
Journal of Network and Computer Applications 66 (2016) 64–82
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

E-m
SonayIm
journal homepage: www.elsevier.com/locate/jnca
Review
Towards workflow scheduling in cloud computing:
A comprehensive analysis

Mohammad Masdari, Sima ValiKardan, Zahra Shahi, Sonay Imani Azar
Computer Engineering Department, Urmia Branch, Islamic Azad University, Urmia, Iran
a r t i c l e i n f o

Article history:
Received 12 August 2015
Received in revised form
17 December 2015
Accepted 30 January 2016
Available online 10 February 2016

Keywords:
Cloud computing
Workflow scheduling
QoS
Metaheuristic
x.doi.org/10.1016/j.jnca.2016.01.018
45/& 2016 Elsevier Ltd. All rights reserved.

ail addresses: M.Masdari@Iaurmia.ac.ir (M. Ma
aniAzar@gmail.com (S.I. Azar).
a b s t r a c t

Workflow scheduling is one of the prominent issues in cloud computing which is aimed at complete
execution of workflows by considering their QoS requirements such as deadline and budget constraints.
Numerous state of the art workflow scheduling schemes have been proposed in the literature for
scheduling simple and scientific workflows in the cloud computing and this paper presents a compre-
hensive survey and analysis of these schemes. It illuminates the objectives of scheduling schemes in the
cloud computing and provides a classification of the proposed schemes based on the type of scheduling
algorithm applied in each scheme. Beside, each scheme is illustrated and a complete comparison of them
is presented to highlight their objectives, properties and limitations. Finally, the concluding remarks and
future research directions are provided.

& 2016 Elsevier Ltd. All rights reserved.
Contents
1. Introduction . 65
2. Types and objectives of scheduling in cloud . 65
3. Analysis of the workflow scheduling schemes. 67

3.1. Metaheuristic-based scheduling . 67

3.1.1. PSO-based workflow scheduling . 67
3.1.2. GA-based workflow scheduling. 69
3.1.3. SA-based workflow scheduling . 70
3.1.4. CSO -based workflow scheduling . 70
3.1.5. ACO-based workflow scheduling. 71
3.1.6. Enhanced superior element multitude optimization (ESEMO) algorithm . 71
3.2. Heuristic workflow scheduling . 71

3.2.1. Deadline constraint scheduling algorithm . 71
3.2.2. HEFT-based scheduling . 71
3.2.3. Priority Impact Scheduling Algorithm . 72
3.2.4. Hybrid Cloud Optimized Cost scheduling algorithm . 72
3.2.5. CTC scheduling algorithm . 72
3.2.6. Deadline and budget distribution-based cost-time optimization (DBD-CTO) . 72
3.2.7. Time and cost optimization for the hybrid clouds (TCHC) algorithm . 72
3.2.8. Multiple QoS constrained scheduling strategy of multi-workflows (MQMW) . 73
3.2.9. QoS based workflow scheduling . 73
3.2.10. Scientific workflow scheduling under the deadline constraint . 73
3.2.11. IaaS cloud partial critical paths . 73
3.2.12. Just-in-time and adaptive scheduling heuristic Algorithm . 74
3.2.13. Bi-criteria workflow scheduling . 74
3.3. Hybrid metaheuristic and heuristic scheduling . 74
sdari), SimaValiKardan@yahoo.com (S. ValiKardan), Shahi_Za@yahoo.com (Z. Shahi),

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.01.018
http://dx.doi.org/10.1016/j.jnca.2016.01.018
http://dx.doi.org/10.1016/j.jnca.2016.01.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.01.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.01.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.01.018&domain=pdf
mailto:M.Masdari@Iaurmia.ac.ir
mailto:SimaValiKardan@yahoo.com
mailto:Shahi_Za@yahoo.com
mailto:SonayImaniAzar@gmail.com
http://dx.doi.org/10.1016/j.jnca.2016.01.018

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 65
3.3.1. Hybrid improved max min ant algorithm . 75
3.3.2. A goal-oriented workflow scheduling . 75
3.3.3. A hybrid heuristic algorithm for workflow scheduling . 75
3.3.4. Multi-objective workflow scheduling . 75
3.4. Task and workflow scheduling . 76
4. Discussion . 76

4.1. Simulation of the workflow scheduling . 76

4.1.1. CloudSim . 76
4.1.2. Eucalyptus . 76
4.1.3. EC2 . 76
4.1.4. IBM RC2 . 77
4.1.5. Simulation analysis . 77
4.2. Applied Algorithms . 77
4.3. Scheduling objectives . 78
4.3.1. Cost factors. 78
4.3.2. Time factors . 79
5. Conclusion . 79
References . 80
1. Introduction

Cloud computing is a technology that utilizes the internet and
central remote servers to provide scalable services for its users
(Kaur et al., 2011). It uses a great amount of heterogeneous dis-
tributed resources to deliver countless different services to its
users with distinctive quality of service (QoS) requirements (Wu
et al., 2013). Amazon EC2, GoGrid, Google App Engine, Microsoft
Azure and Aneka are some of the prominent cloud computing
platforms.

Generally, clouds are classified as public clouds, private clouds,
community clouds, hybrid clouds and cloud federation (Huang,
2014). A public cloud can be accessed by any subscriber (Huth and
Cebula, 2011), but private clouds and their infrastructure are
owned and accessed by some organizations (Huang, 2014). Also,
community clouds are shared between several organizations and
can be maintained by them or other service providers (Huang,
2014). Hybrid clouds deal with resources from both public and
private clouds (Marcon et al., 2013). Also, due to the availability
issue of the single clouds, a movement towards multi-clouds has
emerged (AlZain et al., 2012) which focuses on the federation of
different clouds (Jensen et al., 2011; Buyya et al., 2010).

In addition, the services provided by cloud can be classified as
software (SaaS), platform (PaaS), or infrastructure (IaaS) providers
(Wang et al., 2014). SaaS provider leases enterprise software as a
service to customers (Wu et al., 2011) and PaaS provider presents
access to the required components over the internet to develop
applications (Basishtha and Boruah). Also, IaaS clouds provide
infrastructures resources such as processing, storage, networks,
and soon (Dillon et al., 2010; Agarwal and Jain, 2014).

Virtualization is one of the key enabling technologies of cloud
computing which allows multiple Virtual Machines (VMs) to
reside on a single physical machine (Pandey et al., 2010). A Virtual
Machine (VM) emulates a particular computer system and exe-
cutes the user issued tasks (Wang et al., 2010). By using the
instantiation of the VMs, users can deploy their applications on
resources with various performance and cost levels. In each phy-
sical machine or server, the VMs are managed by a software layer
called hypervisor or the VM monitor which facilitates the VMs
creation and isolated execution.

Workflow scheduling is one of the prominent issues in the
cloud computing which tries to map the workflow tasks to the
VMs based on different functional and non-functional require-
ments (Jayadivya and Bhanu, 2012). A workflow consists of a series
of interdependent tasks which are bounded together through data
or functional dependencies and these dependencies should be
considered in the scheduling (Kumar, 2014). However, workflow
scheduling in the cloud computing is an NP-hard optimization
problem and it is difficult to achieve an optimal schedule. Because
there are numerous VMs in a cloud and many user tasks should be
scheduled by considering various scheduling objectives and fac-
tors. The common objective of the workflow scheduling techni-
ques is to minimize the makespan by the proper allocation of the
tasks to the virtual resources (Rahman et al., 2013; Bala and Chana,
2011). For example, a scheduling scheme may try to support the
promised SLAs, the user specified deadlines and cost constraints
(Kapoor and Kakkar). Also, scheduling solutions may consider
factors such as resource utilization, load balancing and availability
of the cloud resources and services in the scheduling decisions
(Bala and Chana, 2011; Maruthanayagam and Prakasam; Motahari-
Nezhad et al., 2009; Barrett et al., 2011).

The workflow scheduling problem has been widely studied in
the literature. This paper presents a complete survey of the
workflow scheduling schemes proposed for cloud computing in
the literature. For this purpose, it first illuminates the types and
objectives of workflow scheduling and then provides a classifica-
tion of the proposed schemes based on the algorithm which has
been used in each workflow scheduling scheme. Also, the objec-
tives, properties and the limitations of workflow scheduling
schemes are assessed in detail and a complete comparison of them
is presented. Although some schemes such as (Kaur; Nallakumar,
2014; Singh and Singh, 2013) discussed the workflow scheduling
problem in cloud environment, none of them have provided an in-
depth investigation and comparison of the proposed workflow
scheduling schemes.

The rest of this article is organized as follows: Section 2 dis-
cusses about the workflow scheduling types and objectives, Sec-
tion 3 investigates the proposed workflow scheduling and com-
pares various aspects of them. Section 4 discusses about the cloud
providers and simulators, Section 5 presents the comparison and
discussion of the proposed schemes, and Section 6 exhibits the
concluding remarks and future research directions.
2. Types and objectives of scheduling in cloud

Generally, there are two types of workflow which are simple
and scientific workflows. Figure 1 indicates a simple workflow’s
DAG which contains 9 tasks.

