
Egyptian Informatics Journal (2015) 16, 275–295
Cairo University

Egyptian Informatics Journal

www.elsevier.com/locate/eij
www.sciencedirect.com
REVIEW
A review of metaheuristic scheduling techniques

in cloud computing
* Corresponding author.

E-mail addresses: malakalra2004@yahoo.co.in (M. Kalra), sarbjeet@

pu.ac.in (S. Singh).

Peer review under responsibility of Faculty of Computers and

Information, Cairo University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.eij.2015.07.001
1110-8665 � 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mala Kalra a, Sarbjeet Singh b,*
aComputer Science and Engineering Department, NITTTR, Sector-26, Chandigarh, India
bComputer Science and Engineering Department, UIET, Panjab University, Chandigarh, India
Received 22 January 2015; revised 5 July 2015; accepted 25 July 2015
Available online 18 August 2015
KEYWORDS

Cloud task scheduling;

Metaheuristic techniques;

Ant colony optimization;

Genetic algorithm and parti-

cle swarm optimization;

League Championship

Algorithm (LCA) and BAT

algorithm
Abstract Cloud computing has become a buzzword in the area of high performance distributed

computing as it provides on-demand access to shared pool of resources over Internet in a self-

service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap

its full benefits, much research is required across a broad array of topics. One of the important

research issues which need to be focused for its efficient performance is scheduling. The goal of

scheduling is to map tasks to appropriate resources that optimize one or more objectives.

Scheduling in cloud computing belongs to a category of problems known as NP-hard problem

due to large solution space and thus it takes a long time to find an optimal solution. There are

no algorithms which may produce optimal solution within polynomial time to solve these problems.

In cloud environment, it is preferable to find suboptimal solution, but in short period of time.

Metaheuristic based techniques have been proved to achieve near optimal solutions within reason-

able time for such problems. In this paper, we provide an extensive survey and comparative analysis

of various scheduling algorithms for cloud and grid environments based on three popular meta-

heuristic techniques: Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO), and two novel techniques: League Championship Algorithm (LCA)

and BAT algorithm.
� 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eij.2015.07.001&domain=pdf
mailto:malakalra2004@yahoo.co.in
mailto:sarbjeet@pu.ac.in
mailto:sarbjeet@pu.ac.in
http://dx.doi.org/10.1016/j.eij.2015.07.001
http://dx.doi.org/10.1016/j.eij.2015.07.001
http://www.sciencedirect.com/science/journal/11108665
http://dx.doi.org/10.1016/j.eij.2015.07.001

276 M. Kalra, S. Singh
Contents

1. Introduction . 276
2. Optimization metrics . 277

2.1. Consumer-Desired . 277
2.2. Provider-Desired . 278

3. ACO based scheduling algorithms. 278
4. GA based scheduling algorithms. 281

5. PSO based scheduling algorithms . 284
6. League championship algorithm . 289
7. BAT algorithm . 290

8. Pareto optimization . 291
9. Observations . 291
10. Open issues . 291

11. Conclusion . 292
References. 292
1. Introduction

Scheduling allows optimal allocation of resources among given
tasks in a finite time to achieve desired quality of service.
Formally, scheduling problem involves tasks that must be
scheduled on resources subject to some constraints to optimize

some objective function. The aim is to build a schedule that
specifies when and on which resource each task will be exe-
cuted [1]. It has remained a topic of research in various fields

for decades, may it be scheduling of processes or threads in
an operating system, job shop, flow shop or open shop
scheduling in production environment, printed circuit board

assembly scheduling or scheduling of tasks in distributed com-
puting systems such as cluster, grid or cloud.

In recent years, distributed computing paradigm has gained

much attention due to high scalability, reliability, information
Scheduling Algorith

ACO GA PSO

Task Scheduling [8-
20]

Task Scheduling with
load balancing [21-26]

SLA-Aware
Scheduling [25, 30]

Energy-Aware
Scheduling [25, 27-30]

Task Scheduling [34,
36,39,40,41,47,48]

Task Scheduling with
load balancing

[32,33,37,38,43,49,51]

SLA-Aware
Scheduling [42,44]

Energy-Aware
Scheduling [52-56,90]

Task

Task
load

E
Sch

Figure 1 A general fram
sharing and low-cost than single processor machines. Cloud
computing has emerged as the most popular distributed com-

puting paradigm out of all others in the current scenario. It
provides on-demand access to shared pool of resources in a
self-service, dynamically scalable and metered manner with

guaranteed Quality of service to users. To provide guaranteed
Quality of Service (QoS) to users, it is necessary that jobs
should be efficiently mapped to given resources. If the desired

performance is not achieved, the users will hesitate to pay.
Therefore scheduling is considered as a central theme in cloud
computing systems.

In general, the problem of mapping tasks on apparently

unlimited computing resources in cloud computing belongs
to a category of problems known as NP-hard problems.
There are no algorithms which may produce optimal solution

within polynomial time for such kind of problems. Solutions
ms

LCA BAT

 Scheduling [58-
60,64-72]

 Scheduling with
balancing [73-75]

SLA-Aware
Scheduling

[61,62,63,88]

nergy-Aware
eduling [76-79]

Task Scheduling
[82,83]

Task Scheduling [85-
87]

SLA-Aware
Scheduling [88]

ework of the paper.

Figure 2 An example schedule.

Metaheuristic scheduling techniques 277
based on exhaustive search are not feasible as the operating
cost of generating schedules is very high [2]. Metaheuristic
based techniques [3] deal with these problems by providing

near optimal solutions within reasonable time.
Metaheuristics have gained huge popularity in the past years
due to its efficiency and effectiveness to solve large and com-

plex problems. In this paper, we present an extensive review
of various scheduling algorithms based on five metaheuristic
techniques namely Ant Colony Optimization (ACO), Genetic

Algorithm (GA), Particle Swarm Optimization (PSO),
League Championship Algorithm (LCA) and BAT algorithm.
Fig. 1 demonstrates a general framework of the paper.

Further, scheduling algorithms differ based on dependency

among tasks to be scheduled. If there are precedence orders
existing in tasks, a task can only be scheduled after all its par-
ent tasks are completed, whereas in case, tasks are independent

of each other, they can be scheduled in any sequence. Former
is dependent scheduling or more commonly known as work-
flow scheduling [2] and the latter is known as independent

scheduling [4]. In the following sections, both types of schedul-
ing algorithms based on metaheuristic techniques are
discussed.

The rest of the paper is organized as follows. Section 2
describes various optimization criteria used while scheduling
tasks in cloud or grid environment. Section 3–7 surveys
scheduling algorithms based on ACO, GA, PSO, LCA, BAT

respectively. Section 8 presents Pareto optimization approach.
The observations and open issues are discussed in Section 9
and 10 respectively. Section 11 concludes the paper.

2. Optimization metrics

There are mainly two types of entities involved in cloud: One is

cloud service provider and another is cloud consumer. Cloud
service providers provide their resources on rental basis to
cloud consumers and cloud consumers submit their tasks for

processing to these resources. They both have their own moti-
vations when they become part of cloud environment.
Consumers are concerned with the performance of their appli-

cations, whereas providers are more interested in efficient uti-
lization of their resources. These rationales are articulated as
objective functions/optimization criteria while scheduling con-
sumer tasks on resources. Thus these optimization metrics can

be classified into two types: Consumer-Desired and Provider-
Desired.

Following are some of the Consumer-Desired and

Provider-Desired optimization criteria [5] while scheduling
tasks in grid or cloud environment:

2.1. Consumer-Desired

� Makespan: Makespan indicates the finishing time of the last
task. The most popular optimization criterions while

scheduling tasks is minimization of makespan as most of
the users desire fastest execution of their application.

Makespan¼maxi2tasksfFig; where Fi denotes the finishing time of task i:

ð1Þ

Fig. 2 shows an example schedule having nine independent
tasks scheduled on two resources.
Makespan = 22 time units (finishing time of the last task i.
e. T9)

� Economic cost: It indicates the total amount the user needs
to pay to service provider for resource utilization.
Economic Cost ¼
X

i2resources
fCi � Tig ð2Þ

where Ci denotes the cost of resource i per unit time and Ti

denotes the time for which resource i is utilized.
In the example shown in Fig. 2, if the cost of using resource

R1 is 2000 per time unit and R2 is 3000 per time unit, then eco-

nomic cost = 2000 * 22 + 3000 * 19 = 101,000.

� Flowtime: It is the sum of finishing times of all the tasks. To

minimize the flowtime, tasks should be executed in ascend-
ing order of their processing time.
Flowtime ¼
X

i2tasks
Fi;where Fi denotes the finishing time oftaski:

ð3Þ
For the example in Fig. 2,

Flowtime ¼ finishing time of ðT1þ T2þ T3þ T4þ T5

þ T6þ T7þ T8þ T9Þ
¼ 3þ 4þ 5þ 9þ 8þ 18þ 11þ 19

þ 22 ¼ 99 time units

Flowtime signifies the response time to the tasks submitted
by users. Minimizing the value of flowtime means reducing the

average response time of the schedule.

� Tardiness: This defines the time elapsed between the dead-

line and finishing time of a task i.e. it represents the delay
in task execution. Tardiness should be zero for an optimal
schedule.
Tardinessi ¼ Fi �Di; ð4Þ
where Fi and Di are finishing time and deadline of task i
respectively.

For the example in Fig. 2, if the deadline for task T3 is 4,
then its tardiness is 5 � 4 = 1

It is an important metric to measure the overall perfor-
mance of the schedule with respect to meeting deadlines. We
can find out percentage of tasks that missed their deadline

by observing tardiness of each task.

� Waiting time: It is the difference between the execution start

time and submission time of the task.

278 M. Kalra, S. Singh
Waiting Timei ¼ Si � Bi ð5Þ
where Si and Bi are start time and submission time of task i
respectively.

For the example in Fig. 2, waiting time for task T3 is 3, pro-
vided its submission time is 0.

� Turnaround time: This keeps track of how long it takes for

a task to complete execution since its submission. It is the
sum of waiting time and execution time of task.
Turnaround Timei ¼ Wi þ Ei ð6Þ
where Wi and Ei are waiting time and execution time of task i

respectively.
For the example in Fig. 2, turnaround time for task T1 is 3.

� Fairness: A desirable characteristic of scheduling process is
fairness which requires that every task must get equal share
of CPU time and no task should be starved.
2.2. Provider-Desired

� Resource utilization: Another important criterion is maxi-
mization of resource utilization i.e. keeping resources as
busy as possible. This criterion is gaining significance as ser-
vice providers want to earn maximum profit by renting lim-

ited number of resources.
Average Resource Utilization

¼
Pn

i¼1Time taken by resource i to finish all jobs

Makespan� n
ð7Þ

where n is no. of resources.
For the example in Fig. 2, Average Resource Utilization =

(22 + 19)/22 * 2 = 0.93

� Throughput: It is defined as the total number of jobs com-
pleting execution per unit time.

Generally, a task-resource mapping schedule is optimized

on the basis of single or multiple criterions. Scheduling of tasks
considering single optimization criteria like minimization of
makespan is simpler to implement than multi-criteria schedul-

ing, specifically when the conflicting criteria are considered like
minimizing makespan and cost. If a user wants to execute his
job faster, he has to spend more because faster resources are
usually costlier. So, there is always a trade-off between cost

and execution time optimization.
Also in multi-criteria optimizations [6], it is not feasible to

find an optimal schedule with respect to all the defined criteri-

ons. Generally, in multi-criteria based scheduling, one criterion
is identified for optimization and for other criterion, minimiza-
tion constraints are established.

Optimization always has an objective and a constraint asso-
ciated with it. The objective defines the best possible option
whereas the constraint defines the restriction imposed. So both
optimization objective and constraints are related to each

other. Following are a few common constraints considered
while scheduling:

� Priority constraint: It represents the urgency of a task to
complete at earliest. Priority can be decided on the basis
of deadline of a task, arrival time of a task or advance reser-

vation. The tasks with shorter deadlines can be given higher
priority and scheduled first. Similarly the tasks having
advance reservation of resources can be provided with those

resources prior to others.
� Dependency constraint: It represents the sequence of tasks
based on their dependency. If there are precedence orders
among tasks, then a task cannot be scheduled until all its

parent tasks are finished, unlike independent tasks, where
tasks are independent of each other and can be scheduled
in any sequence.

� Deadline constraint: This represents the time till which the
task or the batch of tasks should be finished.

� Budget constraint: This represents the restriction on the

total cost of executing all tasks.

Following sections represent review of ACO based, GA
based and PSO based metaheuristic techniques for workflow

scheduling.

3. ACO based scheduling algorithms

Ant Colony Optimization (ACO) metaheuristic is inspired by
the behavior of real ants finding the shortest path between
their colonies and a source of food. This novel approach was

introduced by Dorigo in 1992 in his Ph.D. thesis and was orig-
inally called ant system. While walking amid their colony and
the food source, ants leave pheromones on the ways they

move. The pheromone intensity on the passages increases with
the number of ants passing through and drops with the evap-
oration of pheromone. As the time goes on, smaller paths draw

more pheromone and thus, pheromone intensity helps ants to
recognize smaller paths to the food source [7].

