
phase, it did not give a significant
improvement; the mean of
segmentation qualities of MM was
87.2%

Bai et al. (2014) PSO-MM Particle Swarm
Optimisation
clustering and
Morphology
Modelling

Lab colour
space

Distinguishes the
crop and
background pixels
under complex
illumination
conditions

(1) Robust to variation of
illumination in the field

(1) It suffers from long run time as it
depends on many processing steps
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and disadvantages of threshold based-approaches are summarised
in Table 2.

5.2. Learning-based approaches

Although the colour-based approaches have demonstrated
promising segmentation results, there are a few cases where it
could not perform well particularly in sunny and overcast condi-
tions. As a result, several studies have investigated more sophisti-
cated approaches, including applied supervised and unsupervised
machine learning approaches with simple transformation of colour
features such as HIS, LUV, and LAB, or with colour index to extract
the plant pixels from the background, and looked to improve the
segmentation under variety of illumination conditions. For
instance, Meyer et al. (2004) applied unsupervised learning
approach called fuzzy clustering to extract the area of interest from
ExG and ExR images. For supervised learning approaches, several
researchers have also proposed several approaches. Tian and
Slaughter (1998) proposed Environmentally Adaptive Segmenta-
tion Algorithm (EASA) and applied to normalised RGB images of
outdoor fields to detect plants. Later, Ruiz-Ruiz et al. (2009)
applied EASA with hue–saturation (HS) and only hue (H) instead
of RGB colour space to produce robust and fast plant image seg-
mentation under complex field conditions. Zheng et al. (2009) pro-
posed a supervised mean-shift algorithm with Back Propagation
Neural Network to classify images into plant and non-plant
regions. The features used in the algorithm were RGB and HSI col-
our space. Zheng et al. (2010) applied a supervised mean-shift



Table 4
Suggested segmentation algorithms for use in different conditions.

Algorithms Relative
Complexity

Real-time
performance

Accurate Suitable application fields Suggested algorithms

Cloudy Overcast Sunny

Colour index-
based approach

Simple Effective Low accuracy if
the light is strong
or poor

Effective Poor
segmentation
result

Poor
segmentation
result

– For cloudy day: CIVE, COM1
– For overcast day: CIVE, ExGR
– For sunny day: COM2 or ExG because both are
good for addressing shadow

Threshold-based
approach

Fairly
sample.

Somewhat
effective

Fairly good
accuracy

Effective Threshold
adjustments
are required

Threshed
adjustments
are required

– For cloudy day: Otsu
– For overcast and sunny days: Dynamic
threshold or Homogeneity threshold

Learning-based
approach

Complex Expansive High accuracy Effective Several
training steps
are required

Several
training steps
are required

– For cloudy day: EASA
– For overcast day: AP-HI
– For sunny day: DTSM because it is good in
addressing problems such as shadow and
specularly reflected regions

E. Hamuda et al. / Computers and Electronics in Agriculture 125 (2016) 184–199 197
algorithm, but with Fisher Linear Discriminant to separate green
from non-green plant; the colour space used in the algorithm
was LUV instead of RGB and HSI. Support vector machines (SVM)
have been applied as the learning method to classify between
masked and unmasked plant regions by Guerrero et al. (2012).
To address illumination problem such as shadow and specularly
reflected regions, Guo et al. (2013) introduced a new method as
learning approach based on decision tree model to segment plant
region form the background in RGB images. The advantages and
disadvantages of learning based-approaches are summarised in
Table 3.
6. Discussion and conclusions

According to some of the studies considered above, colour
index-based methods have some limitations: they may result in
over-segmentation (excessive green) in one application and
under-segmentation in another application, especially when a sin-
gle index is applied by itself. This varies considerably with imaging
conditions, and the fact that the same test data are not used in all
studies makes direct comparison more difficult. Few comparative
studies have been carried out using a common set of test data.
One somewhat recent example was carried out by Meyer and
Camargo-Neto (2008), to compare three green indices, namely,
ExGR, ExG, and NDI. However, colour index-based methods have
both advantages and disadvantages that can be summarised as
follows:

Advantages:

� Simple methods that are easy to understand and implement.
� Easy to modify their formulas to create a new colour index.
� Generally do not require training.
� Generally require low computation which makes them suitable
for real time use.