Fig. 1. A simple workflow.

Fig. 2. Structure of five realis

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8266
Also, there are numerous scientific Workflows such as Mon-
tage, LIGO, Cyber Shake, SIPHT and Epigenomics applied in
astronomy, earthquake researches and so on. Figure 2 indicates
these scientific workflows which involve complex data of different
sizes and need higher processing power. By providing unbounded
on-demand virtual resources, the cloud computing paradigm can
effectively handle the scientific workflows.

Generally, scheduling schemes can be categorized as follows
(Chawla and Bhonsle, 2012):

� User level: the scheduler deals with problems raised by the
service provision between the cloud providers and users.

� System level: deals with the resource management within the
cloud data centers.

� Static scheduling: tasks arrive simultaneously and the avail-
able resource schedules are updated after each task is
scheduled (Patel and Mer). This scheduling assumes a precise
knowledge of the timing information about tasks which is
difficult to obtain, but it incurs less runtime overhead. The
Opportunistic Load Balancing or OLB is a static scheduling
algorithm.
tic scientific workflows.

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 67
� Dynamic scheduling: in which the information about the task
arrivals is not known at runtime (Chawla and Bhonsle, 2012).
Although it better adapts to the timing changes during the task
execution, it incurs runtime overheads. Some dynamic schedul-
ing algorithms are as follows: Earliest Deadline First (EDF) and
Least Laxity First (LLF).

� Centralized scheduling: a master processor unit is used for the
collection of tasks, which sends them to other processing units
(Kaleeswaran et al., 1963).

� Distributed scheduling: it applies the local schedulers to man-
age the requests and maintain the job states. It has less effi-
ciency in comparison to centralized scheduling (Tiwari).

� Preemptive scheduling: it allows each task to be interrupted
during the execution and a task can be migrated to another
resource (Patel and Bhoi, 2013).

� Non-preemptive scheduling: only when a task completes, its
resource can be taken away (Xhafa and Abraham, 2010).

� Online scheduling: each task is scheduled only once and the
scheduling result cannot be changed. It is suitable for the cases
in which the arrival rate is low (Nagadevi et al., 2013) and is
used in K-Percent Best (KPB) and Switching Algorithm.

� Offline scheduling: tasks are not mapped to the resources as
they enter, but they are collected and are examined for mapping
at the prescheduled times. Offline scheduling is called Batch
mode heuristics (Vijayalakshmi and Vasudevan, 2015). Min-min
and Max-min are offline algorithms.

� Task-level scheduling: deals with the optimization of the Task-
to-VM assignment in the local cloud data centers where the
overall running cost of the workflow should be minimized by
considering QoS (Wu et al., 2013; Hong and Potkonjak, 1997).

� Service-level scheduling: deals with the Task-to-Service assign-
ment where the workflow tasks are mapped based on their
functional and non-functional QoS requirements.

The common objectives for workflow scheduling schemes are
as follows:

� Budget: is the cost which the consumers pay for the usage of
the cloud resources (Mary, 2014).

� Deadline: deadline is the time limit for the execution of the
workflow (Rodriguez and Buyya, 2014) and its supporting is an
important QoS requirements.

� Reliability: it is the probability that the task can be completed
successfully. For this purpose, techniques such as active repli-
cations and backup/restart schemes corresponding to the
resource and time redundancy may be applied in the scheduling
(Zhao et al., 2013).

� Availability: by the proper workflow scheduling, tasks are exe-
cuted faster and the execution is terminated quickly. This
improves the availability of the cloud resource (Sajid and Raza,
2013).

� Minimizing the makespan: the makespan of a workflow is the
time at which the last workflow task finishes its execution
(Lopez et al., 2006; Liu et al., 2010).

� Supporting Service Level Agreement (SLA): SLA is a document
that has various considerations of the service consumers and
providers. These include the explanations of QoS delivery per-
formance guarantees (Alkhanak et al., 2015).

� Security: attackers may misuse some cloud features and com-
ponents to launch cloud specific attacks (Tao et al., 2009).
A secure scheduler produces a safe scheduling to mitigate the
effects of the security attacks.

� Load Balancing: a scheduler should optimize the resource
usage to avoid the overload of any cloud resources(Anju Baby,
2013).
3. Analysis of the workflow scheduling schemes

Figure 3 first classifies the workflow scheduling schemes into
heuristic and metaheuristic solutions, and then further classifies
them based on type of the scheduling algorithms. Table 1 presents
the acronyms which will be applied in the next sections of this
article.

Often in these schemes, a workflow is specified by a DAG
(Directed Acyclic Graph) or weighed DAG, in which each compu-
tational task Ti is indicated by a vertex. Also, each data or control
dependency between the tasks is indicated by a weighed directed
edge Eij which may be computed using different factors in each
scheduling scheme (Wu et al., 2013). Each directed edge Eij states
that Ti is the parent task of Tj and Tj and can only be executed once
all its parent tasks have been completed.

3.1. Metaheuristic-based scheduling

To generate optimal schedules, metaheuristic scheduling
schemes may apply algorithms such as PSO, ACO, SA (Yaseen and
Al-Slamy, 2008).

3.1.1. PSO-based workflow scheduling
Particle Swarm Optimization or PSO is a population based

stochastic optimization algorithm developed by Eberhart and
Kennedy in 1995 (Nallakumar, 2014; Rahman et al., 2013). In the
PSO-based workflow scheduling, the dimension of the particles is
the number of tasks, and each position of a particle indicates a
mapping between the VMs and tasks. Also, each particle corre-
sponds to a candidate solution and has its own position in the
space, with a fitness value corresponding to the position. More-
over, each particle has a velocity to determine the speed and
direction which it flies. The PSO-based workflow scheduling
schemes often initially create a random swarm of particles, but
some schemes try to produce a better initial swarm. Moreover,
some scheduling schemes only use the basic PSO algorithm, but
others improve the PSO (Verma and Kaushal, 2015).

Pandey et al. (2010) present a PSO-based solution which takes
both computation cost and data transmission cost into account.
First, this algorithm computes the mapping of all the overall costs
of computing the workflow application. To validate the depen-
dencies between the tasks, the algorithm assigns the ready tasks
to resources according to the mapping given by PSO. After dis-
patching the tasks to the resources for execution, the scheduler
waits for the polling time. Depending on the number of tasks
completed, the ready list is updated. Then, they update the aver-
age values of the communication between the resources based on
the current network load. When the communication costs change
they recompute the PSO mappings. Also, when the remote
resource management systems are not able to allocate a task to the
resources due to the resource unavailability, the recomputation of
the PSO makes the heuristic dynamically balance other tasks'
mappings. With the recomputed PSO mappings, they assign the
ready tasks to the resources and these steps are continued until all
the workflow tasks are scheduled.

Huang et al. (2013) in models the mapping between the tasks
and resources and achieves a tunable fitness function on the basis
of which a workflow schedule may be selected for the minimal
cost or minimal makespan. In addition, a heuristics is proposed to
address a bottleneck problem and attain a smaller makespan. In
this scheme, first the position and velocity of all the particles are
randomly initialized. If the iteration stopping criterion is not met,
the algorithm repeatedly performs the following operations: for
each particle, it first calculates its fitness value using one of the
fitness functions, and then updates its local best positions. Then, it
calculates the global best position among all the particles and

Fig. 3. Classification of the workflow scheduling schemes in the cloud environment.

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8268
updates the velocity and position of all the particles. Finally, when
the stopping condition is met, the global best is the optimal
mapping.
Chen and Zhang (2012) propose a set-based PSO (S-PSO)
workflow scheduling scheme which minimizes both the cost and
makespan and increases the reliability by addressing the QoS

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 69
constraints. The S-PSO extends the PSO in the discrete space and is
suitable for the cloud workflow scheduling because the service
instances available in the cloud can be considered as a resource
set. In this scheme, the allocation of the service instances is con-
sidered as the selection problem from a set of service instances,
the set-based representation scheme in the S-PSO is appropriate
for the cloud workflow scheduling problem. They define penalty-
based fitness functions to consider several QoS constraints and
integrate the S-PSO with seven heuristics.

A Bi-Criteria Priority based PSO (BPSO) (Verma and Kaushal,
2014) is proposed by Verma et al. to reduce the execution cost and
time under the deadline and budget constraints. Each workflow
task is the assigned priority using bottom level, and priorities are
used to initialize the PSO. All particles have fitness values indi-
cating their performances and velocities which direct the flight of
the particles. Also, the experience of the neighboring particles is
taken into account during the optimization. A particle status on
the search space is specified by its velocity and position, which are
updated in every generation. In the BPSO, the workflow tasks are
executed based on their priority computed using the bottom level
which is the same as the one defined in HEFT.