ACO methods are useful for solving discrete optimization
problems that need to find paths to goals. It has been success-

fully applied for solving traveling salesman problem, multidi-
mensional knapsack problem, job shop scheduling, quadratic
assignment problem, scheduling of tasks in grid and cloud

and many more. The first step toward any problem solution
using ACO is to map ant system to the given problem.

For scheduling of independent tasks in grid [8] or cloud, the

number of ants taken is less than or equal to number of tasks.
Each ant starts with an arbitrary task ti and resource Rj for
processing this task. Next, the task to be executed and the

resource on which it is performed are calculated by the follow-
ing probable function:

Pij ¼
ðsijÞaðgijÞbP ðsijÞaðgijÞb

ð8Þ

where
sij denotes the pheromone value related to task ti and

resource Rj

gij denotes the heuristic function
a determines the influence of pheromone value

b determines the influence of heuristic function

In this way, step by step, each ant builds the whole solution
of assigning all the tasks to the resources. Initially, the phero-

mone value is set to be a positive constant and then ants
change this value at the end of every iteration. The ant’s solu-
tion that gives minimum value or maximum value for

Procedure ACO
1. Initialization:

i. Initialize the pheromone value to a positive constant for each path between tasks and
resources

ii. Optimal solution=null
iii. Place the m ants on random resources

2. Solution Construction of each ant:
Repeat for each ant
i. Put the starting resource in tabu list of this ant (for the first task).

ii. For all the remaining tasks
a. Choose the next resource rj for the next task ti by applying following

transition rule

Pij =
() ()

∑ () ()
if j ε allowed, allowed means not in tabu list

else 0
b. Put the selected resource in previous step into tabu list of this ant
End For

Until each ant builds its solution
3. Fitness: Compute the fitness value of the solution of each ant
4. Replacement: Replace the Optimal solution with the ant’s solution having best fitness value if its fitness

value is better than Optimal solution.
5. Pheromone Updation:

i. Update local pheromone for each edge
ii. Update global pheromone

6. Empty tabu lists of all ants
7. Repeat steps 2 to 6 until stopping condition is met. Stopping condition may be the maximum number of

iterations or no change in fitness value of ants’ solutions in consecutive iterations
8. Output: Print Optimal solution

End Procedure

Figure 3 Pseudo code of ACO algorithm [9].

Metaheuristic scheduling techniques 279
considered objective function is taken as the best solution of

that iteration. The final optimal solution is the one which is
best out of all iterations’ best solution.

Pseudo code of one of the proposed algorithms based on

ACO for optimization of scheduling problem in grid or cloud
is discussed in (Fig. 3). Tawfeek et al. [9] have taken minimiza-
tion of makespan as the objective function. They have taken a
constraint of visiting each Virtual Machine (VM) once for each

ant and heuristic function is based on expected execution time
and transfer time of task ti on VM vmj. The algorithm is sim-
ulated in Cloudsim with the number of tasks varying from 100

to 1000. ACO is compared with Round Robin and FCFS algo-
rithms and experimental results prove that with the increase in
number of tasks, ACO takes less time than RR and FCFS. For

1000 tasks, there is approximately 29–32% reduction in make-
span in comparison with RR and FCFS.

To improve the performance of ACO and to make it more

efficient, pheromone updating strategies are proposed in
[10,11]. Liu and Wang [12] presented a task scheduling algo-
rithm for grids by adaptively changing the value of phero-
mone. The value of evaporation rate is adaptively changed

and never allowed to reduce to zero. It accelerates the conver-
gence rate, saves the searching time and evades the earlier stag-
nation. MadadyarAdeh and Bagherzadeh [13] have introduced

the concept of biased initial ants to improve ACO. Their
approach uses the results of deterministic algorithms for biased
initial ants. Authors have also considered standard deviation

of jobs in addition to pheromone, heuristic information and
expected time to execute a job on a given machine. Their
experimental results demonstrate makespan reduction of
33% and 20% in comparison with MaxMin and MinMin

respectively in consistent, low task and low machine hetero-
geneity environment.

Further, scheduling algorithms based on ACO can be

improved by applying local search techniques to the output
of the ACO algorithm [8]. The local search techniques pro-
posed in [8] are focused on finding the problem resource i.e.
the resource whose total execution time is equal to the make-

span of the solution and moving or swapping jobs from prob-
lem resource to another resource that has minimum makespan.
Chiang et al. [14] have incorporated local search strategy at the

end of each iteration to improve each obtained solution.
For scheduling of dependent tasks or workflows in grid or

cloud, an arbitrary B number of ants are used in [15]. Each ant

starts with an entry task and selects a resource based on the
above mentioned probabilistic function. Each ant builds a
sequence of tasks that satisfies the precedence constraints.

The order of mapping tasks to resources is based on this
sequence. The resource for each task is chosen based on prob-
abilistic state-transition rule defined in Eq. (8). Thus each ant
builds the solution incrementally in N steps, where N is the no.

of tasks. During each iteration, B ants build B solutions in par-
allel. Local pheromone updation is done after mapping
resource to each task and global pheromone updation is done

at the end of each iteration. Chiang et al. [14] proposed to
include two probabilistic state-transition rules while applying
ACO to workflow scheduling in clusters. Authors have defined

the rule for task selection in addition to resource selection.
Chen et al. [16] presented a workflow scheduling algorithm

based on Ant Colony System (ACS) algorithm with the

280 M. Kalra, S. Singh
addition of several new features for its improvement. They
aimed to minimize the cost while meeting the deadline. For
this, two kinds of pheromone are defined, one favoring the

minimization of makespan and other favoring minimization
of cost. Three types of heuristic information have been defined
by them to guide the ants in finding their direction of search.

Out of these, each ant used one heuristics type and one pher-
omone type in each iteration based on the probabilities con-
trolled by two parameters. These two parameters are

adaptively adjusted in the algorithm.
The large-scale workflow scheduling problem in grids using

ACS has been undertaken in [15]. Chen and Zhang [15] have
considered reliability, time and cost as QoS parameters.

Users are allowed to define QoS constraints to guarantee the
quality of the schedule. The optimizing objective of the algo-
rithm is based on user-defined preferences. Seven heuristics

and seven pheromone values are defined in the algorithm.
Heuristics are selected by artificial ants using an adaptive
scheme based on pheromone values. The proposed algorithm

manages to reduce the cost by 10–20% when compared with
Deadline-MDP algorithm [17].

Chen et al. [18] addressed the time-varying workflow

scheduling problem in grids based on ACO approach intended
to minimize the total cost in a period while meeting the dead-
line constraint. For this, integrated heuristic is designed based
on the average value of cost heuristics and deadline heuristics.

The fitness of a schedule is evaluated by considering its perfor-
mance in different topologies in a period.

ACO can be improved by using knowledge gained from

predetermined number of best solutions of previous iterations
[19]. The concept of knowledge matrix is integrated with the
ACO algorithm. Knowledge matrix is changed by two meth-

ods, one is by knowledge depositing rule and other is by
knowledge evaporating rule. Knowledge depositing encom-
passes multiplying the knowledge matrix with a constant and

is performed on best schedule found till then whereas knowl-
edge evaporation is done after every iteration.

Wen et al. [20] proposed that ACO algorithm can also be
combined with other algorithms such as Particle Swarm

Optimization (PSO) to improve its performance. The proposed
algorithm not only enhances the convergence speed and
improves resource utilization ratio, but also stays away from

falling into local optimum solution.
Pacini et al. [21] addressed the problem of balancing

throughput and response time when multiple users are running

their scientific experiments on online private cloud. The solu-
tion aims to effectively schedule virtual machines on hosts.
Throughput is related to number of users effectively served
and response time is linked to number of virtual machines

allocated.
Some of the authors have focused on load balancing of

resources to improve the performance of task scheduling in

cloud environment. Li et al. [22] presented Load Balancing
Ant Colony Optimization (LBACO) algorithm, for scheduling
of independent tasks with the aim of minimizing makespan

and even load across all virtual machines. They have calcu-
lated the degree of imbalance to measure the imbalance among
virtual machines. Their experimental results show that

LBACO has reduced the average makespan by 63% and
degree of imbalance by 47% approximately in comparison
with FCFS algorithm for the 500 independent tasks with the
stated parameter settings in CloudSim. Thus it has performed
much better than FCFS algorithm.

Zhang and Zhang [23] proposed a load balancing algorithm

based on ant colony optimization for Open Cloud Computing
Federation (OCCF). OCCF consists of many Cloud
Computing Service Providers’ services and the aim is to bal-

ance the load dynamically across whole cloud federation.
They have also considered the small-world and scale-free attri-
butes of complex network. Kumar et al. [24] modified ant col-

ony optimization algorithm for balancing load in cloud. They
have used the concept of foraging and trailing pheromones for
searching overloaded and under-loaded nodes. As compared
to original ACO approach where ants build their own solu-

tions and afterward build into a whole solution, ants in their
algorithm continuously update a single result set instead of
updating their individual solution. An extension of this algo-

rithm is presented in [25] which considers SLA violation and
energy consumption in addition to load balancing as perfor-
mance metrics. Lu and Gu [26] proposed a dynamic load bal-

ancing strategy for cloud based on ACO. They identified the
virtual machines having CPU usage, memory usage and net-
work bandwidth usage values higher than the threshold values

in real time and named them as hot spot. The load from these
machines is moved to nearest idle nodes using ACO algorithm.

In [27], tasks are allocated virtual machines on First Come
First Serve basis. As the time proceeds, free virtual machines

exhaust. At this time, ants are formed and detached in the
cloud seeking under-loaded virtual machines. The proposed
algorithm has reduced response time by 4.1%, 2.4%, 27.6%

and 27.7% when compared with existing ACO [24], GA [28],
Stochastic Hill Climbing (SHC) algorithm [29] and FCFS
respectively considering one data center with 75 virtual machi-

nes in CloudAnalyst simulator. Various other simulation sce-
narios are also taken to prove the reduction in response time
by the proposed algorithm in comparison with these four

algorithms.
As energy consumption by data centers has become a major

issue, a lot of research is going on in the direction of energy
aware scheduling. A conventional approach to save energy in

data centers is to perform virtual machine consolidation that
is virtual machines are packed on minimum physical machines.
An ACO based virtual machine consolidation approach has

been proposed in [30]. The mapping of virtual machines to
physical machines is considered as Multi-dimensional Bin
Packing (MDBP) problem which means physical machines

are bins and virtual machines represent the objects to be
packed. Unlike previous similar approaches which mainly
focus on one resource (e.g. CPU), this approach considers
CPU cycles, CPU cores, disk size, RAM size and network

bandwidth. They have used historical resource utilization data
to predict the future resource demand. The limitations of this
approach are its implementation in homogeneous environment

and increased computation time in comparison with greedy
algorithm (FFD) [31]. The proposed algorithm took 2.01 h
to compute the workload placement in case of 600 virtual

machines in contrast to 1.75 s by the FFD. But the proposed
approach conserved 4.1% of energy and reduced the number
of hosts used by 4.7%.

A fairly similar kind of algorithm is presented in [32]. But
the difference lies in the pheromone deposition. Rather than
depositing pheromone between virtual machines and physical

Metaheuristic scheduling techniques 281
servers [30], this approach deposits pheromone between virtual
machines to track the past desirability of placing them in the
same physical machine. Initially number of physical servers

and virtual machines are same. The algorithm tries to build
solutions with one fewer physical machine in every generation
during the whole procedure. The algorithm is simulated in

homogeneous environment and only CPU and memory
resources are considered. Their experimental results show the
reduction in number of servers used by 14% when compared

with FFD [33] taking 600 virtual machines.
Another study done in this field aims to minimize energy

consumption as well as resource wastage [34]. Virtual machine
consolidation is modeled as MDBP Problem and resource uti-

lization is based on vector algebra. The simulation assumes
homogeneous environment and CPU, network I/O and mem-
ory are considered as significant resources. The algorithm

reduces power consumption by 2.20%, 5.77%, 11.06% and
11.94% in comparison with [30], a greedy algorithm [35],
FFDVolume [36] and modified FFD based on L1 norm mean

estimator. In [37], authors have proposed an energy efficient
scheduling mechanism based on ant colony framework with-
out violating the SLA constraints of throughput and response

time.
Comparison of various ACO based scheduling algorithms

is shown below in Table 1.
4. GA based scheduling algorithms

GA was first introduced by Holland in 1975 and represents a
population based optimization method based on a metaphor

of the evolution process observed in nature. In GA, each chro-
mosome (individual in the population) represents a possible
solution to a problem and is composed of a string of genes.

The initial population is taken randomly to serve as the start-
ing point for the algorithm. A fitness function is defined to
check the suitability of the chromosome for the environment.

On the basis of fitness value, chromosomes are selected and
crossover and mutation operations are performed on them to
produce offsprings for the new population. The fitness func-

tion evaluates the quality of each offspring. The process is
repeated until sufficient offspring are created [38,39]. Pseudo
code of GA algorithm for optimization of scheduling problem
in cloud is shown in Fig. 4.