� They are effective in normal condition where the light is neither
very high nor very low.

� Some of the colour index-based methods have shown results
that are comparable to other more sophisticated methods e.g.
see study by Bai et al. (2013).

Disadvantages:

� They require threshold optimisation to meet the particular tar-
get for final segmentation.

� They generally cannot perform good segmentation when the
light is strong or poor.

� They are only suitable for segmentation where the dominant
plant colour is green.
Threshold based-methods require several adjustments with dif-
ferent lighting conditions. Therefore, once change occurs, the seg-
mentation error may increase. Moreover, some threshold
techniques might be suitable for one case, but not for others.

The learning-based approaches demonstrated better perfor-
mance over colour index-based methods under a variety of illumi-
nation conditions because they rely on a training phase, but this
results increased computation time which is not preferable in real
time applications. Moreover, in order to perform reliable segmen-
tation results, substantial training samples are required.

While good segmentation performance has been achieved with
the methods considered, several challenges remain:

� Lighting conditions: cloudy, overcast, and sunny conditions
impact segmentation quality. For example, when the light is
strong as on a sunny day, the surface of some leaf types such
as corn leaf, acts as a mirror (specular reflection); as a result,
it may be segmented into the wrong category.

� Shadow, including shadow caused by a plant itself or by other
objects (cast shadow), may be extracted as foreground (plant
vegetation); as a result, the mis-segmentation rate is increased.

� Complex background (scene of the image), including straws,
stones, soil colour, water pipes, and other residues, can affect
the segmentation quality particularly if a background element
has a green colour such as green pipe; as a result, it might be
mis-segmented as plant.

These factors still remain as serious challenges for the available
segmentation approaches. Therefore, further research is required
to fully optimise the technology of computer vision for the com-
plex conditions that may occur in commercial agriculture fields.

In addition to the development of specific algorithms for pro-
cessing colour images, a number of studies have also considered
other factors associated with acquiring images, and the issues that
need to be considered in order to obtain good performance.
Woebbecke et al. (1994) considered the detection of plants using
a range of sensors (thermal and optical) and determined that the
location and coverage of target plant components within the field
of view of the sensor can significantly influence performance and
must be taken into consideration. This work was extended by
Criner et al. (1999) who specifically considered the detection of
bind weed and determined the maximum field of view for a given
target size on bare soil. Both of these studies uses the Normalised
Difference Vegetative Index (NDVI), which is the ratio of the differ-
ence between near infra-red reflectance and red components, and
their sum. Criner et al. also emphasised the value of being able to
configure the detection algorithm based on specific conditions, e.g.
knowledge of field conditions or soil moisture can be used to adapt
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detection thresholds to maximise performance. Later studies
reflected increasing use of digital visible spectrum cameras and
relied on the indices based on R, G and B channels and their deriva-
tives discussed in this paper. Meyer et al. (2004) described a sys-
tem based on the use of a number of clustering algorithms using
colour indices. Images were acquired using a camera that automat-
ically set parameters such as focus, exposure time and white bal-
ance. More recent studies have also examined the specifics of the
imaging sensor. For example, Dworak et al. (2013) used a low-
cost single-chip camera again using NDVI, and compared it to a
much more expensive specialised imaging device. Good perfor-
mance was achieved by appropriately reconfiguring camera filters,
coupled with algorithmic modifications. While the topic of the
optimal camera parameters (such as field of view) is beyond the
scope of this survey, previous studies suggest that the ability to
adapt detection algorithm parameters such as thresholds can pro-
vide an advantage in ensuring optimal performance.

By way of conclusion, Table 4 summarises the key conclusions
from the review, and in particular suggests specific algorithms that
may perform well in particular conditions, based on analysis of
their performance based on studies from the literature.

Based on prevalence in literature, the survey focused on colour
index based-methods. While performing well in their own right,
these methods are also widely used as a reference to evaluate
the performance of other proposed methods. A detailed discussion
of the performance of colour index based-methods, based on a
number of recent studies, was presented. Threshold-based
approaches were briefly discussed and their advantages and
disadvantages were presented. In addition, the advantages and
disadvantages of learning-based segmentation methods were
briefly considered. The challenges and limitations that continue
to hold for segmentation approaches were also highlighted. Finally,
Suggested segmentation algorithms for use in different conditions
were give.
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