Jianfang et al. (2014) uses discrete PSO and consider the
security issues and try to reduce the completion time and cost.
They use the On-Demand method to charge the computing power
by the hour and has three stages: initialization, execution and the
end. At the initialization phase the initial population is randomly
generated according to the cloud workflow coding scheme. At the
execution phase, local adjustment of the particle position can be
made to ensure that it is a feasible solution, and three kinds of QoS
attribute values of the particles can be calculated; a decision
matrix is constructed according to the QoS attribute values, com-
bined with the users' preferences, the objective function of multi
QoS perception is aggregated into a single objective function,
making possible that the particles are selected by a numerical
Table 1
Acronyms and abbreviations.

Abbreviation Definition

VM Virtual Machine
VMM VM Monitor
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
SA Simulated Annealing
GA Genetic Algorithm
CSO Cat Swarm Optimization
HEFT Heterogeneous Earliest Finish Time
SLA Service Level Agreement
QoS Quality of Service
DAG Directed Acyclic Graph

Table 2
Comparison of the PSO-based workflow scheduling schemes.

Scheme Type of workflow Type of cloud Sim

(Pandey et al., 2010) Scientific workflow – JSw
(Rodriguez and Buyya, 2014) Scientific workflow – Clo
(Huang et al., 2013) Simple workflow Hybrid Cloud Clo
(Verma and Kaushal, 2014) Scientific workflow – JAV
(Jianfang et al., 2014) Simple workflow – Clo
(Chitra et al., 2014) Simple workflow Hybrid Cloud –

(Chen and Zhang, 2012) Simple workflow – Am
(Pragaladan and Maheswari) Scientific workflow Multi Cloud –

(Wu et al., 2010) Simple workflow – Am
(Verma and Kaushal, 2015) Simple workflow – Clo
(Sridhar and Babu, 2015) Simple workflow – Clo
comparison among each other. At the end phase the optimal
scheduling solution is achieved.

The Local Minima Jump PSO is proposed by Chitra et al. (2014)
that attempts to optimize the execution time, cost, load balancing
and makespan. This algorithm first initializes random swarm
particles and each particle’s fitness function is packet delivery
ratio. If fitness function is less than pbest; then the value of fitness
function is assigned to pbest and compares each particle's fitness
function with the global best particle. If fitness function is less
than gbest; then gbest takes the value of fitness function. When
the value of gbest does not change much with each iteration, it has
been found that convergence is poorer as gbest gets struck with
the local minima problem. Then, revises the velocity for each
particle and moves each particle to a new position.

Table 2 compares the properties of the PSO-based workflow
scheduling algorithms. Table 3 presents the objectives of the PSO-
based schemes.

3.1.2. GA-based workflow scheduling
Some of GA-based workflow scheduling schemes apply the

basic GA algorithm, while others modify it to achieve better
results. Also, most of them generate better initial population to
achieve better results (Madić et al., 2013; Nair and Sooda, 2010).

A bi-objective scheduling scheme called DWSGA is proposed in
Aryan and Delavar which considers the completion time and dis-
tribution of the workload on resources. At first, by using bidirec-
tional tasks prioritization, it makes a good initial population. Then,
it gets the most appropriate possible solution by optimizing the
makespan and provide good distribution of the workload on
resources. It uses some conversant methods such as making initial
population by ordering the tasks, based on a bi-directional priority
method and other goal-oriented operations that lead the algo-
rithm to fulfill the objectives by speeding up the good solution
finding process. Moreover, it controls the search using a mutation
method that reassigns resources based on the workload to con-
sider the most effective task. In GA-based scheduling schemes, a
task to the VM mapping is indicated by a single gene in the
chromosome and a valid chromosome contains a sequence of
genes. The order of the genes exhibits the schedule execution
order on the chosen resources. A feasible solution to the sche-
duling problem must maintain the precedence constraints
between the tasks specified in the workflow (Barrett et al., 2011).

Verma and Kaushal (2013) present BCHGA to optimize the
execution cost and data transfer cost with a budget constraint.
Each workflow's task is the assigned priority using bottom level
(b-level) and top level (t-level). BCHGA, at first, calculates the b-
level and t-level of all workflow tasks and creates the initial
population which for all individuals the priority of each task is set
equal to the total of its b-level. Then, all the tasks are assigned to
the available VMs with their priority. While termination criteria
are not met, BCHGA evaluates the fitness of the individual in the
ulator/environment Type of PSO algorithm Discrete/continuous

arm Standard PSO Discrete
udSim Standard PSO Continuous
udSim Standard PSO Continuous
A Bi-Criteria PSO Continuous
udSim Discrete PSO Discrete

Modified PSO Continuous
azon EC2 Set-based PSO Discrete

Standard PSO Continuous
azon EC2 Discrete PSO Discrete
udSim Bi-Criteria PSO Continuous
udSim Hybrid PSO Continuous

Table 3
Objectives of PSO-based workflow scheduling schemes.

Scheme Makespan Load
balancing

Deadline
constrained

Budget
constrained

Storage Bandwidth Memory
requirement

QoS Support
(SLA)

(Pandey et al., 2010) – ✓ – – – – – –

(Rodriguez and Buyya,
2014)

_ _ ✓ – – – – –

(Huang et al., 2013) ✓ ✓ – – – – – ✓
(Verma and Kaushal,
2014)

– – ✓ ✓ – – – ✓

(Jianfang et al., 2014) – ✓ – – – – – ✓
(Chitra et al., 2014) ✓ ✓ – – – – – ✓
(Chen and Zhang, 2012) ✓ – ✓ ✓ – – – ✓
(Pragaladan and
Maheswari)

– – ✓ ✓ – – – –

(Wu et al., 2010) ✓ ✓ ✓ – – – – ✓
(Verma and Kaushal,
2015)

– – ✓ – – – – –

(Sridhar and Babu, 2015) _ _ ✓ _ _ _ _ _

Table 4
Comparison of the metaheuristic-based workflow scheduling schemes

Scheme Type of workflow Type of cloud Simulator/environment Type of scheduling Type Of algorithm

(Huang, 2014) Scientific workflow – CloudSim – Genetic Algorithm
(Barrett et al., 2011) Scientific workflow – CloudSim – Genetic Algorithm
(Zhou and Huang, 2013) Simple workflow – CloudSim – Ant Colony Optimization
(Singh and Singh) Simple workflow Private cloud CloudSim – Ant Colony Optimization
(Verma and Kaushal, 2013) Scientific workflow – JAVA – Genetic Algorithm
(Jian et al., 2013) Simple workflow – – – Simulated Annealing
(Aryan and Delavar) – – – – Genetic Algorithm
(Bilgaiyan et al., 2014) Simple workflow – – Dynamic Cat Swarm Optimization
(Ponniselvi and Seetha) Scientific workflow Multi Cloud – – ESEMO
(Gogulan et al., 2012) Simple workflow Private cloud ETC Matrix – Ant Colony Optimization

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8270
population, afterwards it applies the selection operator to select
the parent. Then, it applies the crossover operator on the selected
parent using crossover probability to create the children and
applies the mutation operator on the newly created children. Then,
it validates each child according to the fitness function. Finally, it
adds the valid child to create the new population.

Barrett et al. (2011) propose a scheduler which supports the
user defined QoS like the cost and makespan. It utilizes a genetic
algorithm to generate optimal schedules and applies a Markov
Decision Process (MDP) which chooses from them. By using an
MDP this scheme is capable of observing temporal dynamics and
tuning schedule selection accordingly. At first, users submit their
workflows with non-functional QoS constraints. Then, the average
execution time that a given task takes to run on a resource is
calculated. A number of solvers with ranging configurations are
instantiated to produce schedules of varying cost and makespan.
From these schedules an agent utilizing an MDP computes the
optimal schedule based on the current state of the cloud envir-
onment. The scheduling plan is performed on the cloud by the
Executor module which monitors the tasks and returns the results
to the user interface. Once a processing schedule has been com-
pleted on the cloud, the QoS monitor returns the actual cost and
makespan incurred by the schedule.

Table 4 represents the comparison of the metaheuristic-based
workflow scheduling schemes in the cloud environment.

3.1.3. SA-based workflow scheduling
Simulated annealing or SA is a random search method for the

global optimization problems that is able to handle local optima
problems. It imitates the metals recrystallization in the process of
annealing (Madić et al., 2013).

Normally, cloud customers focus on the time and cost factors
when choosing the cloud resources providers. For this purpose, in
Jian et al. (2013) apply the SA to minimize the workflow sche-
duling cost under time-constraints and load balancing the
resources. They consider both the time-cost of the tasks execution
and time-cost of the data transmission between different tasks.
Scheduling by the SA costs less time because of the better quality
of the optional solution selected by Metropolis criterion. This
scheme first initializes the solution space and the objective func-
tion. The value of the objective function is equal to the total time-
cost. Then, it initializes the temperature and its parameters. The
number of the iterations on each given temperature and the
temperature decay function f are given at the time. When the
temperature reaches Tk they can calculate the objective function.
In each iterative process, it can be decided whether that current
solution is global optimal solution or not. If it cannot meet the
condition, then it steps into the next operation: it calculates the
probability of the selection and generates a random number and
compares it with P. If koP, they set the current solution as the
optimal solution. Otherwise the optimal solution remains
unchanged. The temperature is cooled down by the temperature
decay function and these steps are repeated. If the algorithm
reaches the maximum number of iterations, then it stops. Also, the
result of this scheme is compared with the PSO.