In the literature, different types of representations to
encode scheduling solutions for GA are used. Fixed bit
string representation [28] is the classical approach for repre-

senting solutions in GA. In this approach, solutions are
encoded into fixed length binary strings. However there have
been many modifications to this approach. The three fre-

quently used representations nowadays are direct representa-
tion, permutation based representation and tree
representation. In direct representation, chromosomes ch
are vectors of size n, where n is the no of tasks and value

of ch[i] represents the resource on which task i is scheduled.
Direct representation was used in [40–44]. Permutation
based representation uses a 2D vector to represent a chro-

mosome. One dimension represents the resources and other
dimension shows the order of tasks on each resource. This
representation was applied in [39,45–48]. Tree representation

has been used in [49,50] for mapping relationship between
VMs and physical machines.
The initial population is generated randomly in basic
genetic algorithm. To obtain optimal results and increase the
convergence speed of the GA, some heuristic approaches can

be applied to generate the initial population. Minimum
Execution Time (MET) and Min–min heuristic have been used
in [45] to generate initial population. [47,51] used Longest Job

to Fastest Processor (LJFP) and Smallest Job to Fastest
Processor (SJFP) for this purpose. As [43,45,48,52] applied
GA to solve workflow scheduling problem, precedence of tasks

was also considered while generating initial population. In [48],
further, Best-fit and Round-Robin methods are used to select
good candidate resources for tasks.

Fitness function is used to calculate fitness value of chro-

mosomes. Fitness function may be based on makespan, flow-
time or execution cost [45,52]. Selection operators are further
used to select chromosomes to which crossover operators are

applied. Roulette wheel strategy [39,40,45] and Binary
Tournament Selection [52] are some of the commonly used
selection procedures.

Several crossover operators and mutation operators have
been explored in the literature. One-point crossover and
Two-point crossover [40,45,47] operators have been widely

used in performing crossover operation. Simple Swap [47]
and Swap and Move [45,48] are commonly used mutation
operators. In [48], for crossover, all tasks were selected
between two successive points of parent1 and exchanged with

location of same tasks of parent2. The authors in [43] used ran-
dom gene selection crossover in which some randomly selected
genes of two parents are changed by each other to produce new

offsprings. For mutation, they randomly selected a gene from
a chromosome and replaced its resource with a resource having
better failure rate and not overloaded. The authors in [49]

developed their own crossover and mutation operators to
make them appropriate for tree representation of chromo-
somes. An adaptive mutation operator was introduced in

[39] to dynamically adjust the mutation rate depending on
the fitness variation. Mutation rate was increased when the
population stagnated and decreased in case search space has
come close to the solution. Another study in [41] also worked

on adjusting crossover and mutation rates based on fitness
ratio. As in [52], tasks in chromosome are arranged in the
order of their workflow levels, and crossover and mutation

operators are adapted according to this level-wise
representation.

The authors in [51] discussed and compared various cross-

over, mutation and selection operators. They compared the
performance of seven different crossover operators, namely
One-point, Two-point, Uniform, Fitness based, Cycle cross-
over, Order crossover and Partially Matched crossover on

some given parameters and concluded Cycle crossover opera-
tor the best among these for makespan reduction. Similarly
Rebalancing had been found as the best mutation operator

among Move, Swap, Move and Swap, and Rebalancing muta-
tion operators. After comparing five selection operators –
Random, Best, Linear Ranking, Binary Tournament and N

Tournament, Tournament selection, they observed N
Tournament selection as the best one.

To improve the convergence speed of GA and produce

optimal solutions for cloud scheduling problem, [42] proposed
Parallel Genetic Algorithm. Their experimental results reveal
that it performs 1.5 times faster than GA when two threads
are used and 2.7 times faster when four threads are used.

Table 1 Comparison of various ACO based scheduling algorithms.

Referenced

work

Improvement strategy Performance metrics Nature of

tasks

Environment

[8] Applying local search technique to the output of

ACO

Makespan Independent Grid Experimental

Environment

[9] Basic ACO Makespan Independent Cloud Simulation

Environment

(CloudSim toolkit)

[11] Changes in pheromone updation strategy Makespan Independent Grid Simulation

Environment (GridSim

toolkit)

[12] Changes in pheromone updation strategy (by

adaptively changing value of evaporation rate of

pheromone)

Makespan, load balancing Independent Grid Simulation

Environment

[13] Pheromone updation done using MaxStd heuristic,

which is based on the concept of standard

deviation

Makespan Independent Grid Experimental

Environment

[14] Applying local search at the end of each iteration Makespan Workflows Cluster Environment

[15] Changes in pheromone updation strategy

Heuristics are selected based on pheromone values

Makespan, Reliability, Execution

Cost

Large-Scale

Workflows

Grid Experimental

Environment

[16] Change in the method of initialization of ants as

well as solution construction

Execution Cost, Deadline

Constraint

Workflows Grid Simulation

Environment

[18] Changes in pheromone updation strategy Execution Cost, Deadline

Constraint

Time-

Varying

Workflows

Grid Experimental

Environment

[19] Integrating knowledge model with ACO Execution Cost, Deadline

Constraint

Workflows Grid Experimental

Environment

[20] Combined with PSO algorithm Makespan, Resource Utilization

Ratio

Workflows Cloud Simulation

Environment (MatLlab

7.0)

[21] Applied in Online environment Throughput, Response Time VM

Placement

CloudSim

[22] Considered load balancing of virtual machines Makespan, Load Balancing Independent CloudSim

[23] Decentralized and Dynamic load balancing for

OCCF considering Complex Network

Load Balancing Independent Java

[24] Ants update single result set instead of updating

individual solution

Load Balancing Independent Not mentioned

[25] Load Balancing by finding overloaded and under-

loaded nodes

Load Balancing, SLA Violation,

Energy Consumption

Independent CloudSim

[26] Hot spots are identified and their load is shifted

using ACO

Load Balancing Independent Cloud Experimental

Environment

[27] Basic ACO Load Balancing (Evaluation

based on Response Time)

Independent CloudAnalyst

[30] Problem formulated as MDBP Problem, Consider

historical data to predict future resource demand

Energy Conservation VM

Placement

Own Java-based

Simulation Toolkit

[32] Pheromone is deposited between virtual machines. Energy Conservation VM

Placement

Cloud Simulation

Environment

[34] Incorporation of vector algebra Energy Conservation and

Resource Utilization

VM

Placement

Cloud Simulation

Environment

[37] Ant Colony Framework taking different types of

ant agents

Energy Consumption, SLA

constraints of Throughput,

Response Time

Independent Only proposed

282 M. Kalra, S. Singh
The performance in terms of resource utilization rate is much
better than first fit and Round robin algorithm.

The authors in [53] focused on user satisfaction which can
be achieved following the Quality of Service (QoS) attributes
selected in a SLA and thus aimed to minimize response time

and processing cost. They have categorized the user tasks into
four sets based on time and budget constraints. To improve the
results of GA, a restart operation to produce next population

is designed. If the best fitness value of recent population is less
than minimum fitness threshold, half of the next population is
filled with top chromosomes with high fitness value. The
remaining population is created randomly.

Most of the scheduling algorithms have targeted one or two
objectives, while Sellami et al. [54] proposed an immune
genetic algorithm for workflow scheduling, which considered

five objectives and solved constraint satisfaction problem asso-
ciated with task scheduling constraints. After using double-
point crossover and mutation, every solution that violated

the constraints was vaccinated, thereby correcting the defective
genes. Fitness function is calculated by first separating the

Procedure GA
1. Initialization: Generate initial population P consisting of chromosomes.
2. Fitness: Calculate the fitness value of each chromosome using fitness function.
3. Selection: Select the chromosomes for producing next generation using selection operator.
4. Crossover: Perform the crossover operation on the pair of chromosomes obtained in step 3.
5. Mutation: Perform the mutation operation on the chromosomes.
6. Fitness: Calculate the fitness value of these newly generated chromosomes known as offsprings.
7. Replacement: Update the population P by replacing bad solutions with better chromosomes from

offsprings.
8. Repeat steps 3 to 7 until stopping condition is met. Stopping condition may be the maximum number of

iterations or no change in fitness value of chromosomes for consecutive iterations.
9. Output best chromosome as the final solution.

End Procedure

Figure 4 Pseudo code of GA.

Metaheuristic scheduling techniques 283
objectives, which are to be minimized and the objectives to be
maximized and then summing them after normalization.

Task throughput can be improved by deploying an efficient

load balancing strategy. Dasgupta et al. [28] focused on load
balancing of resources while scheduling tasks in cloud using
genetic algorithm. Their experimental results show that there

is 25–26% reduction in response time when compared with
SHC [29], RR and FCFS taking one data center with 75 virtual
machines. The algorithm is executed taking various other sce-
narios also and their results prove that it outperforms FCFS,

RR and SHC. The approach proposed by Hu et al. [49] for
balancing load between virtual machines using genetic algo-
rithm considers historical data and system variation in addi-

tion to the current state of the system. Thus it computes the
affect it will have on the system after the deployment of virtual
machines to host machines in advance and then selects the

least affective solution. This way it achieves load balancing
and reduces dynamic VM migration.

Zhu et al. [55] presented a multi-agent genetic algorithm

(MAGA) for balancing load between virtual machines.
MAGA is a combination of GA and multi-agent techniques
which reduces convergence time and improves the quality of
optimization results as compared to standard GA. The exper-

imental results prove that it is better to use MAGA than basic
GA for cloud environment as it can solve large-scale, high-
dimensional and dynamic optimization problems with ease.

Their algorithm balances both CPU utilization and memory
usage among virtual machines.

Wang et al. [44] proposed a task scheduling algorithm

based on genetic algorithm with the aim of minimizing make-
span and even distribution of load between virtual machines.
They used greedy algorithm to initialize the population and
their selection strategy is based on fitness ratio. Two types of

fitness functions are defined, out of which one is selected ran-
domly in each iteration. They have taken adaptive probabili-
ties of crossover and mutation rather than using fixed values.

A novel approach to maximize resource utilization by effi-
ciently allocating virtual machines to appropriate physical
machines using family genetic algorithm (FGA) has been given

in [56]. FGA segregates the whole population into families and
then each family can be processed in parallel, thus increasing
the speed of algorithm. In this approach, families are con-

structed using mutation operation. The resulting chromosomes
having minor variations are put in the same family. The given
approach also decreases energy consumption and rate of vir-
tual machine migrations. To minimize the odds of premature
convergence, mutation probability is dynamic and self-

adjusting.
In [57], authors introduced a hybrid of GA and fuzzy the-

ory called FUGE that intends to minimize makespan, cost

and degree of imbalance in cloud while scheduling tasks.
Two different types of chromosomes are created based on
diverse QoS parameters. Fuzzy theory is used to compute
the fitness value of chromosomes and for crossover operation.

The proposed approach is compared with ACO in terms of
makespan and degree of imbalance. The average makespan
achieved with the FUGE and ACO is 189.2 and 268.5 respec-

tively when the numbers of tasks are varied from 100 to 700
with the increments of 100, which is a significant improvement
in terms of makespan. It also achieves better performance in

terms of degree of imbalance when compared with ACO. It
is also compared with GA in terms of makespan and
execution cost. It gives an improvement of about 45% in terms

of execution cost and about 50% in terms of makespan over
GA.

A genetic algorithm based approach for virtual machine
consolidation to make data centers energy-efficient is explored

in [58]. As compared to existing approaches in which only
energy consumed by physical machines is considered, the
approach considers energy consumed by both the physical

hosts and communication network in the data centers. The
solutions produced by the proposed algorithm are 3.5–23.5%
better than those produced by FFD. An energy efficient

scheduling model based on MapReduce is given in [59].
Genetic algorithm and genetic operators are modified to solve
this model. A local search operator is designed to improve con-
vergence speed and searching capability of the algorithm. The

experimental results show that energy efficiency of all servers
achieved by the proposed algorithm and Hadoop
MapReduce scheduling is 1.93834 and 7.37484 considering

large amount of data, which proves that the algorithm outper-
forms Hadoop MapReduce scheduling [60].

Shen and Zhang [61] presented energy aware task schedul-

ing algorithm based on shadow price guided genetic algorithm
(SGA). Shadow price in GA is defined as the comparative
improvement of chromosome’s fitness value with the modifica-

tion of a gene. They have modified genetic operators using sha-
dow price information to enhance the probability of producing

284 M. Kalra, S. Singh
better solutions. Their experimental results expose the average
energy saving using SGA over GA with 500 tasks is 5.41E+18.

In [62] two GA-based energy-aware schedulers are designed

for computational grid environment. One scheduler uses elitist
replacement method that is new generation includes two best
parent solutions and the rest are newly generated chromo-

somes. Another scheduler makes use of struggle replacement
strategy in which new generation is produced by substituting
a fraction of population by the most analogous individuals,

if this substitution optimizes the fitness value. They have taken
two optimization criteria, makespan and energy conservation.
Energy conservation is based on DVFS technique. The exper-
imental results reveal that both the schedulers achieve a signif-

icant reduction in energy consumption (16–30%), although
Struggle Strategy GA outperforms Elitist GA.

Another Pareto-solution based GA approach for workflow

scheduling considering makespan and energy conservation as
two optimization objectives is presented in [63]. The main com-
ponents of the approach are multi-parent crossover operator

and a case library. A case library consists of task type vectors
(CPU-bound or I/O bound), dependency matrix of tasks and
corresponding Pareto solutions. For generating initial popula-

tion, cases similar to user requests are searched in the case
library and the ones with the highest value of similarity are
considered. If there are no similar cases, initial population is
generated randomly. The algorithm has been proved effective

in terms of convergence, stability and solution diversity.
Comparison of various GA based scheduling algorithms is

shown below in (Table 2).