3.1.4. CSO -based workflow scheduling
Cat Swarm Optimization (CSO) has been introduced by Chu and

Tsai in 2007 and operates in seeking mode and tracing mode. In

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 71
seeking mode, cats do not move and stay in a certain position and
sense for the next best move, but in tracing mode, cats move to
their next position with some velocity which indicates how cats
chase their target (Bilgaiyan et al., 2014).

A CSO based solution is presented by Bilgaiyan et al. (2014),
which considers both the data transmission cost between the
dependent resources and execution cost. It reduces iterations to
obtain scheduling scheme and provides fair load balancing on the
available resources. By using two operation modes, this scheme
reduces the energy wastage in random movement, and updates
the positions of cats to attain the optimal solutions. It uses an
initial population of N cats among which some of them are in
seeking mode and the others are in tracing mode. In seeking mode
the majority of cats search the global space while being in a resting
state by the intelligent position updating. This scheme applies two
factors called SMP or Seeking Memory Pool and CDC or Count of
Dimension to Change. The SMP exhibits the number of copies to be
made for each cat and the CDC specifies the number of allocations
to be altered in a single copy. Tracing mode indicates the cats that
are in a fast moving mode and search the local space by moving
towards the next best position. In this scheme, each cat indicates a
task resource mapping updated as per mode that the cat is in.
Assessing the fitness value of cats leads to finding the mapping
which has the minimum cost. Moreover, in each iteration, a new
set of cats is chosen to be in tracing mode. The final solution,
provides the best mapping which has the minimum cost.

3.1.5. ACO-based workflow scheduling
Ant Colony Optimization (ACO) is a paradigm for designing

Meta heuristic algorithms for the combinatorial optimization
problems (Yaseen and Al-Slamy, 2008).

The ACO algorithm is used by Singh and Singh to optimize the
execution cost of those workflow tasks whose sub deadlines are
missed at the private cloud and shifted to the public cloud to
complete their execution within the sub deadlines. It finds a
schedule at the private cloud which satisfies the user defined
deadlines. However, when deadlines are missed at the private
cloud then the sub deadlines are assigned to the workflow tasks
and they migrate to the public cloud. At the public clouds, the ACO
calculates the pheromone value of each VM based on the execu-
tion cost and selects those VMs from the public clouds which are
cost effective and can execute the workflow application within the
sub deadlines.

Zhou and Huang (2013) propose an ACO-based solution to
reduce the time to find the computing resource in the cloud. In
this scheme, the ants are divided into the Forward-Ants and the
Back-Ants, where Forward-Ants are used to find the available VMs
in the cloud and Back-Ants are produced when the Forward-Ant
finds the resources. The Back-Ant returns in the original way and
leaves the pheromone of the resource to the node. In this scheme
first each node's pheromone is initiated.

Then, the batch of jobs is submitted to the Master node, which
selects the first job. The Master node starts a timer and sends the
forward-ants, and each of them randomly selects the next node.
When the forward-ant comes into a node, it will be sent into the
Ns of Forward-Ant. The pre- execution time will be calculated if
the pre-execution time is less thanET0, the node i is the available
node, otherwise. it is not. If the node i is the available node, a Back-
Ant is produced which will get the Ns of the Forward-Ant, the
pheromone of the node, and the pre-execution time. The pher-
omone of the node in the back path is updated. If a node is not the
available node and the value of its pheromone does not reach the
threshold τ0, the Forward-Ant selects the next node randomly. If a
node is not the available node, but its pheromone reaches the
threshold τ0, the forward-ant selects the next node. Before the
timer of the Master node reaches zero, if the Master node receives
the Back-Ant, it will assign the tasks to the k available nodes which
have the least pre-execution time; otherwise, the Master node
does not assign tasks. When the tasks are completed or failed, the
pheromone of the available node will be updated. The tasks that
are not completed will be assigned to another node by the Master
node. These processes are done for the next job.

Multiple Pheromone Algorithm (MPA) is proposed by Gogulan
et al. (2012) which is based on the ACO algorithm to mitigate the
makespan, the task completion time and resource utilization. In
this scheme, ants use different pheromone value for each task and
apply them to select tasks for different resources. In this solution,
first all pheromone values and parameters are initialized. Then,
theM ants are initialized to select the N tasks and each ant builds a
solution to the M resources. In each iteration, ants are randomly
selected to build a constructive direction. After the M ants map a
solution to the M resources, pheromone value is updated by a local
pheromone updating rule. If an ant selects a new task, the pher-
omone is increased to improve the efficient allocation. At the end
of the iteration, the pheromone value is updated by using a global
pheromone value to find the best-so-far solution. The MPA algo-
rithm operates based on the reliability, cost and makespan
constraints.

Table 5 indicates the objectives of metaheuristic-based work-
flow scheduling schemes in the cloud computing environment.

3.1.6. Enhanced superior element multitude optimization (ESEMO)
algorithm

Ponniselvi and Seetha present a solution which minimizes the
workflow execution cost and considers the deadline constraints.
This scheme calculates the data transfer cost between the data
centers to minimize the cost of the execution in multicloud
environments. Also, it considers basic IaaS cloud issues such as
heterogeneity, multi-cloud, and cloud provider of the resources. At
first, this scheme initializes resources for each resource, and then
calculates the fitness value. When the fitness value is better than
the best fitness value in the list, then the current value is set as the
new optimal best. Then, the resource capacity is calculated using
the capacity update equation and resources position is updated
using the position update equation.

3.2. Heuristic workflow scheduling

3.2.1. Deadline constraint scheduling algorithm
Singh and Singh (2013) propose a score based deadline con-

strained scheme that reduces the execution time under manage-
able cost by the user specified deadline. It also reduces the failure
rate of the workflow and applies the concept of score to represent
the capabilities of the resources. It submits a list of the workflow
tasks and gets the available virtual resources from the data center.
Afterwards, it imposes the user deadline on the entire workflow by
sub deadlines of the tasks. Then, it obtains the final scores of the
VMs from the component minimum sub-scores and picks the
minimum score VM from that satisfies the threshold of the task
which is based on its length. If the selected VM can run the task
with a deadline, then the task is assigned to it; otherwise, the next
minimum score VM is selected. This process is repeated until the
mapping of all the tasks to the VMs is created.

3.2.2. HEFT-based scheduling
The HEFT algorithm operates based on the earliest time in the

execution from the available resources and ignores other factors
affecting the execution time of the tasks.

Bala proposes an improved HEFT algorithm which is able to
reduce the turnaround time by selecting resources based on the
multiple factors such as inter-node bandwidth between the VM
nodes and the RAM, bandwidth, and the storage factors. This

Table 5
Objectives of the metaheuristic-based workflow scheduling schemes.

Scheme Makespan Load
balancing

Deadline
constrained

Budget
constrained

Storage Bandwidth Memory
requirement

QoS Support
(SLA)

(Huang, 2014) – – ✓ ✓ – – – ✓
(Barrett et al., 2011) ✓ – ✓ ✓ ✓ – ✓ ✓
(Zhou and Huang, 2013) – ✓ – – – – – –

(Singh and Singh) – – ✓ – – – – –

(Verma and Kaushal,
2013)

✓ – ✓ ✓ – – – ✓

(Jian et al., 2013) – ✓ – – – – – –

(Aryan and Delavar) – – – – – – – –

(Bilgaiyan et al., 2014) – – – – ✓ – – ✓
(Ponniselvi and Seetha) – – ✓ – – – – –

(Gogulan et al., 2012) ✓ – – – – – – ✓

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8272
algorithm first computes the average execution time for each task,
and then calculates the average data transfer time between the
tasks and their successors. If the score of the request is less than
the score of the available, the compound rank value for each task is
computed. Then tasks in a scheduling list are sorted by decreasing
the order of the task rank value.

Lin and Lu (2011) propose the SHEFT algorithm which is an
extension of the HEFT algorithm and it is aimed at optimizing the
workflow execution time and enables the resources to scale elas-
tically at runtime. This scheme models a cloud environment by
partitioning all resources into a number of clusters which have the
same computing capability, same network communication, and
the same inter-cluster and intra cluster data transfer rate. Then,
they formalize a scientific workflow as a weight DAG in which the
communication cost is determined by the weighed of the edge in
the graph, and the task computation cost is determined by the
weight of the vertex in the graph.

3.2.3. Priority Impact Scheduling Algorithm
Priority Impact Scheduling Algorithm or PISA is proposed

by Wu et al. (2012) who considered fairness and scheduled mul-
tiple workflows by considering priority and the task weights. This
algorithm is able to increase the scheduling success rate sig-
nificantly and it takes into account the user priority, and extends
the existing FIFO algorithm. The simplest scheduling strategy is to
increase expenditure onworkflows that are more important and to
prevent expenditure on less important workflows. Importance
may be implied by proximity to deadline, current demand of the
anticipated output or whether the application is in a test or pro-
duction phase. This scheme defines the importance as workflow
priority and task weight.

3.2.4. Hybrid Cloud Optimized Cost scheduling algorithm
The HCOC scheduling algorithm is proposed by Bittencourt and

Madeira (2011) to minimize the costs and makespan and reduce
the number of schedules with the makespan higher than
the deadline. Moreover, it decides to execute a workflow task in
the private or public cloud's resource. In this algorithm, the tasks
are selected to reschedule, and then resources are picked from the
public cloud. While the former decides the tasks that can have
their execution time reduced by using more powerful resources
from the public cloud, the latter determines the performance and
costs of the new schedule. By taking the prices and performance of
the resources into account, this algorithm decides how many
resources to request from the public cloud. Also, it considers the
number of the clusters of the tasks being rescheduled to select
these resources and their cost, number of cores, and performance.
By considering the number of resource cores, the task dependency
costs are suppressed, since the communication time between the
tasks in the same processor is set to null.
3.2.5. CTC scheduling algorithm
Liu et al. (2010) present a scheme called Compromised-Time-

Cost or CTC which supports instance-intensive and cost-
constrained workflows by compromising the execution time and
cost with the user input. The algorithm presents a graph of the
time-cost relationship for the users to choose an acceptable
compromise before the next round of scheduling begins. If no user
input is provided, then default scheduling is applied. Afterwards,
the algorithm focuses on sharing, conflicting and competition of
the services caused by the multiple concurrent instances running
on the cloud platform. It focuses on the background load to esti-
mate the execution time more accurately, which is considered
when calculating the task execution time on each specific server.
In addition, to adapt to a load change, the server may reschedule
the tasks. Moreover, to handle the execution failures, the uncom-
pleted tasks are rescheduled with a higher priority in the next
scheduling round.

3.2.6. Deadline and budget distribution-based cost-time optimiza-
tion (DBD-CTO)

DBD-CTO (Verma and Kaushal, 2012) tries to reduce the
execution cost and time and addresses the user defined deadline
and budget constraints. This scheme categorizes the workflow
tasks as synchronization tasks and simple tasks; synchronization
tasks have a task which has more than one parent or child task.
Moreover, the workflow is partitioned in such a way that a set of
simple tasks are executed sequentially between two synchroni-
zation tasks. Then, it estimates the minimum execution time and
cost for each task from the available set of services. Afterwards, it
calculates the total expected completion time/cost by adding
the data processing time/cost and minimum execution time/cost.
The workflow runs when the calculated values are less than the
deadline and budget provided by the user. Then, it distributes
the user's overall deadline and budget into every task partition
proportion to their minimum processing time and processing cost.
Finally, all the service lists are sorted in decreasing the order of
their cost, and a service should be chosen to execute some task so
that processing the cost and execution time can be less than the
partition's deadline and budget value.

3.2.7. Time and cost optimization for the hybrid clouds (TCHC)
algorithm

Kumar and Ravichandran (2012) present a scheme called TCHC
which decreases the execution time and cost of the multiple
workflows scheduling. In the dependent workflow scheduling, the
switching between the private and public clouds leads to the
increased execution time and cost. To reduce this problem, TCHC
buffers the resource in the local resource pool which may help
when there is a change in the on demand resource price and
reduces the request cost. It dynamically schedules multiple

Table 6
Comparison of the Heuristic-based workflow scheduling algorithms' properties.

Scheme Type of workflow Type of cloud Simulator/environment Type of algorithm

(Marcon et al., 2013) Scientific workflow Hybrid cloud Amazon EC2 Workflow scheduling with security constraint
(Jayadivya and Bhanu, 2012) Multiple Workflow – – QoS based scheduling
(Liu et al., 2010) Simple workflow – – CTC
(Zhang) Scientific workflow Hybrid cloud IBM EC2 IOO
(Singh and Singh, 2013) Scientific workflow – CloudSim Deadline constraint scheduling
(Bala) Simple workflow – CloudSim HEFT
(Verma and Kaushal, 2012) Simple workflow – JAVA DBD-CTO
(Kumar and Ravichandran, 2012) Simple workflow Hybrid Cloud – TCHC
(Lin and Lu, 2011) Scientific workflow – – SHEFT
(Wu et al., 2012) Simple workflow – – PISA
(Xu et al., 2009) – – – MQMW
(Bittencourt and Madeira, 2011) Scientific workflow Hybrid Cloud Amazon EC2 HCOC
(Lu et al., 2014) Simple workflow – – Concurrent level based workflow scheduling
(Zhu et al., 2014) Scientific workflow – – Scientific workflow scheduling under deadline constraint
(Hoenisch et al., 2013) Simple workflow – – Resource-efficient workflow scheduling
(Guo et al., 2015) Simple workflow Private Cloud CloudSim FCBWTS
(Poola et al., 2014) Scientific workflow - CloudSim Workflow scheduling using spot instances
(Bessai et al., 2012) Scientific Workflow – – Bi-criteria workflow tasks allocation and scheduling
(Fard et al., 2013) Scientific workflow Multi Cloud – Dynamic workflow scheduling

Mechanism for commercial multicloud environment
(Abrishami et al., 2013) Scientific workflow _ – Deadline-constrained workflow scheduling
(Calheiros and Buyya, 2014) Scientific workflow Public Cloud CloudSim Meeting deadlines of scientific workflows
(Lee et al., 2015) Simple workflow – _ Resource-efficient workflow scheduling
(Zeng et al., 2015) Simple workflow – _ SABA
(Malawski et al., 2015) Scientific workflow Multi Cloud Amazon EC2 Scheduling multilevel deadline-constrained scientific workflows

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 73
workflows, verifies the dependency range, and evaluates a mini-
mized execution time and cost. This algorithm makes an initial
schedule that considers only the private resources and checks if
they meet the desired deadline. If the deadline is not met, it
requests resource from the public cloud based on the performance,
cost, and number of tasks to be scheduled in the public cloud.

Table 6 provides the comparison of the Heuristic-based algo-
rithm properties.

3.2.8. Multiple QoS constrained scheduling strategy of multi-
workflows (MQMW)

Xu et al. (2009) present MQMW in which tries to satisfy the
users' QoS requirements and minimizes the makespan and cost of
the workflows. In this scheme, users should submit their workflow
with the QoS requirements. Then, the system allocates appropriate
services for processing the workflow tasks and schedules them on
the services by the QoS requirements. The system consists of
Preprocessor, Scheduler and Executor components. The Pre-
processor computes the available service number, cost and other
information. Then, it submits the ready tasks to the Scheduler
queue, a sorted set containing tasks from different users waiting to
be scheduled. Then, the Scheduler re-computes the attributes of
the queued tasks and then resorts all of them. The Executor selects
the best service to sequentially execute the tasks in the queue.
When a task finishes, the Executor notifies the Preprocessor which
the task belongs to of the completion status. First, a task with a
minimum available service number and the tasks which belong to
the workflow with the minimum time surplus and cost surplus
and the task with minimum covariance should be scheduled. So
the task should be scheduled at first. Otherwise, users should pay
more or the time would increase more.

3.2.9. QoS based workflow scheduling
The authors in Jayadivya and Bhanu (2012) propose a QoS

based Scheduling (QWS) to schedule the workflows based on the
user defined QoS parameters like Deadline, Reliability and Cost.
This scheme considers two types of servers which are storage
server and computational server. QWS process is designed by
using three modules which are Preprocessor module (PM), Sche-
duler module (SM) and Executor module (EM) with a rescheduling
if required. In this scheme, users submit their workflows with QoS.
Then, the PM discovers the services required for those tasks and
generates their DAG and divides the tasks based on the compu-
tation services and storage services. The SM allocates services to
these tasks based on the QoS parameters and the attributes of the
services. After mapping, the EM sends the tasks to the mapped
servers and checks for the result, of these tasks. If the EM gets the
successful result, then it activates all the tasks which are depen-
dent on these tasks. If it fails, then the SM reschedule them.

Table 7 presents the objectives of the heuristic-based workflow
scheduling schemes designed for the cloud environment. Also,
Figure 4 indicates the percentage of metaheuristic workflow
scheduling schemes which are presented in the literature.

3.2.10. Scientific workflow scheduling under the deadline constraint
The authors in Zhu et al. (2014) propose a two-step workflow

scheduling algorithm called HiWAE to reduce the cloud overhead
under a user-specified execution time limit. This scheme considers
the resource availability of both computer nodes and network
links and increases the system throughput. In the HiWAE, the
completion time of the workflow can be specified as a QoS
requirement. In this scheme, first the modules are topologically
sorted into different layers to determine the module mapping
order starting from the first layer. Each module is assigned with a
certain priority value based on its computational complexity and
mapped to the node that yields the lowest partial end-to-end
delay as the execution time from the starting module to the cur-
rent one. This mapping process is repeated until a convergence
point is reached. The main goal of the second step is to improve
the resource utilization rate by minimizing the overhead of the
VM's startup and shutdown time and its idle time.