5. PSO based scheduling algorithms

Particle Swarm Optimization (PSO) is an evolutionary compu-

tational technique introduced by Kennedy and Eberhart [64] in
1995 motivated by social behavior of the particles. Each parti-
cle is allied with position and velocity and moves through a

multi-dimensional search space. In each iteration, each particle
adjusts its velocity based on its best position and the position
of the best particle of the whole population. PSO combines

local search methods with global search methods trying to bal-
ance exploration and exploitation. PSO has gained popularity
due to its simplicity and its usefulness in broad range of appli-
cations with low computational cost. Pseudo code of PSO

algorithm for optimization of scheduling problem in cloud is
shown in Fig. 5.

The first step of applying PSO to scheduling problem is to

encode the problem. A commonly used method is to represent
the particle as 1 � n vector, where n is the no. of tasks and
value assigned to each position is the resource index [65–72].

Thus the particle represents mapping of resource to a task.
A matrix based encoding scheme is presented in [73,74] in
which m � n position matrix represents solutions, where m is
the no. of resources and n is no. of tasks. The elements of this

matrix can have value either 0 or 1 with the constraint of hav-
ing single element with value 1 in each column. The concept is,
each column represents a job allocation and each row repre-

sents allocated jobs to a resource. Velocities are also repre-
sented in the form of matrices. Liu et al. [75] used fuzzy
matrices to represent position and velocities of particles. The

element in each matrix signifies fuzzy relation between
resource and job i.e. the degree of membership that the
resource would execute the job in the feasible schedule solution
space.

The next step in PSO is to generate initial population,

which is generally produced randomly [65–67,69,70,72,73].
As randomness decreases the probability of the algorithm to
converge to best solution, Abdi et al. [74] created initial parti-

cles based on Shortest Job to Fastest Processor (SJFP)
Algorithm, whereas Wu et al. [68] generated initial population
using Greedy Randomized Adaptive Search Procedure

(GRASP).
PSO was originally developed for continuous optimization

problems. So it needs to be reengineered to solve discrete opti-
mization problems such as scheduling. Small Position Value

(SPV) rule [65,66,72] is one of the immensely used techniques
for this purpose while using 1 � n vector encoding for PSO
particles. In [76], Integer-PSO technique is used which outper-

forms the SPV when there is huge difference in the length of
the tasks and the processing speed of resources. The authors
in [70] used crossover and mutation strategies of genetic algo-

rithm to make it work for discrete problems.
Various strategies have been proposed in the literature to

improve PSO for scheduling problem. Zhang et al. [66] pro-

posed to apply Variable Neighborhood Search (VNS), a local
search algorithm, after each iteration of PSO to enhance the
exploitation of searching space. Pooranian et al. [71] have pro-
posed a combination of PSO and Gravitational Emulation

Local Search (GELS) algorithm for independent task schedul-
ing in grid computing. GELS is a local search algorithm used
to improve the results obtained after PSO, by avoiding local

optima. GELS algorithm checks results obtained from PSO
to get the best solution and does not explore the search space
randomly. The experimental results show that the PSO–GELS

algorithm achieves makespan reduction of 29.2% over
Simulated Annealing (SA) algorithm for 5000 tasks and 30
resources. A combination of PSO and Pareto optimization

has been presented in [76] for independent task scheduling in
cloud aiming to minimize makespan and cost.

Refs. [67–70,73] have applied PSO to solve workflow
scheduling problem. In [68], new position can come from pbest

and gbest as well as from previous position and other feasible
pairs, which significantly decreases the search space and
improves the algorithm performance. Xue and Wu [70] have

used hill climbing after each iteration to improve local search
ability and reduce the PSO premature convergence. [77] has
combined the mutation concept and self-organizing hierarchi-

cal PSO, which enhances the convergence rate and reduces the
computational time of PSO.

A novel PSO based hyper-heuristic algorithm for secure
scheduling of jobs in grid environment has been presented in

[78]. A hyper-heuristic is a high-level methodology that tries
to automate the appropriate blend of low level heuristics to
successfully solve the particular problem. Security is incorpo-

rated by defining Trust Level (TL) of the nodes and identifying
the Security Demand (SD) of users at the time of job submis-
sion. A job is expected to be effectively scheduled during job-

resource mapping if SD 6 TL.
PSO has been used diversely in cloud environments. The

authors in [69] presented a strategy based on PSO for executing

scientific workflows on IaaS clouds. In [67], PSO has been used
in a scheduling heuristic which dynamically balances the task
mappings when resources are unavailable.

Table 2 Comparison of various GA based scheduling algorithms.

Referenced

work

Encoding

scheme

Initial population

generation

Optimization

criteria

Selection

operator

Crossover operator Mutation operator Nature of

tasks

Environment

[28] Fixed bit string

representation

Randomly Load Balancing Randomly Single Point Crossover Bits are toggled (0–1 or 1–0) Independent CloudAnalyst

[39] Permutation

Based

Representation

Random Makespan, Load

Balancing, Resource

Utilization, Time

taken to obtain

solution

Roulette Wheel No operator Adaptive Mutation

Operator

Workflow Grid Simulation

Environment

[40] Direct Resource having

some data for the

task is assigned to

task

Makespan Roulette Wheel One-Point Crossover Flip Mutator Independent Cloud Simulation

Environment

(Hadoop MapReduce)

[41] Direct Random Makespan Random

Selection

(known as

marriage of

scale)

New operator developed

based on fitness ratio

New operator developed

based on fitness ratio

Independent Cloud Simulation

Environment

[42] Direct Not mentioned Resource

Utilization, Speed of

resource allocation

Not mentioned Not mentioned Not mentioned Independent Cloud Simulation

Environment (using

Java Language with

Java Genetic

Algorithm Package)

[43] Direct New method

Based on best-fit

and round-robin

method

Makespan, Load

Balancing on

Resources, Speedup

Ratio

No operator Random Gene Selection

Crossover

Selecting a random gene

and replacing its resource

with a resource having

better failure rate and not

overloaded

Workflow Cloud Simulation

Environment

[44] Direct Greedy algorithm Makespan, Load

Balancing

Rotating

Selection

Strategy

One Point Crossover Local Search Independent MATLAB

[45] Permutation

Based

Representation

Using MET and

Min–Min

Heuristic

Makespan,

Flowtime

Rotating

Roulette Wheel

Strategy

One-Point and Two-Point

Crossover

Swap and Move Workflow Homogeneous Parallel

Multiprocessor System

[47] Permutation

Based

Representation

Using LJFP and

SJFP

Makespan and

Execution Cost

Fitter

individuals

with minimum

makespan

Two-Point Crossover Simple Swap Independent Cloud Simulation

Environment (using

Java Language with

Java Genetic

Algorithm Package)

[48] Permutation

Based

Representation

Random Deadline and

Budget constraints

No operator Randomly selecting

crossover window from a

parent and exchanging its

task’s resources with

another parent

Swap and Replace Workflow Grid Simulation

Environment

(GridSim)

[49] Tree

Representation

Spanning tree

based method

Load Balancing Rotating

Selection

Newly developed method Newly developed method Independent Cloud Experimental

Environment

(continued on next page)

M
eta

h
eu
ristic

sch
ed
u
lin

g
tech

n
iq
u
es

2
8
5

Table 2 (continued)

Referenced

work

Encoding

scheme

Initial population

generation

Optimization

criteria

Selection

operator

Crossover operator Mutation operator Nature of

tasks

Environment

strategy

[50] Level-wise

Chromosome

Representation

Random

Generation

considering

workflow levels

and service

availability

Budget and

Deadline

Constraints

Binary

Tournament

Selection

Randomly choose some

levels of one parent and

exchange them with their

counterparts in another

parent

Swapping of tasks within

individual levels

Workflow Grid Simulation

Environment

[53] Two arrays

representing

tasks and

corresponding

VM allocation

Random Response Time,

Processing Cost

Roulette Wheel Two-Point Crossover Non-uniform Mutation Independent Discrete-Event System

Modeling and

Simulation

Environment

[54] Associative

Array Based

Representation

Based on HEFT

model

Makespan, Cost,

Reliability,

Availability, Energy

Consumption

Sort the

individuals and

Select only X

percent best

ones

Double-Point Crossover Swap Workflow Cloud Simulation

Environment

[55] Fixed bit string

representation

Randomly Load balancing Neighborhood

Competition

Operator for

agents

Neighborhood Orthogonal

Crossover Operator for

agents

Mutation operator for

agents

Independent Cloud Simulation

Environment

[56] – Random Resource Utilization – – – VM

Placement

CloudSim

[57] Direct Random Makespan, Cost,

Load Balancing

Based on

fitness value

Fuzzy based crossover

approach

– Independent CloudSim, MATLAB

[58] Direct Random Energy

Conservation

Roulette

Selection

Biased Uniform Crossover Random VM

Placement

Java

[59] Direct Random Energy

Conservation

Random Mutipoint Crossover Single-Point Mutation

Operator

VM

Placement

Cloud Simulation

Environment

[61] – Random Energy

Conservation

Random

+ Shadow

Price Guided

Selection

Shadow Priced Guided

Crossover Operators

Shadow Priced Guided

Mutation Operators

Independent Microsoft C#

[62] Permutation

Based

Representation

Minimum

Completion Time

+ LJFR-SJFR

Makespan, Energy

Conservation

Linear

Ranking

Selection

Partially Mapped

Crossover

Rebalancing (Rebalance

and mutate)/Simple Move

Independent HyperSim-G Grid

Simulator

[63] Direct Using Case

Library

Makespan, Energy

Conservation

Tournament

selection

Muti-Parent Crossover

Operator

– Workflow MATLAB

2
8
6

M
.
K
a
lra

,
S
.
S
in
g
h

Procedure PSO
1. Initialization: Initialize position vector and velocity vector of each particle.
2. Conversion to discrete vector: Convert the continuous position vector to discrete vector.
3. Fitness: Calculate the fitness value of each particle using fitness function.
4. Calculating pbest: Each particle’s pbest is assigned its best position value till now. If particle’s current

fitness value is better than particle’s pbest, then replace pbest with current position value.
5. Calculating gbest: Select the particle with best fitness value from all particles as gbest.
6. Updation: Update each particle’s position vector and velocity vector using following equations:

Vi+1=ωVi+c1rand1*(pbest-xi)+c2rand2*(gbest-xi)
Xi+1=Xi+Vi+1

where
ω=interia
c1 ,c2=acceleration coefficients
rand1, rand2=uniformly distributed random numbers and ε [0, 1]
pbest=best position of each particle
gbest= best position of entire particles in a population
i=iteration

7. Repeat steps 2 to 6 until stopping condition is met. Stopping condition may be the maximum number of
iterations or no change in fitness value of particles for consecutive iterations.

8. Output: Print best particle as the final solution.
End Procedure

Figure 5 Pseudo code of PSO algorithm.

Metaheuristic scheduling techniques 287
Pacini et al. [79] proposed a virtual machine scheduling
algorithm based on IaaS model which aimed to serve multiple

users running parameter sweep experiments on private clouds.
The performance metrics considered are number of users effec-
tively served which is associated with throughput and the total

number of virtual machines allocated which is related to
response time. The proposed approach is compared with GA
and Random approach. Random approach serves many users,

but may not be fair with response time of users as it creates less
number of virtual machines. GA serves less number of users
and creates more number of virtual machines. The proposed
PSO approach serves more users than GA and creates more

virtual machines than Random. PSO achieves an excellent bal-
ance between number of serviced users and number of created
virtual machines with 29.41% gain over GA and 35.29% gain

over Random when the number of users is 100 and they con-
nect every 90 s.

Liu and Wang [80] presented an algorithm based on PSO to

balance the load between virtual machines in cloud. The algo-
rithm tries to minimize makespan and maximize resource uti-
lization of virtual machines. They modified the basic PSO by

introducing a self-adapting inertia weight which is based on
particle’s fitness value and global best fitness value. A simple
mutation mechanism is used in which a random value from
solution space is assigned to position if there is an overflow.

Sidhu et al. [81] proposed a load balancing strategy (PSO-
LR) for heterogeneous computing systems which is applied
after scheduling the tasks using discrete PSO technique. The

load balancing strategy moves the smallest task from the
machine having highest execution span to any other machine
which reduces the makespan of the whole schedule. The pro-

cess is repeated for the remaining N-2 machines and finally
the schedule is updated. The iterations are repeated till make-
span cannot be reduced further. The experimental results
divulge that there is a makespan reduction of 19.6% and

37% over PSO–SPV for homogeneous and heterogeneous
environment respectively. Moreover the average resource uti-
lization of PSO-LR is between 18% and 22% and PSO–SPV
is 12–31% taking five different kinds of machines and 100
heterogeneous tasks.