3.2.11. IaaS cloud partial critical paths
Abrishami et al. (2013) propose two workflow scheduling

algorithms called IC-PCP and IC-PCPD2. These algorithms are
based on the PCP scheduling algorithm which consists of Deadline

Table 7
Objectives of the Heuristic-based workflow scheduling schemes.

Scheme Makespan Load
balancing

Deadline
constrained

Budget
constrained

Storage Bandwidth Memory
requirement

QoS Support
(SLA)

(Marcon et al., 2013) – ✓ ✓ – – ✓ – ✓
(Jayadivya and Bhanu, 2012) ✓ – ✓ – – – – ✓
(Liu et al., 2010) ✓ ✓ ✓ – – – – –

(Zhang) ✓ – – – – – – –

(Singh and Singh, 2013) ✓ – ✓ – – – – ✓
(Bala) ✓ – – – ✓ ✓ ✓ ✓
(Verma and Kaushal, 2012) – – ✓ ✓ – – – ✓
(Kumar and Ravichandran,
2012)

✓ – ✓ – ✓ – – –

(Lin and Lu, 2011) ✓ – – – – – – –

(Wu et al., 2012) – – – – – – – –

(Xu et al., 2009) ✓ – – – – – – ✓
(Bittencourt and Madeira,
2011)

✓ – ✓ ✓ – ✓ – –

(Lu et al., 2014) – – ✓ – – – – ✓
(Zhu et al., 2014) – – – – – ✓ – –

(Hoenisch et al., 2013) – – ✓ – – – – –

(Guo et al., 2015) – ✓ ✓ – – – – ✓
(Poola et al., 2014) ✓ – ✓ – – _ – ✓
(Bessai et al., 2012) ✓ – – – – – – _
(Fard et al., 2013) ✓ – – – – – – –

(Abrishami et al., 2013) ✓ – ✓ ✓ – – – –

(Calheiros and Buyya, 2014) _ – ✓ ✓ – – – –

(Lee et al., 2015) – – – – – – – _
(Zeng et al., 2015) – – – – ✓ ✓ ✓ _
(Malawski et al., 2015) – – – – – – – _

Fig. 4. Percentage of the metaheuristic schemes.

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8274
Distribution and Planning phases. The first phase of this scheme
finds the critical path of the workflow and calls the path assigning
algorithm to distribute the deadline among the critical nodes.
After this distribution, each critical task has a sub deadline which
can be used to compute a sub deadline for all of its predecessors.
The PCP carries out the same procedure for all the tasks. Finally,
the Planning algorithm schedules the workflow by assigning each
task to the cheapest service which meets its sub deadline. The
ICPCP is a one-phase algorithm which instead of assigning sub
deadlines to the tasks of a partial critical path, it tries to actually
schedule them by finding an instance of a computation service
which can execute the entire path before its latest finish time. IC-
PCPD2 is a two-phase algorithm which replaces three path
assigning policies with a single new policy to adapt to the new
pricing model. Also, in the planning phase, it utilizes the remain-
ing time of the existing instances of the computation services for
task scheduling, and if it fails, then it start to launch a new
instance to execute the task before its sub deadline.

3.2.12. Just-in-time and adaptive scheduling heuristic Algorithm
Poola et al. (2014) schedules tasks on the cloud resources using

spot and on-demand instances pricing models to reduce the
execution cost and meet the workflow deadline. It tolerates the
premature termination of the spot instances and performance
variations of the cloud resources. This scheme evaluates the cri-
tical path for every ready task and computes the slack time, which
is the time difference between the deadline and the critical path
time. When the slack time reduces because of the failures or
performance variations in the system, this algorithm switches to
the on-demand instances and applies a bidding strategy and check
pointing to reduce the cost to meet the deadline.

3.2.13. Bi-criteria workflow scheduling
Bessai et al. (2012) propose three bi-criteria workflow sche-

duling schemes on the distributed Cloud resources, which con-
siders the overall execution time and the cost incurred by using a
set of resources. The first algorithm aims to minimize the execu-
tion and communication costs using several allocation strategies.
For each obtained solution the completion time is computed. The
second algorithm attempts to minimize the execution and com-
munication times, and for each obtained solution the overall
computation cost is computed. The third algorithm is called cost
time-based approach, based on the obtained Pareto solutions by
the two first algorithms. Thus, by using the solutions produced by
the cost and time-based approaches only the non-dominated
solutions are selected.

3.3. Hybrid metaheuristic and heuristic scheduling

This section discusses about the schemes which combine the
metaheuristic algorithms with the heuristic scheduling algorithms
such as Best Fit, Round Robin and Max-Min, to solve the workflow
scheduling problem.

Table 8
Comparison of the hybrid workflow scheduling algorithms' properties.

Scheme Type of workflow Type of cloud Simulator/environment Continuous/discrete Combined algorithm

(Wu et al., 2013) Scientific workflow – Amazon EC2 – Market-oriented hierarchical scheduling
(Yassa et al., 2013) Scientific workflow – Amazon EC2 Discrete Particle Swarm OptimizationþHEFT
(Kaur and Ghumman) Simple workflow – CloudSim – Ant Colony OptimizationþMax-min
(Delavar and Aryan, 2012) Simple workflow – MATLAB – Genetic AlgorithmþBest FitþRound Robin
(Delavar and Aryan, 2014) Scientific workflow – – – Genetic Algorithmþ Best FitþRound Robin

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 75
3.3.1. Hybrid improved max min ant algorithm
Yassa et al. (2013) combine the Ant colony and Max-min

algorithm and focuses on total processing time and cost. They
try to balance the total system load and minimize the total
makespan. In Max-min algorithm, large tasks have higher priority
than smaller ones. This scheme reduces the waiting time of the
short jobs by assigning large tasks to the slower resources. Thus,
small tasks are executed concurrently on the fastest resource to
finish large number of tasks during finalizing at least one large
task on the slower resource. In max min if it cannot execute the
tasks concurrently, makespan becomes larger. To overcome such
limitations, a new modification is applied for the Max-min sche-
duling algorithm. This approach improves the total cost and time
factor and is only concerned with the number of the resources and
tasks. Improved max min provides an optimal solution during the
preliminary stage. Furthermore, during the starting stage of ant
algorithm, the searching speed is very slow for the lacking of
pheromones, but after the pheromones reach a certain degree, the
speed of the optimal solution improves quickly. The main aim of
the dynamic combination between the max min algorithm and ant
colony algorithm is that the max min algorithm can be utilized to
get advantages in the initial stage and obtains the optimal solution
by the ant algorithm in last stages.

3.3.2. A goal-oriented workflow scheduling
Delavar and Aryan (2012) propose a hybrid metaheuristic

method based on Genetic Algorithm named GMSW to find a sui-
table solution to map the requests on the resources which have
different communication costs. The GMSW reduces the number of
the GA operation iterations by making an optimized initial popu-
lation and considers the reliability and suitable distribution of the
workload on resources. This scheme obtains the solutions by using
two evaluation functions, one of which measures the priority of
each task in the DAG for bi-directional form based on their influ-
ence on the tasks, and the other one which evaluates the value of
the produced solutions. This scheme tries to get an improved
method rapidly considering the makespan, reliability and dis-
tribution of the workload on resources. It sorts the tasks by a bi-
orientation priority method and addresses their horizontal and
vertical influences. Then, it creates a good initial population by
using Best-Fit and Round Robin algorithms and a bi-directional
task prioritization in an unbalanced-structured workflow. This
scheme speeds up a good solution finding process and leads the
search by a special mutation method that reassigns the resources
based on the workload, and failure frequency and considers the
most effective task.

3.3.3. A hybrid heuristic algorithm for workflow scheduling
Delavar and Aryan (2014) propose a solution to optimize the

workflow makespan, load balancing and speed-up ratio. It com-
bines the Genetic Algorithm with the Best Fit and Round Robin
algorithms. It tries to decrease the number of the GA operation
iteration with starting the algorithm by an optimized initial
population. At first, this algorithm makes tasks prioritization in the
complex graph and considers their impact on others. Then, it
merges the Best-Fit and Round Robin algorithms to make an
optimal initial population. In this scheme, to make a chromosome,
each task is mapped to a selected resource from a list of available
virtual resources and a set of multiple possible solutions or chro-
mosomes are referred to as a population. For this purpose, to build
the initial population, after the tasks are sorted by priority, they
are placed in the first row of the genes in the chromosome. Then,
for each task, a resource is selected with minimum running time
from the virtual resource list and this is repeated for all genes as
Best-Fit. Thus, in first chromosome for each gene, the fittest
resource is selected from the first place in the virtual list, but for
the second chromosome, the best resource is found from the
second place in the virtual list. The fittest candidate-resource will
be searched from the next point, after the last chromosome is
started from the last place in the virtual list and so on, like the
Round-Robin method, but for the resource selection. Moreover, the
priority of the tasks in the graph topology are computed and a list
of task orderings is provided by descending to make the first row
of the chromosomes. Two parents and some of their genes are
selected randomly and two other solutions are created. A chro-
mosome and one of its genes are selected randomly, and at the
amount of a resource is selected randomly from the virtual list of
the resources. The selected resource is replaced with the selected
gene if its failure rate is better than the last candidate resource.

Table 8 indicates a Comparison of the properties of the hybrid
workflow scheduling algorithms.
3.3.4. Multi-objective workflow scheduling
Yassa et al. (2013), propose a multi-objective scheme which

uses hybrid PSO and considers the heterogeneity and the mar-
ketization of the resources to optimize the makespan, cost and
energy. It applies the Dynamic Voltage and Frequency Scaling
technique and operates processors in different voltage supply
levels. But a trade-off between the quality of the schedules and
energy is made. It produces a set of non-dominated solutions and
the users can select a schedule that meets their QoS requirements.
This algorithm begins by initializing the positions and velocities of
the particles. To obtain the position of a particle, the voltage and
frequency of each resource is randomly initialized. Then the HEFT
algorithm is applied several times to generate an efficient solution
to minimize the makespan. Initially, the velocity and the best
position for each particle pBest are attributed as the particle itself.
After all these initializations, the new velocity and position of each
particle are calculated after selecting the best overall position in
the external archive and eventually performing a mutation, then
the particle is evaluated and its corresponding pBest is updated.
The external archive is updated after each iteration and once the
termination condition is reached, the external archive containing
the Pareto front is returned.

Table 9
Objectives of hybrid workflow scheduling schemes.

Scheme Makespan Load
balancing

Deadline
constrained

Budget
constrained

Storage Bandwidth Memory
requirement

QoS Support
(SLA)

(Wu et al., 2013) ✓ – – – – – ✓ ✓
(Yassa et al., 2013) ✓ – – – – – – ✓
(Kaur and Ghumman) ✓ ✓ – – – – – –

(Delavar and Aryan,
2012)

✓ – – – – – – ✓

(Delavar and Aryan,
2014)

✓ ✓ – – – – – ✓

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8276
3.4. Task and workflow scheduling

Some scheduling schemes, such as Partly Dependent Task (PDT)
(Shengjun et al., 2012) are able to perform both the task and
workflow scheduling.

Shengjun et al. (2012) define a new scheduling model for Partly
Dependent Tasks (PDTs) which merges workflow and independent
tasks together. It supports the QoS constrains and minimizes the
total cost. Also, it uses the basic idea of the ACO to assign tasks,
and treats the PDTs as a whole colony. To get a better allocation
method and evaluate the finish time of the PDTs, they divide the
PDTs into several colony-sets. Before the division, they arrange the
independent tasks by sorting the workflow tasks by the execution
order. In this scheme, the workflow in the PDTs only has one input
and one output. After division, it initializes the number of the ants
and iterations to start the ACO-based scheduling, then presents the
solution for each ant. When the iteration is not over, it calculates
the probability distribution of the solution and updates the solu-
tions of each ant. After the iterations, it selects the best solution
among the all solutions provided by the ants and binds the PDTs to
the VMs with the best solution. Table 9 indicates the objectives of
the hybrid workflow scheduling algorithms designed for the cloud.
As indicated in this table, each scheduling scheme only tries to
achieve a subset of the objectives outlined in the previous
sections.
4. Discussion

This section provides a complete discussion and analysis of the
workflow scheduling schemes, about the following items:

� The cloud simulators and providers.
� Applied Algorithms.
� Scheduling objectives.

4.1. Simulation of the workflow scheduling

Various cloud simulators and providers which have been uti-
lized in the workflow scheduling schemes.

4.1.1. CloudSim
CloudSim is a popular cloud simulator that models and simu-

lates the infrastructures containing the Data Centers, Datacenter
Broker class, Cloudlet class, users, user workloads, and pricing
models, VMs and resource provisioning policies (Calheiros et al.,
2011). Some of the features of this Simulator are as follows:

� Availability of a virtualization engine that aids the creation and
management of multiple, Independent, Co-hosted virtualized
services on a data center node.

� Flexibility in switching between the space-shared.
� Time-shared allocation of processing cores to the virtualized
services.

Developing new application provisioning algorithms for the
Cloud computing would be sped up due to these features of the
CloudSim (Calheiros et al., 2011). Layers of the CloudSim are as
follows (Kaur and Ghumman):

� CIS (Cloud Information Service): supplies the database level
match-making services and maps the user requests to the best
suitable cloud providers.

� Data center Broker: helps for intermediating between the users
and service providers and depending on the QoS requirements,
the broker deploys the service tasks.

� VM Scheduler: illustrates the policies such as space-shared and
time-shared, requested to allocate processing power to all VMs.

� VM Allocation Policy: selects an available host in a datacenter
for a VM deployment.

4.1.2. Eucalyptus
Eucalyptus is an open source software framework for the cloud

computing that performs what is generally referred to as Infra-
structure as a Service (IaaS) (Nurmi et al., 2009; Amiry et al., 2012).
Eucalyptus allows the users to run and control the overall VM
instances deployed over a variety of physical resources like the
cloud. Eucalyptus has been practically used, and it allows the users
that are aware of the existing Grid systems to explore new cloud
functionality while maintaining access to the existing, familiar
application development software and Grid middleware. Euca-
lyptus presents several profits by addressing a variety of subjects
with the cloud such as: the VM instance scheduling, the VM and
user data storage, the cloud computing administrative interfaces,
construction of the virtual networks, defining and execution of
several level agreements and the cloud computing user interfaces
(Igugu and Biltoria, 2011).

4.1.3. EC2
EC2 is relied on the Linux based and Xen (3), and various O/S

images, Amazon Machine Images (AMIs), can be supported
(Evangelinos and Hill, 2008; Gai et al., 2015). The Amazon Elastic
Compute Cloud (Amazon EC2) service is the largest provider of the
public cloud services and is particularly helpful for running the
large scale simulation as parallel processes on a computing cluster
(Diallo). It is a web service that supplies resizable compute capa-
city in the cloud. It makes web-scale computing easier for the
developers. Amazon EC2's simple web service interface is used to
take and configure the capacity with minimal friction. It provides a
complete control of the computing resources. Also, Amazon EC2
reduces the required time to obtain and boot new server instances
to minutes, allowing to quickly scale capacity, both up and down,
as the requirements change. It enables the developers with tools to

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 77
build failure resilient applications and isolate them from the
common failure (Instances, 2008; Zhao et al., 2015).
4.1.4. IBM RC2
IBM Research has produced a cloud computing platform called

Research Compute Cloud (RC2) to be used by the worldwide IBM
Research community. The Research Compute Cloud (RC2) is an
infrastructure-as-a-service cloud built by leveraging the existing IT
infrastructure of the IBM Research division. Its goals are two
categories: make a shared infrastructure for the daily use by the
research population, and a living lab to experiment with the new
cloud technologies (Ryu et al., 2010).
Fig. 5. Number of simulators used by workflow scheduling schemes.

Table 10
Factors evaluated in the simulation scenarios of workflow scheduling schemes.

Scheme

(Pandey et al., 2010) Computation cost/total data size, computation cost /rang
iteration

(Huang et al., 2013) Cost/cost weight value
(Jianfang et al., 2014) Security utility values/number of iteration, completion/n

tasks
(Sridhar and Babu, 2015) Ratio of successful execution/number of tasks
(Huang, 2014) Implementation cost/algebra operation, implementation
(Barrett et al., 2011) Total cost/data size, total cost/time
(Zhou and Huang, 2013) Time/number of tasks
(Verma and Kaushal, 2013) NSL(Normalized Schedule length)/Budget
(Jian et al., 2013) Time-cost/number of tasks, time-cost/number of iteratio
(Bilgaiyan et al., 2014) Total cost/iteration of obtaining the cost, total cost/size
(Ponniselvi and Seetha) Total execution cost/number of resources, total executio
(Marcon et al., 2013) Security/number of virtual infrastructures, acceptance r
(Liu et al., 2010) Execution cost/deadline, execution time/execution cost
(Zhang et al.,) Workload/experiment time
(Singh and Singh, 2013) Execution cost/number of cloudlets, execution time/num
(Verma and Kaushal, 2012) Execution time/budget
(Wu et al., 2012) Success rate/services
(Xu et al., 2009) Success rate/number of concurrent workflows, mean ex

concurrent workflows
(Lu et al., 2014) Different with DBL or deadline Min-Cost, CLWS stratifie
(Zhu et al., 2014) Utilization rate/ different scheduling algorithms, EED(the

algorithms
(Hoenisch et al., 2013) Amount of virtual machines/time/ amount of parallel w
(Guo et al., 2015) Performance for each algorithm/number of tasks, perfor

algorithm/ccr(communication to computation ratio)
(Poola et al., 2014) Number of task failures/deadline, execution cost/ volatil
(Bessai et al., 2012) Ratio/number of tasks
(Fard et al., 2013) Coverage/problem size/balance situation, execution time
(Abrishami et al., 2013) Normalized cost/deadline
(Calheiros and Buyya, 2014) Normalized average execution time/different application
(Lee et al., 2015) Resource usage reduction/makespan increase, effective

resources/makespan delay limit, normalized makespan/
(Malawski et al., 2015) Runtime/time limit ratio/time, optimization time/time,
(Wu et al., 2013) Optimization ratio of makespan/number of tasks, makes

CPU Time/Number of Tasks, CPU Time/different schedul
(Yassa et al., 2013) Energy/makespan/cost
(Kaur, Ghumman) Total processing time/number of cloudlets, total process
4.1.5. Simulation analysis
Figure 5 exhibits the number of schemes which have applied

each simulator or cloud provider in both heuristic and meta-
heuristic workflow scheduling schemes. Also, as it is clear from
this figure, CloudSim simulator is the most popular simulator in
the scheduling schemes. Also, Amazon EC2 is the most applied
IaaS provider in both heuristic and metaheuristic workflow sche-
duling solutions. By using these simulator software and cloud
providers, each scheduling scheme has evaluated various factors
affecting its operations and objectives. Table 10 indicates the fac-
tors which have been evaluated in the simulation of the studied
workflow scheduling schemes.