Load balancing can be achieved by virtual machine migra-
tion that is by moving an overloaded virtual machine from one
physical machine to another. Even though it reduces virtual

machine downtime, the drawback is that a lot of time, memory
and cost are consumed. To address these limitations, a PSO
based load balancing algorithm is proposed in [82]. In the pro-

posed approach, instead of migrating entire overloaded virtual
machine, some tasks are shifted to another identical virtual
machine to reduce time consumption. Moreover the chosen
virtual machine is not moved on the idle physical machine to

decrease energy consumption.
Yassa et al. [83] proposed a PSO based approach for work-

flow scheduling in cloud. The approach aims to minimize

makespan and cost of user applications as specified in
Service Level Agreement (SLA), and energy consumed by
physical machines in the data center. They have used

Dynamic Voltage and Frequency Scaling (DVFS) technique
for reducing energy consumption. DVFS functions on the
principle of decreasing supply voltage and thus clock fre-

quency to the CPU to reduce power consumption. When pro-
cessor is idle, it goes into sleep mode which reduces supply
voltage and clock frequency. To deal with the problem of opti-
mizing multiple objectives, Pareto optimization technique is

followed. The results of the investigations show a makespan
reduction of 0.95%, cost reduction of 10.8% and energy con-
servation of 8.12% over HEFT with hybrid workflow applica-

tions and improvements of 2.95% for makespan, 22.15% for
cost and 20.9% for power consumption with parallel workflow
applications.

Some authors have focused on energy aware virtual machi-
nes placement to conserve power in data centers. Xiong and
Xu [84] have taken up this issue and presented a model using
PSO technique. Their fitness function is based on total

Euclidean distance between actual utilization and their best
value of utilization considering energy efficiency. Wang et al.
[85] solved the same problem using modified PSO. The

Table 3 Comparison of various PSO based scheduling algorithms.

Referenced

work

Encoding

scheme

Initial

population

generation

Optimization criteria Nature of

tasks

Environment Highlights

[65] 1 * n Vector

Representation

Random Communication Time

and Execution Cost

Independent Cloud

Simulation

Environment

–

[66] 1 * n Vector

Representation

Random Makespan Independent Grid

Simulation

Environment

Local search based on VNS applied

after each permutation

[67] 1 * n Vector

Representation

Random Communication Cost

and Execution Cost

Workflow Cloud

Simulation

Environment

(JSwarm

package)

Combined with Heuristic

[68] Set Based

Representation

Using

GRASP

Communication Cost

and Execution Cost

with Deadline

Constraint

Workflow Cloud

Simulation

Environment

(JSwarm

package)

Position generation procedure

updated

[69] 1 * n Vector

Representation

Random Execution Cost with

Deadline Constraint

Workflow Cloud

Simulation

Environment

(CloudSim)

For IaaS Clouds

[70] 1 * n Vector

Representation

Random

while

considering

constraints

Execution Cost with

Deadline Constraint

Workflow Cloud

Simulation

Environment

(Java)

Used hill climbing after each

iteration

[71] 1 * n Vector

Representation

Random Makespan, No. of

tasks that miss their

deadline

Independent Java Simulation

Environment

Local search based on GELS

applied on results obtained from

PSO

[72] 1 * n Vector

Representation

Random Makespan and

Average Resource

Utilization

Independent Cloud

Simulation

Environment

� Velocity updation is done using

vector differential operator

from differential evolution

� Particle is moved to new posi-

tion only if it gives better fitness

value

� If particle gets stagnated, then

particle is moved to new

position

[73] Matrix

Representation

Random Makespan and

Flowtime

Independent Grid

Simulation

Environment

(VC++)

–

[74] Matrix

Representation

Using SJFP Makespan Independent Cloud

Simulation

Environment

–

[75] Fuzzy Matrices Random Makespan Independent Grid

Simulation

Environment

Applying LJFP-SJFP heuristic

alternatively after allocation of

batch of jobs to nodes

[76] 1 * n Vector

Representation

Random Makespan, Cost Independent Cloud

Simulation

Environmemnt

Pareto optimization, Integer-PSO

technique

[78] – Random Makespan, Cost Independent GridSim PSO-based hyper-heuristic

approach, Security is also

incorporated

[79] – Random Throughput, Response

Time

VM

Placement

CloudSim PSO is used in online scheduling

scenario

[80] Matrix

Representation

Random Makespan and Load

balancing in terms of

Average Resource

Utilization

Independent MATLAB Use of Self-adapting inertia weight

and a simple mutation mechanism

[81] 1 * n Vector

Representation

Random Makespan and

Average Resource

Utilization

Independent Heterogeneous

Simulation

Environment

Task scheduling by PSO is

followed by novel load balancing

technique

288 M. Kalra, S. Singh

Table 3 (continued)

Referenced

work

Encoding

scheme

Initial

population

generation

Optimization criteria Nature of

tasks

Environment Highlights

[82] 1 * n Vector

Representation

Random Makespan, Load

Balancing

Independent CloudSim and

JSwarm

Load balancing is done by

transferring tasks from an

overloaded virtual machine to

another physical machine

[83] Triplets of task,

processor and

voltage scaling

level

HEFT Makespan, Cost,

Energy Conservation

Workflow Cloud

Simulation

Environment

Combined with DVFS to deal with

energy conservation.

[84] Matrix

Representation

First-Fit

algorithm

Energy Conservation VM

Placement

CloudSim Considers Euclidean distance to

calculate fitness function

[85] A novel two

dimensional

encoding

scheme

First-Fit

algorithm

Energy Conservation VM

Placement

Java based

Simulation

Environment

A new encoding scheme and

implementing an energy-aware

local fitness strategy

[87] 1 * n Vector

Representation

Random Energy Conservation VM

Placement

CloudSim Combining PSO with Tabu Search

Procedure LCA

1. Initialization: Initialize league size that is no. of teams going to play (L) and the number of seasons (S),
w=1.

2. Generation: Generate a league schedule for L-1 weeks (one season) and team formations of each team (L
solutions) and let them be their present best formations.

3. Fitness: Calculate the fitness value of each team (solution) using fitness function.
4. Determination of winner/loser: Find the winner/loser between every pair based on probability calculated

using fitness value.
5. Repeat steps 6 and 7 for each team
6. Development of new formation: Develop a new formation for next week while tracking prior week’s

knowledge and team’s present best formation.
7. Replacement: Replace the present best formation with the new formation if the fitness value of new

formation is better than present best formation
8. Generation of league schedule for next season: If mod (w, L-1) ==0, generate a league schedule.
9. Repeat steps 3 to 8 until w<=S.(L-1)
10. Output: Print team formation with best fitness value as the final solution.

End Procedure

Figure 6 Pseudo code of LCA.

Metaheuristic scheduling techniques 289
modification consists of redefining the parameters and opera-
tors of PSO, implementing an energy efficient local fitness first

technique and developing a new two-dimensional particle
encoding scheme to get better quality of solutions. The algo-
rithm is compared with First Fit (FF), Best Fit (BF) and

MBFD [86] algorithm. Their experimental results prove the
energy savings of 13–23% over these three approaches. The
server utilization of presented approach is approximately 61–
68% and of FF, BF and MBFD is 52–60% with number of

virtual machine requests varying from 100 to 1000. Wang
et al. [87] overcome the energy optimization problem by com-
bining PSO with Tabu Search mechanism with the addition of

maximizing revenue acquisition.
Comparison of various PSO based scheduling algorithms is

shown below in Table 3.
6. League championship algorithm

Kashan [88] proposed a novel meta-heuristic algorithm termed

as League Championship Algorithm (LCA) for global opti-
mization in 2009. It is inspired by the contests of sport teams
in a sports association (league). A league schedule is designed
every week (iteration) for the teams (individuals) to play in

pairs and the result is in the form of win or loss depending
upon the playing strength (fitness value) of a team following
a meticulous team formation/playing technique (solution).

On the basis of prior week knowledge, the team makes changes
in the formation (a new solution) for the next week competi-
tion and the championship continues till the specified number

of seasons (terminating condition). Pseudo code of LCA algo-
rithm is given in Fig. 6.

290 M. Kalra, S. Singh
An extensive survey of applications of LCA and its future
scope in other application areas has been done in [89]. LCA
has been used to solve various optimization problems out of

which some are traveling salesperson problem, reactive power
dispatch problem, job shop scheduling, and optimization of
electromagnetic devices, task scheduling in cloud, etc.

Abdulhamid et al. [90] and Sun et al. [91] have used this
algorithm for solving optimization problems related to cloud
scheduling. In [90], authors aimed to minimize makespan of

a given set of tasks in Infrastructure as a Service (IaaS) cloud.
Their results show that it performs better than First Come
First Serve (FCFS), Last Job First (LJF) and Best Effort
First (BEF). The algorithm has been implemented in

MATLAB. The authors in [91] have proposed a double com-
binatorial auction based resource allocation mechanism con-
sidering the features of cloud resources. They used LCA

algorithm to solve winner determination problem of this strat-
egy and aimed to maximize market surplus and overall reputa-
tion. It is implemented in SimJava 2.0 toolkit on the Eclipse

platform.

7. BAT algorithm

Getting inspiration from echolocation behavior of bats, Yang
[92] introduced BAT algorithm, a novel optimization algo-
rithm in 2010. Bats use echolocation to estimate the distance

of their prey. They fly randomly with a velocity, position, fre-
quency, loudness and pulse emission rate to seek for their prey.
Procedure LCA

1. Initialization:
i. Initialize bat population -position(x) and v

ii. Initialize echolocation parameters –freque
2. Generation of new solution: Generate new solu

adjusting frequency (f) using following equations:
= + (

= + (

= +

where β ε [0,1] is a random vector drawn
solution which is best among all bats.

3. Generate a local solution:
If (rand(0,1) >r)
Select a solution among the best solutions
Create a local solution near the selected b
Endif

4. Generate a new random solution: Generate a new
5. If (rand<A) and (f<fxbest)

Accept the new solutions
Increase r and reduce A
End if

6. Repeat steps 2 to 5 for each bat
7. Rank the bats and find the current best xbest.
8. Repeat steps 2 to 8 until maximum no. of iterations
9. Output: Print xbest as the final solution.

End Procedure

Figure 7 Pseudo code
When they are hunting for their prey, they can adjust their fre-
quency, loudness and pulse rate of emission based on the dis-
tance amid them and the prey. This behavior of bats has been

used to formulate BAT algorithm. The pseudo code of the
algorithm is presented in Fig. 7. The change of velocities and
positions of bats has a resemblance to PSO algorithm. BAT

algorithm can be thought as a hybrid of PSO and the exhaus-
tive local search restricted by loudness and pulse rate.

Jacob [93] applied BAT algorithm for resource scheduling

in cloud aiming to minimize makespan and concluded that it
has high accuracy and efficiency than GA. Kumar et al. [94]
proposed an approach for task scheduling in cloud based on
the combination of BAT algorithm and Gravitational schedul-

ing algorithm (GSA) considering deadline constraints and
trust model. Resources for the tasks are selected on the basis
of their trust value. The proposed algorithm is implemented

in CloudSim and efficiently reduces makespan and reduces
the number of failed tasks in comparison with Random
resource selection with GSA. Raghavan et al. [95] have used

Bat algorithm to solve workflow scheduling problem in cloud
aiming to minimize processing cost of the whole workflow. The
algorithm performs better in terms of processing cost when

compared with Best Resource selection (BRS) algorithm.
A hybrid of PSO and Multi-Objective Bat Algorithm is dis-

cussed in [96] for profit maximization in cloud. PSO is used for
local search and global update is done by Bat algorithm as Bat

algorithm has high global convergence. M/M/m queuing
model is used to manage multi-server system and resources
elocity(v) of each bat randomly
ncy (f), pulse rate(r) and loudness (A) of each bat

tions at time step t by updating velocity, position and

)

−)

from a uniform distribution, xbest is current global best

est solution.

 solution by flying randomly.

.

of BAT algorithm.

Metaheuristic scheduling techniques 291
are allocated considering service charge and business cost to
maximize profit. Resource provisioning is done according to
admission control and profit aware SLA.

8. Pareto optimization

Pareto optimization is widely used to solve multi-objective

optimization problems having conflicting objectives.
Solutions that provide reasonable trade-offs among different
objectives are considered. Rather than constructing a single

solution, multiple solutions are generated that satisfy Pareto
optimality criterion. A solution S is chosen only if no solution
is better than S taking into account entire objectives. Suppose

if S is worse than some solution S0 with respect to one objec-
tive, S is chosen given that it is better than S0 with respect to
some other objective. Hence every Pareto optimal solution is

good with respect to some optimization criterion. The set of
all Pareto optimal solutions makes Pareto front/Pareto set.

A Pareto-based GA approach has been proposed in [97] for
finding best virtual machine instances provided by IaaS provi-

der to fit the client’s virtual machine requests in the cloud bro-
kering environment. The approach intended to minimize the
response time and the cost of chosen virtual machine instances

for client satisfaction and to maximize broker’s earnings.
Pareto approach is chosen to provide broker as many non-
dominated solutions as possible allowing a trade-off between

response time and cost. Another hybrid approach of GA and
Pareto optimization is introduced in [98] to perform resource
allocation optimizing makespan and energy consumed by ser-
vers and switches. Implementation is done on an open source

called jMetal which provides genetic multi-objective frame-
work. The algorithm is having quadratic time complexity with
respect to allocated number of tasks. NSGA II is the evolu-

tionary core of both the algorithms [97,98].
The authors in [52,63,76,83] have also used Pareto opti-

mization with some metaheuristic technique as discussed in

the previous sections.

9. Observations

Based on the survey, following observations have been made:

(a) Improving quality of solution by combining metaheuristic
algorithm with some other algorithm: A metaheuristic
algorithm can be improved in terms of quality of the

solution or convergence speed by combining it with
other population-based metaheuristic algorithm or some
local search-based metaheuristic algorithm.
One of the advantages of combining two population-

based metaheuristics is that the shortcomings of one
algorithm can be overcome by strengths of other algo-
rithm. Wen et al. [20] have combined ACO with PSO

so that the algorithm should not premature into local
optimal solution making inefficient resource scheduling.
Mathiyalagan et al. [99]proposed a hybridization tech-

nique using ACO and Intelligent Water drops (IWD)
algorithm, a recent population based metaheuristic to
improve performance in terms of execution speed and

quality of solution. Raju et al. [100] combined ACO with
Cuckoo Search to get the advantages of both the algo-
rithms.
Local search-based algorithms can be used to further

improve the solution of population-based metaheuristic
algorithms. The best regions in search space of problem
are identified using population based metaheuristic

whereas local search techniques help in finding optimum
solutions in those best regions. In this context, [8,14] has
incorporated local search strategy at the end of each
iteration of ACO to improve each obtained solution,

[101] applied Simulated Annealing (a local search
based metaheuristic) after selection, crossover and
mutation in each iteration of Genetic algorithm, [66]

used Variable Neighborhood Search (VNS) on the
solution given by PSO, and [41] used hill climbing with
PSO. A hybrid of PSO and Tabu Search (TS) is used

in [87] to enhance resource utilization and reduce energy
consumption.

(b) Improving quality of solution by initial population genera-
tion: Quality of solutions of population-based meta-

heuristic algorithms such as GA and PSO can be
improved by generating initial population using local
search techniques. [45] used Minimum Execution Time

(MET) and Min–min heuristic, and [47,51] used
Longest Job to Fastest Processor and Smallest Job to
Fastest Processor heuristics to create initial population

of GA. [74] created initial particles of PSO based on
Shortest Job to Fastest Processor (SJFP) Algorithm,
whereas [68] used Greedy Randomized Adaptive

Search Procedure (GRASP) for this purpose.
The elite solutions that are selected best solutions from
generations can also be used to generate initial popula-
tions for upcoming generations. These elites if enhanced,

before becoming part of next generation can attain
better performance than those achieved by original elites
[102].

(c) Improving quality of solution by modifying the transition
operator: Researchers have focused on modifying the
transition operators used in metaheuristic algorithms.

In case of ACO, various strategies have been proposed
for pheromone updation. The updation of pheromone
strategy decides the selection of ants for updation pro-
cess and what they need to do once they are selected.

This greatly affects the search strategy of ACO.
(d) Energy conservation: For Energy conservation, VM

placement optimization, VM consolidation and DVFS

techniques are popularly used. The main drawback of
using DVFS technique is that the frequency and voltage
can only be adjusted to limited values. The techniques

also vary from each other based on whether they are
considering single resource (i.e. CPU utilization, as
CPU utilization consumes maximum power as com-

pared to other resources) or multiple resources (RAM,
disk and network bandwidth).

10. Open issues

� Though a lot of optimization problems have been solved
using BAT and LCA metaheuristic techniques, yet there is

a large scope of exploring these techniques in the area of
cloud scheduling. BAT and LCA can be applied to load
balancing problem, energy optimization problem and

optimization of virtual machine placement and migration.

292 M. Kalra, S. Singh
It can also be combined with some other population-based

metaheuristic technique or local search technique to
improve the quality of results. The classical Artificial
Intelligence (AI) and Operation Research (OR) methods

such as greedy algorithm, backtracking techniques, beam
search or constrained programming can also be incorpo-
rated for hybridization. Investigations are proposed on
how to apply LCA or BAT algorithm to solve given prob-

lems and integration of population-based metaheuristic
technique, local search technique, and classical AI or OR
techniques into LCA/BAT algorithm.

� Co-location of workload with similar characteristics on the
same physical machine can degrade the performance. For
example, Co-locating CPU-intensive workload in isolated

virtual machines on the shared hardware platform can
acquire high CPU contention whereas network-intensive
workloads can lead to high overheads [103]. Integrating
CPU-intensive workload and network-intensive workload

incurs the least resource contention, thus improving the
combined performance. Researchers are encouraged to
investigate the type of workload which can be efficiently

combined on a physical machine while performing consoli-
dation of virtual machines for energy optimization. This
will lead to improved resource provisioning in addition to

energy savings.
� Investigation can be done to incorporate some kind of Dual
SLA with customers while performing energy-aware

scheduling. Providers can negotiate Dual SLA with user,
wherein the second SLA is optional and can be opted by
the cloud user only when he wants to be in ‘‘Green mode”.
‘‘Green mode” means the primary objective is energy opti-

mization and the performance may be somewhat compro-
mised but within acceptable limits and the cost savings
thus achieved can be used to benefit the customer also.

The second SLA will be different in terms of pricing and
performance.

� Most of the work in the energy-aware scheduling using

metaheuristic techniques has been done to reduce energy
consumption. A lot of heat is produced by computing
resources which makes computing more error-prone and
can ultimately result in decreased system reliability and

reduced life span of devices. In order to keep the tempera-
ture of the system components within acceptable limits,
cooling becomes extremely important. According to a study

conducted by Google (patented in 2003) [104], power
required to operate the cooling infrastructure is estimated
to be 50% of the power consumed by compute infrastruc-

ture. Investigations can be initiated from software side to
reduce the heat produced by resources and relaxing the
cooling systems of overheated machines. To reduce the heat

produced, the thermal state of physical machines can be
supervised and virtual machines can be migrated from the
overheated physical machine. The challenge is to find out
how and when to perform virtual machine migration while

maintaining safe temperature of the resources as well as
reducing the migration overhead and performance
deterioration.

� Security and privacy aware scheduling is another area
which needs to be explored using metaheuristic techniques.
Investigations are required to perform scheduling in a way

that it protects the sensitive and/or private information
associated with tasks/users. This type of scheduling is
important when the scheduled jobs carry confidential and/

or personal information about various subjects in a given
context.

11. Conclusion

The paper widely reviews the application of metaheuristic tech-

niques in the area of scheduling in cloud and grid environ-
ments. Metaheuristic techniques are usually slower than
deterministic algorithms and the generated solutions may not
be optimal, thus most of the research done is toward improv-

ing the convergence speed and quality of the solution. These
issues have been undertaken by modifying the transition oper-
ator, preprocessing the input population or taking hybrid

approach in metaheuristic techniques.
Moreover different scheduling algorithms have focused on

diverse optimization criteria. In the studied literature, most

of the authors have focused on reduction of makespan and
execution cost whereas others have given significance to
response time, throughput, flowtime and average resource uti-

lization. Comparative analysis of algorithms based on each
metaheuristic technique mainly compares the technique used
for improving metaheuristics, optimization criteria, nature of
tasks and the environment in which the algorithm is imple-

mented. The recent research efforts are done in the direction
of energy-aware scheduling as data centers have become
energy-hungry and a major source of CO2 emissions. The chal-

lenge is to reduce energy consumption of data centers without
degrading performance and violating SLA constraints.
Various open issues are also discussed in the paper which

can be taken up for future research.

References

[1] Karger D, Stein C, Wein J. Scheduling Algorithms. Algorithms

and Theory of Computation Handbook: special topics and

techniques. Chapman & Hall/CRC; 2010.

[2] Yu J, Buyya R, Ramamohanarao K. Workflow Scheduling

Algorithms for Grid Computing. Metaheuristics for Scheduling

in Distributed Computing Environments. Springer; 2008. http://

dx.doi.org/10.1007/978-3-540-69277-5_7, p. 173–214.

[3] Talbi EG. Metaheuristics: from Design to Implementation.

Wiley; 2009.

[4] Braun TD, Siegel HJ, Beck N, Bölöni LL, Maheswaran M,

Reuther AI, et al. A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous

distributed computing systems. J Parallel Distrib Comput

2001;61:810–37. http://dx.doi.org/10.1006/jpdc.2000.1714.

[5] Xhafa F, Abraham A. Computational models and heuristic

methods for Grid scheduling problems. Futur Gener Comput

Syst 2010;26:608–21. http://dx.doi.org/10.1016/j.future.2009.

11.005.

[6] Wieczorek M, Hoheisel A, Prodan R. Taxonomies of the

multi-criteria grid workflow scheduling problem. Grid Middlew

Serv 2008:237–64. http://dx.doi.org/10.1007/978-0-387-78446-

5_16.

[7] Dorigo M, Stützle T. Ant colony optimization. MIT Press; 2004.

[8] Kousalya K. To improve ant algorithm’ s grid scheduling using

local search. Int J Comput Cogn 2009;7:47–57.

[9] Tawfeek MA, El-Sisi A, Keshk AE, Torkey FA. Cloud task

scheduling based on ant colony optimization. In: 8th int conf

comput eng syst; 2013. p. 64–9. http://dx.doi.org/10.1109/

ICCES.2013.6707172.

http://refhub.elsevier.com/S1110-8665(15)00035-3/h0005
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0005
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0005
http://dx.doi.org/10.1007/978-3-540-69277-5_7
http://dx.doi.org/10.1007/978-3-540-69277-5_7
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0015
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0015
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1016/j.future.2009.11.005
http://dx.doi.org/10.1016/j.future.2009.11.005
http://dx.doi.org/10.1007/978-0-387-78446-5_16
http://dx.doi.org/10.1007/978-0-387-78446-5_16
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0035
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0040
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0040
http://dx.doi.org/10.1109/ICCES.2013.6707172
http://dx.doi.org/10.1109/ICCES.2013.6707172

Metaheuristic scheduling techniques 293
[10] Sun JSJ, Xiong S-WXS-W, Guo F-MGF-M. A new pheromone

updating strategy in ant colony optimization. Proc Int Conf

Mach Learn Cybern (IEEE Cat. No. 04EX826), vol. 1, IEEE;

2004, p. 620–5. http://dx.doi.org/10.1109/ICMLC.2004.1380766.

[11] Mathiyalagan P, Suriya S, Sivanandam SN. Modified ant colony

algorithm for grid scheduling. Int J Comput Sci Eng

2010;02:132–9.

[12] Liu ALA, Wang ZWZ. Grid task scheduling based on adaptive

ant colony algorithm. In: Int conf manag e-commerce e-

government. IEEE; 2008. p. 415–8. http://dx.doi.org/10.1109/

ICMECG.2008.50.

[13] Bagherzadeh J, MadadyarAdeh M. An improved ant algorithm

for grid scheduling problem using biased initial ants. In: 3rd int

conf comput res dev; 2011. p. 373–8. http://dx.doi.org/10.1109/

CSICC.2009.5349368.

[14] Chiang C-W, Lee Y-C, Lee C-N, Chou T-Y. Ant colony

optimisation for task matching and scheduling. IEE Proc

Comput Digit Tech 2006;153:373–80. http://dx.doi.org/10.1049/

ip-cdt.

[15] Chen W-N, Zhang JZJ. An ant colony optimization approach to

a grid workflow scheduling problem with various QoS require-

ments. IEEE Trans Syst Man Cybern Part C (Appl Rev

2009;39:29–43. http://dx.doi.org/10.1109/TSMCC.2008.2001722.

[16] Chen W-N, Zhang J, Yu Y. Workflow scheduling in grids: an ant

colony optimization approach. IEEE Congr Evol Comput

2007:3308–15.

[17] Yu J, Buyya R, Tham CK. Cost-based scheduling of scientific

workflow applications on utility grids. Proc First Int Conf E-

Science Grid Comput E-Sci 2005:140–7. http://dx.doi.org/

10.1109/E-SCIENCE.2005.26.

[18] Chen W, Shi Y, Zhang J. An ant colony optimization algorithm

for the time-varying workflow scheduling problem in grids. IEEE

Congr Evol Comput 2009:875–80.

[19] Hu Y, Xing L, Zhang W, Xiao W, Tang D. A knowledge-based

ant colony optimization for a grid workflow scheduling problem.

In: Adv Swarm Intell Notes Comput Sci. Springer; 2010. p.

241–8. http://dx.doi.org/10.1007/978-3-642-38703-6.

[20] Wen X, Huang M, Shi J. Study on resources scheduling based on

ACO algorithm and PSO algorithm in cloud computing. In: Proc

– 11th int symp distrib comput appl to business eng sci; 2012. p.

219–22. http://dx.doi.org/10.1109/DCABES.2012.63.

[21] Pacini E, Mateos C, Garcı́a C. Balancing throughput and

response time in online scientific clouds via ant colony optimiza-

tion. Adv Eng Software 2015;84:31–47 [Elsevier].

[22] Li K, Xu G, Zhao G, Dong Y, Wang D. Cloud task scheduling

based on load balancing ant colony optimization. Sixth Annu

Chinagrid Conf 2011;2011:3–9. http://dx.doi.org/10.1109/

ChinaGrid.2011.17.

[23] Zhang Z, Zhang X. A load balancing mechanism based on ant

colony and complex network theory in open cloud computing

federation. Int Conf Ind Mechatronics Autom 2010;2:240–3.

http://dx.doi.org/10.1109/ICINDMA.2010.5538385.

[24] Nishant K, Sharma P, Krishna V, Gupta C, Singh KP, Nitin,

et al. Load balancing of nodes in cloud using ant colony

optimization. In: UKSim 14th int conf comput model simul;

2012. p. 3–8. http://dx.doi.org/10.1109/UKSim.2012.11.

[25] Khan S, Sharma N. Effective scheduling algorithm for load

balancing (SALB) using ant colony optimization in cloud

computing. Int J Adv Res Comput Sci Softw Eng 2014;4:

966–73.

[26] Lu X, Gu Z. A load-adapative cloud resource scheduling model

based on ant colony algorithm. In: IEEE int conf cloud comput

intell syst; 2011. p. 296–300. http://dx.doi.org/10.1109/CCIS.

2011.6045078.

[27] Dam S, Mandal G, Dasgupta K, Dutta P. An ant colony based

load balancing strategy in cloud computing. Adv Comput Netw

Informatics 2014;2:403–13. http://dx.doi.org/10.1007/978-3-319-

07350-7.
[28] Dasgupta K, Mandal B, Dutta P, Mandal JK, Dam S. A Genetic

Algorithm (GA) based load balancing strategy for cloud

computing. Proc Technol 2013;10:340–7. http://dx.doi.org/

10.1016/j.protcy.2013.12.369.

[29] Mondal B, Dasgupta K, Dutta P. Load balancing in cloud

computing using stochastic hill climbing – a soft computing

approach. Proc Technol 2012;4:783–9. http://dx.doi.org/10.1016/

j.protcy.2012.05.128.

[30] Feller E, Rilling L, Morin C. Energy-aware ant colony based

workload placement in clouds. In: Proc 12th IEEE/ACM int

conf grid comput; 2011. p. 26–33. http://dx.doi.org/10.1109/

Grid.2011.13.

[31] Setzer T, Stage A. Decision support for virtual machine

reassignments in enterprise data centers. In: Netw oper manag

symp work. IEEE/IFIP; 2010. p. 88–94. http://dx.doi.org/10.

1109/NOMSW.2010.5486597.

[32] Liu X, Zhan Z, Du K, Chen W. Energy aware virtual machine

placement scheduling in cloud computing based on ant colony

optimization. In: Proc conf genet evol comput. ACM; 2014. p.

41–7. http://dx.doi.org/10.1145/2576768.2598265.

[33] Ajiro Y, Tanaka A. Improving packing algorithms for server

consolidation. In: Int C conf; 2007.

[34] Ferdaus MH, Murshed M, Calheiros RN, Buyya R. Virtual

machine consolidation in cloud data centers using ACO meta-

heuristic. In: Euro-Par 2014 parallel process. Springer; 2014. p.

306–17. http://dx.doi.org/10.1007/978-3-319-09873-9.

[35] Mishra M, Sahoo A. On theory of vm placement: anomalies in

existing methodologies and their mitigation using a novel vector

based approach. In: 4th int conf cloud comput. IEEE; 2011. p.

275–82. http://dx.doi.org/10.1109/CLOUD.2011.38.

[36] Wood T, Shenoy P, Venkataramani A, Yousif M. Sandpiper:

black-box and gray-box resource management for virtual

machines. Comput Networks 2009;53:2923–38. http://dx.doi.

org/10.1016/j.comnet.2009.04.014.

[37] Chimakurthi L, Madhu Kumar S. Power efficient resource

allocation for clouds using ant colony framework; 2011.

Available from arXiv:11022608.

[38] Moraga RJ, DePuy GW, Whitehouse GE. Metaheuristics: a

solution methodology for optimization problems. Handb Ind

Optim Probl Handb Ind Syst Eng AB Badiru 2006. http://dx.doi.

org/10.1201/9781420038347.

[39] Pop F, Dobre C, Cristea V. Genetic algorithm for DAG

scheduling in grid environments. In: 5th IEEE int conf intell

comput commun process; 2009. p. 299–305.

[40] Ge Y, Wei G. GA-based task scheduler for the cloud computing

systems. In: Proc int conf web inf syst min, vol. 2; 2010. p. 181–6.

http://dx.doi.org/10.1109/WISM.2010.87.

[41] Zhao C, Zhang S, Liu Q, Xie J, Hu J. Independent tasks

scheduling based on genetic algorithm in cloud computing. In:

5th int conf wirel commun netw mob comput; 2009. p. 1–4.

http://dx.doi.org/10.1109/WICOM.2009.5301850.

[42] Zheng Z, Wang R, Zhong H, Zhang X. An approach for cloud

resource scheduling based on parallel genetic algorithm. In: 3rd

IEEE int conf comput res dev. IEEE; 2011. p. 444–7. http://dx.

doi.org/10.1109/ICCRD.2011.5764170.

[43] Ghorbannia Delavar A, Aryan Y. HSGA: a hybrid heuristic

algorithm for workflow scheduling in cloud systems. Cluster

Comput 2014;17:129–37. http://dx.doi.org/10.1007/s10586-013-

0275-6.

[44] Wang T, Liu Z, Chen Y, Xu Y, Dai X. Load balancing task

scheduling based on genetic algorithm in cloud computing. In:

IEEE 12th int conf dependable auton secur comput; 2014. p.

146–52. http://dx.doi.org/10.1109/DASC.2014.35.

[45] Kaur K, Chhabra A, Singh G. Heuristics based genetic

algorithm for scheduling static tasks in homogeneous parallel

system. Int J Comput Sci Secur n.d.;4:183–98.

[46] Zhong Y-WZY-W, Yang J-GYJ-G. A genetic algorithm for

tasks scheduling in parallel multiprocessor systems. In: Proc 2nd

http://dx.doi.org/10.1109/ICMLC.2004.1380766
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0055
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0055
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0055
http://dx.doi.org/10.1109/ICMECG.2008.50
http://dx.doi.org/10.1109/ICMECG.2008.50
http://dx.doi.org/10.1109/CSICC.2009.5349368
http://dx.doi.org/10.1109/CSICC.2009.5349368
http://dx.doi.org/10.1049/ip-cdt
http://dx.doi.org/10.1049/ip-cdt
http://dx.doi.org/10.1109/TSMCC.2008.2001722
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0080
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0080
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0080
http://dx.doi.org/10.1109/E-SCIENCE.2005.26
http://dx.doi.org/10.1109/E-SCIENCE.2005.26
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0090
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0090
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0090
http://dx.doi.org/10.1007/978-3-642-38703-6
http://dx.doi.org/10.1109/DCABES.2012.63
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0105
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0105
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0105
http://dx.doi.org/10.1109/ChinaGrid.2011.17
http://dx.doi.org/10.1109/ChinaGrid.2011.17
http://dx.doi.org/10.1109/ICINDMA.2010.5538385
http://dx.doi.org/10.1109/UKSim.2012.11
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0125
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0125
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0125
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0125
http://dx.doi.org/10.1109/CCIS.2011.6045078
http://dx.doi.org/10.1109/CCIS.2011.6045078
http://dx.doi.org/10.1007/978-3-319-07350-7
http://dx.doi.org/10.1007/978-3-319-07350-7
http://dx.doi.org/10.1016/j.protcy.2013.12.369
http://dx.doi.org/10.1016/j.protcy.2013.12.369
http://dx.doi.org/10.1016/j.protcy.2012.05.128
http://dx.doi.org/10.1016/j.protcy.2012.05.128
http://dx.doi.org/10.1109/Grid.2011.13
http://dx.doi.org/10.1109/Grid.2011.13
http://dx.doi.org/10.1109/NOMSW.2010.5486597
http://dx.doi.org/10.1109/NOMSW.2010.5486597
http://dx.doi.org/10.1145/2576768.2598265
http://dx.doi.org/10.1007/978-3-319-09873-9
http://dx.doi.org/10.1109/CLOUD.2011.38
http://dx.doi.org/10.1016/j.comnet.2009.04.014
http://dx.doi.org/10.1016/j.comnet.2009.04.014
http://dx.doi.org/10.1201/9781420038347
http://dx.doi.org/10.1201/9781420038347
http://dx.doi.org/10.1109/WISM.2010.87
http://dx.doi.org/10.1109/WICOM.2009.5301850
http://dx.doi.org/10.1109/ICCRD.2011.5764170
http://dx.doi.org/10.1109/ICCRD.2011.5764170
http://dx.doi.org/10.1007/s10586-013-0275-6
http://dx.doi.org/10.1007/s10586-013-0275-6
http://dx.doi.org/10.1109/DASC.2014.35

294 M. Kalra, S. Singh
int conf mach learn cybern, vol. 3; 2003. p. 1785–90. http://

dx.doi.org/10.1109/ICMLC.2003.1259786.

[47] Kaur S, Verma A. An efficient approach to genetic algorithm for

task scheduling in cloud computing environment. Int J Inf

Technol Comput Sci 2012;4:74–9. http://dx.doi.org/10.5815/

ijitcs.2012.10.09.

[48] Yu J, Buyya R. Scheduling scientific workflow applications with

deadline and budget constraints using genetic algorithms. Sci

Program 2006;14:217–30.

[49] Gu J, Hu J, Zhao T, Sun G. A new resource scheduling

strategy based on genetic algorithm in cloud computing envi-

ronment. J Comput 2012;7:42–52. http://dx.doi.org/10.4304/

jcp.7.1.42-52.

[50] Sawant S. A genetic algorithm scheduling approach for virtual

machine resources in a cloud computing environment; Master’s

Projects, San Jose State University, Master’s Theses and

Graduates Research, Paper 198, 2011.

[51] Carretero J, Xhafa F, Abraham A. Genetic algorithm based

schedulers for grid computing systems. Int J Innov Comput Inf

Control 2007;3:1–19.

[52] Khajemohammadi H, Fanian A, Gulliver TA. Fast workflow

scheduling for grid computing based on a multi-objective genetic

algorithm. IEEE Pacific Rim Conf Commun Comput Signal

Process 2013:96–101.

[53] Jang SH, Kim TY, Kim JK, Lee JS. The study of genetic

algorithm-based task scheduling for cloud computing. Int J

Control Autom 2012;5:157–62.

[54] Sellami K, Ahmed-Nacer M, Tiako PF, Chelouah R. Immune

genetic algorithm for scheduling service workflows with Qos

constraints in cloud computing. South African J Ind Eng

2013;24:68–82.

[55] Zhu K, Song H, Liu L, Gao J, Cheng G. Hybrid genetic

algorithm for cloud computing applications. In: IEEE Asia-

Pacific serv comput conf; 2011. p. 182–7. http://dx.doi.org/10.

1109/APSCC.2011.66.

[56] Joseph CT, Chandrasekaran K, Cyriac R. A novel family genetic

approach for virtual machine allocation. Proc Comput Sci

2015;46:558–65. http://dx.doi.org/10.1016/j.procs.2015.02.090.

[57] Shojafar M, Javanmardi S, Abolfazli S, Cordeschi N. FUGE: A

joint meta-heuristic approach to cloud job scheduling algorithm

using fuzzy theory and a genetic method. Cluster Comput

2015:1–16. http://dx.doi.org/10.1007/s10586-014-0420-x.

[58] Wu G, Maolin T, Tian Y-C, Li W. Energy-efficient virtual

machine placement in data centers by genetic algorithm. In:

Vmslv A, editor. Neural inf process. Springer; 2012. p. 315–23.

[59] Wang X, Wang Y, Zhu H. Energy-efficient multi-job scheduling

model for cloud computing and its genetic algorithm. Math

Probl Eng 2012:2012. http://dx.doi.org/10.1155/2012/589243.

[60] Dean J, Ghemawat S. MapReduce. Simplified data processing

on large clusters. Commun ACM 2008:107–13.

[61] Shen G, Zhang YQ. A shadow price guided genetic algorithm for

energy aware task scheduling on cloud computers. Adv Swarm

Intell Notes Comput Sci, vol. 6728. Springer; 2011. p. 522–9.

http://dx.doi.org/10.1007/978-3-642-21515-5_62.

[62] Kołodziej J, Khan SU, Xhafa F. Genetic algorithms for energy-

aware scheduling in computational grids. In: Proc – int conf P2P,

parallel, grid, cloud internet comput; 2011. p. 17–24. http://

dx.doi.org/10.1109/3PGCIC.2011.13.

[63] Tao F, Feng Y, Zhang L, Liao TW. CLPS-GA: a case library

and Pareto solution-based hybrid genetic algorithm for energy-

aware cloud service scheduling. Appl Soft Comput J

2014;19:264–79. http://dx.doi.org/10.1016/j.asoc.2014.01.036.

[64] Kennedy J, Eberhart R. Particle swarm optimization. Proc int

conf neural networks, vol. 4. IEE; 1995. p. 1942–8.

[65] Guo L, Zhao S, Shen S, Jiang C. Task scheduling optimization in

cloud computing based on heuristic Algorithm. J Networks

2012;7:547–53. http://dx.doi.org/10.4304/jnw.7.3.547-553.
[66] Zhang L, Chen Y, Sun R. A task scheduling algorithm based on

PSO for grid computing. Int J Comput Intell Res 2008;4:37–43.

http://dx.doi.org/10.1109/ISDA.2006.253921.

[67] Pandey S, Wu L, Guru SMSMSM, Buyya R. A particle swarm

optimization-based heuristic for scheduling workflow applica-

tions in cloud computing environments. In: 24th ieee int conf adv

inf netw appl; 2010. p. 400–7. http://dx.doi.org/10.1109/AINA.

2010.31.

[68] Wu Z, Ni Z, Gu L, Liu X. A revised discrete particle swarm

optimization for cloud workflow scheduling. In: Proc – 2010 int

conf comput intell secur cis. IEEE; 2010. p. 184–8. http://dx.doi.

org/10.1109/CIS.2010.46.

[69] Rodriguez Sossa M, Buyya R. Deadline based resource provi-

sioning and scheduling algorithm for scientific workflows on

clouds. IEEE Trans Cloud Comput 2014;2:222–35. http://dx.doi.

org/10.1109/tcc.2014.2314655).

[70] Xue S, Wu W. Scheduling workflow in cloud computing based

on hybrid particle swarm algorithm. TELKOMNIKA Indones J

Electr Eng 2012;10:1560–6.

[71] Pooranian Z, Shojafar M, Abawajy JH, Abraham A. An efficient

meta-heuristic algorithm for grid computing. J Comb Optim

2013:1–22. http://dx.doi.org/10.1007/s10878-013-9644-6.

[72] Gomathi B, Krishnasamy K. Task scheduling algorithm based

on hybrid particle swarm optimization in cloud computing

environment. J Theor Appl Inf Technol 2013;55:33–8.

[73] Izakian H, Ladani BT, Zamanifar K, Abraham A. A novel

particle swarm optimization approach for grid job scheduling.

Inf syst technol manage, vol. 31. Springer; 2009. p. 100–9.

[74] Abdi S, Motamedi SA, Sharifian S. Task scheduling using

modified PSO algorithm in cloud computing environment. Int

Conf Mach Learn Electr Mech Eng 2014:37–41.

[75] Liu H, Abraham A, Hassanien AE. Scheduling jobs on compu-

tational grids using a fuzzy particle swarm optimization algo-

rithm. Futur Gener Comput Syst 2010;26:1336–43. http://dx.doi.

org/10.1016/j.future.2009.05.022.

[76] Beegom ASA, Rajasree MS. A particle swarm optimization

based pareto optimal task scheduling in cloud computing. In:

Adv swarm intell notes comput sci. Springer; 2014. p. 79–86.

[77] Zarei B, Ghanbarzadeh R, Khodabande P, Toofani H. MHPSO:

a new method to enhance the particle swarm optimizer. In: Sixth

IEEE int conf digit inf manage; 2011. p. 305–9. http://dx.doi.org/

10.1109/ICDIM.2011.6093361.

[78] Aron R, Chana I, Abraham A. A hyper-heuristic approach for

resource provisioning-based scheduling in grid environment. J

Supercomput 2015:1427–50. http://dx.doi.org/10.1007/s11227-

014-1373-9.

[79] Pacini E, Mateos C, Garino CG. Dynamic scheduling based on

particle swarm optimization for cloud-based scientific experi-

ments. CLEI Electron J 2014;14:1–12.

[80] Liu Z, Wang X. A PSO-based algorithm for load balancing in

virtual machines of cloud computing environment. Lect Notes

Comput Sci (including Subser Lect Notes Artif Intell Lect Notes

Bioinformatics) 2012;7331 LNCS:142–7. http://dx.doi.org/

10.1007/978-3-642-30976-2_17.

[81] Sidhu MS, Thulasiraman P, Thulasiram RK. A load-rebalance

PSO heuristic for task matching in heterogeneous computing

systems. In: Proc IEEE symp swarm intell SIS 2013, IEEE symp

ser comput intell SSCI 2013; 2013. p. 180–7. http://dx.doi.org/10.

1109/SIS.2013.6615176.

[82] Ramezani F, Lu J, Hussain FK. Task-based system load

balancing in cloud computing using particle swarm optimization.

Int J Parallel Program 2014;42:739–54. http://dx.doi.org/

10.1007/s10766-013-0275-4.

[83] Yassa S, Chelouah R, Kadima H, Granado B. Multi-objective

approach for energy-aware workflow scheduling in cloud com-

puting environments. Sci World J 2013. http://dx.doi.org/

10.1155/2013/350934.

http://dx.doi.org/10.1109/ICMLC.2003.1259786
http://dx.doi.org/10.1109/ICMLC.2003.1259786
http://dx.doi.org/10.5815/ijitcs.2012.10.09
http://dx.doi.org/10.5815/ijitcs.2012.10.09
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0240
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0240
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0240
http://dx.doi.org/10.4304/jcp.7.1.42-52
http://dx.doi.org/10.4304/jcp.7.1.42-52
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0255
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0255
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0255
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0260
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0260
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0260
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0260
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0265
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0265
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0265
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0270
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0270
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0270
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0270
http://dx.doi.org/10.1109/APSCC.2011.66
http://dx.doi.org/10.1109/APSCC.2011.66
http://dx.doi.org/10.1016/j.procs.2015.02.090
http://dx.doi.org/10.1007/s10586-014-0420-x
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0290
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0290
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0290
http://dx.doi.org/10.1155/2012/589243
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0300
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0300
http://dx.doi.org/10.1007/978-3-642-21515-5_62
http://dx.doi.org/10.1109/3PGCIC.2011.13
http://dx.doi.org/10.1109/3PGCIC.2011.13
http://dx.doi.org/10.1016/j.asoc.2014.01.036
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0320
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0320
http://dx.doi.org/10.4304/jnw.7.3.547-553
http://dx.doi.org/10.1109/ISDA.2006.253921
http://dx.doi.org/10.1109/AINA.2010.31
http://dx.doi.org/10.1109/AINA.2010.31
http://dx.doi.org/10.1109/CIS.2010.46
http://dx.doi.org/10.1109/CIS.2010.46
http://dx.doi.org/10.1109/tcc.2014.2314655)
http://dx.doi.org/10.1109/tcc.2014.2314655)
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0350
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0350
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0350
http://dx.doi.org/10.1007/s10878-013-9644-6
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0360
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0360
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0360
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0365
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0365
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0365
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0370
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0370
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0370
http://dx.doi.org/10.1016/j.future.2009.05.022
http://dx.doi.org/10.1016/j.future.2009.05.022
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0380
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0380
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0380
http://dx.doi.org/10.1109/ICDIM.2011.6093361
http://dx.doi.org/10.1109/ICDIM.2011.6093361
http://dx.doi.org/10.1007/s11227-014-1373-9
http://dx.doi.org/10.1007/s11227-014-1373-9
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0395
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0395
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0395
http://dx.doi.org/10.1007/978-3-642-30976-2_17
http://dx.doi.org/10.1007/978-3-642-30976-2_17
http://dx.doi.org/10.1109/SIS.2013.6615176
http://dx.doi.org/10.1109/SIS.2013.6615176
http://dx.doi.org/10.1007/s10766-013-0275-4
http://dx.doi.org/10.1007/s10766-013-0275-4
http://dx.doi.org/10.1155/2013/350934
http://dx.doi.org/10.1155/2013/350934

Metaheuristic scheduling techniques 295
[84] Xiong A, Xu C. Energy efficient multiresource allocation of

virtual machine based on PSO in cloud data center. Math Probl

Eng 2014:2014.

[85] Wang S, Liu Z, Zheng Z, Sun Q, Yang F. Particle swarm

optimization for energy-aware virtual machine placement opti-

mization in virtualized data centers. Proc int conf parallel distrib

syst – ICPADS; 2013. p. 102–9. http://dx.doi.org/10.1109/

ICPADS.2013.26.

[86] Beloglazov A, Abawajy J, Buyya R. Energy-aware resource

allocation heuristics for efficient management of data centers for

cloud computing. Futur Gener Comput Syst 2012;28:755–68.

http://dx.doi.org/10.1016/j.future.2011.04.017.

[87] Wang Z, Shuang K, Long Yang FY. Energy-aware and revenue-

enhancing combinatorial scheduling in virtualized of cloud

datacenter. J Converg Inf Technol 2012;7:62–70. http://dx.doi.

org/10.4156/jcit.vol7.issue1.8.

[88] Kashan AH. League Championship Algorithm: a new algorithm

for numerical function optimization. Int Conf Soft Comput

Pattern Recognit 2009:43–8. http://dx.doi.org/10.1109/

SoCPaR.2009.21.

[89] Abdulhamid SM, Latiff MSA, Madni SHH, Oluwafemi O. A

survey of League Championship Algorithm: prospects and

challenges. Indian J Sci Technol 2015;8:101–10.

[90] Abdulhamid SM, Latiff MA, Idris I. Tasks scheduling tech-

nique using League Championship Algorithm for makespan

minimization in IaaS cloud. ARPN J Eng Appl Sci

2014;9:2528–33.

[91] Sun J, Wang X, Li K, Wu C, Huang M, Wang X. An auction

and League Championship Algorithm based resource allocation

mechanism for distributed cloud. Lect Notes Comput Sci

(Including Subser Lect Notes Artif Intell Lect Notes

Bioinformatics) 2013;8299:334–46. http://dx.doi.org/10.1007/

978-3-642-45293-2_25.

[92] Yang XS. A new metaheuristic bat-inspired algorithm. Nat

Inspired Coop Strateg Optim Comput Intell 2010;284:65–74.

http://dx.doi.org/10.1007/978-3-642-12538-6_6.

[93] Jacob L. Bat algorithm for resource scheduling in cloud

computing. Int J Res Appl Sci Eng Technol 2014;2:53–7.
[94] Suresh Kumar V, Aramudhan. Hybrid optimized list scheduling

and trust based resource selection in cloud computing. J Theor

Appl Inf Technol 2014;69:434–42.

[95] Raghavan S, Marimuthu, C, Sarwesh, P, & Chandrasekaran K.

Bat algorithm for scheduling workflow applications in cloud. Int

Conf Electron Des Comput Networks Autom Verif (EDCAV).

IEEE; 2015. p. 139–44.

[96] George S. Hybrid PSO-MOBA for profit maximization in cloud

computing 2015;6:159–63.

[97] Kessaci Y, Melab N, Talbi EG. A pareto-based genetic

algorithm for optimized assignment of VM requests on a cloud

brokering environment. IEEE congr evol comput; 2013. p. 2496–

503. http://dx.doi.org/10.1109/CEC.2013.6557869.

[98] Portaluri G, Giordano S. A power efficient genetic algorithm for

resource allocation in cloud computing data centers. In: 3rd int

conf cloud netw. IEEE; 2014. p. 58–63.

[99] Mathiyalagan P, Sivanandam SN, Saranya KS. Hybridization of

modified ant colony optimization and intelligent water drops

algorithm for job scheduling in computational grid. ICTACT J

SOFT Comput 2013;4:651–5.

[100] Raju R, Babukarthik RG, Chandramohan D, Dhavachelvan P,

Vengattaraman T. Minimizing the makespan using Hybrid

algorithm for cloud computing. In: Proc 3rd IEEE int adv

comput conf; 2013. p. 957–62. http://dx.doi.org/10.1109/IAdCC.

2013.6514356.

[101] Guo-ning G, Ting-lei H, Shuai G. Genetic simulated annealing

algorithm for task scheduling based on cloud computing

environment. In: Int conf intell comput integr syst; 2010. p. 60–3.

[102] Lenin K, Reddy BR, Kalavathi MS. Hybrid genetic algorithm

and particle swarm optimization (HGAPSO) algorithm for

solving optimal reactive power dispatch problem. Int J

Electron Electr Eng 2013;1:262–8. http://dx.doi.org/10.12720/

ijeee.1.4.262-268.

[103] Pu X, Liu L, Mei Y/O workload in virtualized cloud environ-

ments. In: 3rd int conf cloud comput, vol. 51–8; 2010. p. 51–8.

http://dx.doi.org/10.1109/CLOUD.2010.65.

[104] Patel CD, Bash CE, Beitelmal AH. Smart cooling of data

centers. Appl No 09/970,707; 2003.

http://refhub.elsevier.com/S1110-8665(15)00035-3/h0420
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0420
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0420
http://dx.doi.org/10.1109/ICPADS.2013.26
http://dx.doi.org/10.1109/ICPADS.2013.26
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.4156/jcit.vol7.issue1.8
http://dx.doi.org/10.4156/jcit.vol7.issue1.8
http://dx.doi.org/10.1109/SoCPaR.2009.21
http://dx.doi.org/10.1109/SoCPaR.2009.21
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0445
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0445
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0445
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0450
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0450
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0450
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0450
http://dx.doi.org/10.1007/978-3-642-45293-2_25
http://dx.doi.org/10.1007/978-3-642-45293-2_25
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0465
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0465
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0470
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0470
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0470
http://dx.doi.org/10.1109/CEC.2013.6557869
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0495
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0495
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0495
http://refhub.elsevier.com/S1110-8665(15)00035-3/h0495
http://dx.doi.org/10.1109/IAdCC.2013.6514356
http://dx.doi.org/10.1109/IAdCC.2013.6514356
http://dx.doi.org/10.12720/ijeee.1.4.262-268
http://dx.doi.org/10.12720/ijeee.1.4.262-268
http://dx.doi.org/10.1109/CLOUD.2010.65

	A review of metaheuristic scheduling techniqu
	1 Introduction
	2 Optimization metrics
	2.1 Consumer-Desired
	2.2 Provider-Desired

	3 ACO based scheduling algorithms
	4 GA based scheduling algorithms
	5 PSO based scheduling algorithms
	6 League championship algorithm
	7 BAT algorithm
	8 Pareto optimization
	9 Observations
	10 Open issues
	11 Conclusion
	References