Often workflow scheduling schemes consider the real execu-
tion time for n tasks and m VMs in a matrix where each cell
represents the exact amount of the time that takes a VM to exe-
cute some task. The input of a workflow scheduling algorithm
includes the workflow DAG and information about the target
cloud, including the VMs processing capacity, the VMs network
bandwidth and other factors applied in the scheduling decisions.
However, based on the simulation parameters such as the number
of workflow tasks, the number of VMs and physical machines,
these matrixes may become very large and often most scheme
does not specify their content and values.

4.2. Applied Algorithms

In the previous sections, the workflow scheduling schemes are
classified based on the algorithm type. Figure 6 indicates the
e of computation cost of compute resources, total cost of computation /number of

umber of iteration, cost/number of iteration load balancing deviation/number of

time/algebra operation

n
of data
n time/number of resources
atio/cloud load

ber of cloudlets, failure rate/number of iterations

ecution time/number of concurrent workflows, mean execution cost/number of

s/number of tasks
execution time from the starting module to the current one)/different scheduling

orkflow requests
mance for each algorithm/ number of processing units, performance for each

ity of spot market

/problem size/balance situation

sizes
reduction/workflow application, makespan/makespan delay limit, number of
makespan delay limit
execution cost/deadline
pan/different scheduling algorithms, optimization ratio of cost/number of tasks,
ing algorithms

ing cost/number of tasks, total processing cost/number of cloudlets

Fig. 6. Algorithms applied in the cloud workflow scheduling schemes.

Fig. 7. Heuristic algorithms applied in the cloud workflow scheduling schemes.

Fig. 8. Objectives and scheduling factors considered in workflow scheduling
schemes.

Fig. 9. Cost factors considered in workflow scheduling schemes.

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8278
number of the heuristic and metaheuristic workflow scheduling
schemes which have designed based on the each algorithm. As
indicated in this figure, in metaheuristic workflow scheduling, the
PSO algorithm, because of its fast convergence time is mostly used.
Also, in the heuristic scheduling algorithms HEFT algorithm is the
mostly used for workflow scheduling. Sometimes, this algorithm is
applied in combination with other scheduling algorithms and even
some schemes try to improve and enhance its capabilities.

To achieve better scheduling results, the metaheuristic work-
flow scheduling schemes may perform one of the following
operations:

� Combining multiple metaheuristic algorithms with each other.
� Combining metaheuristic algorithms with some heuristic algo-

rithm such as HEFT.
� Using improved versions of the metaheuristic algorithms or

proposing new concepts or changes in these algorithms.

Often, these are performed to generate better initial population
or to solve some of the inherent problems of existing metaheur-
istic algorithms such as preventing local optima problem. Figure 7
indicates the number of schemes which have utilized the heuristic
workflow scheduling algorithms solely or in combination with
other scheduling methods.

4.3. Scheduling objectives

The main objectives of the workflow scheduling schemes are
previously listed and described briefly in Section 2.1. Figure 8
indicates the number of heuristic and metaheuristic workflow
scheduling schemes which have considered each objective. It
indicates that the makespan, supporting the SLAs and deadline
constraints, are the factors which have been focused by numerous
scheduling schemes.

In metaheuristic workflow scheduling schemes, the pursued
objectives are often considered in the fitness function of the
metaheuristic algorithm. For this purpose, when multiple objec-
tive is applied for scheduling, different coefficients are assigned for
each objective that can tune the effect of each objective on the
overall workflow scheduling. Also, for example in PSO-based
schemes, the factors which affect the scheduling objectives are
integrated in the various parameters that adjust the movement
and velocity of each particle.

4.3.1. Cost factors
Figure 9 provides various cost-related factors considered in

both heuristic and metaheuristic schemes.
As indicated in this figure, only a limited number of schemes

have considered the energy factor. Regarding the importance of
the green cloud computing and cost of energy, more researches in
the context of energy-aware workflow scheduling schemes should
be conducted (Chopra and Singh, 2013; Rius et al., 2013).

Table 11 presents more elaborate information about the cost
factors considered in the scheduling schemes. In this table,
application of the following costs factors are analyzed for each
studied scheme:

� Execution cost.
� Completion cost.
� Communication cost.
� Data transfer cost.

Table 11
Cost factors applied in the cloud workflow scheduling schemes.

Scheme Execution cost Completion cost Communication cost Data transfer cost Energy cost Manageable cost Tenant Cost

(Wu et al., 2013) ✓ – – – – – –

(Huang, 2014) ✓ – – – – – –

(Marcon et al., 2013) – – – – – – ✓
(Pandey et al., 2010) ✓ – – ✓ – – –

(Jayadivya and Bhanu, 2012) ✓ – – – – – –

(Barrett et al., 2011) ✓ – ✓ ✓ – – –

(Rodriguez and Buyya, 2014) ✓ – – – – – –

(Huang et al., 2013) ✓ – – – – – –

(Bittencourt and Madeira, 2011) ✓ – ✓ – – – –

(Verma and Kaushal, 2014) ✓ – – – – – –

(Chitra et al., 2014) ✓ – – – – – –

(Pragaladan and Maheswari) ✓ – – ✓ – – –

(Wu et al., 2010) ✓ – ✓ ✓ – – –

(Verma and Kaushal, 2015) ✓ – – – – – –

(Yassa et al., 2013) ✓ – – – ✓ – –

(Verma and Kaushal, 2013) ✓ – – ✓ – – –

(Jian et al., 2013) ✓ – – ✓ – – –

(Singh and Singh) ✓ – – – – – –

(Bilgaiyan et al., 2014) ✓ – – ✓ – – –

(Gogulan et al., 2012) – ✓ – – – – –

(Ponniselvi and Seetha) ✓ – – – – – –

(Singh and Singh, 2013) ✓ – – – – ✓ –

(Bala) – – ✓ – – – –

(Liu et al., 2010) ✓ – – – – – –

(Xu et al., 2009) ✓ – – – – – –

(Verma and Kaushal, 2012) ✓ – – – – – –

(Kumar and Ravichandran, 2012) ✓ – – – – – –

(Lu et al., 2014) ✓ – – – – – –

(Hoenisch et al., 2013) ✓ – – – – – –

(Shengjun et al., 2012) ✓ – – – – – –

(Poola et al., 2014) ✓ – – – – – –

(Bessai et al., 2012) ✓ – ✓ – – – –

(Fard et al., 2013) – – – – – – ✓
(Abrishami et al., 2013) ✓ – – – – – –

(Calheiros and Buyya, 2014) ✓ – – – – – –

(Lee et al., 2015) – – – – ✓ – –

(Zeng et al., 2015) – – – – – – ✓
(Malawski et al., 2015) ✓ – – – – – –

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 79
� Energy cost.
� Manageable cost.
� Tenant Cost.
� Type of scheduling.

From these items, communication cost indicates the cost
incurred for the data transfer between the VMs which execute
the workflow tasks, and the data transfer cost indicates the cost of
the data transfer between the VM and the storage components
in the data intensive applications (Parsa and Entezari-Maleki,
2009).
4.3.2. Time factors
Considering the importance of the time factors which are used

in the scheduling process, Table 12 presents more elaborate
information of these factors considered in the workflow schedul-
ing schemes presented for the cloud computing. In this table,
application of the following time factors are analyzed in in each
scheduling scheme:

� Execution time.
� Communication time.
� Response time.
� Completion time.
� Data Transfer time.
5. Conclusion

A workflow is a logical sequence of the dependent tasks.
Numerous studies have been conducted about the workflow
scheduling in the cloud computing which utilize heuristics
and metaheuristics algorithms to obtain the approximated
solutions.

This paper provided a comprehensive analysis of the workflow
scheduling schemes proposed for the cloud computing environ-
ment. These schemes are classified based on the type of the
algorithm utilized in the workflow scheduling and their various
objectives and properties are analyzed and compared. Also, var-
ious factors which are considered in each scheduling scheme are
highlighted, and the limitations and advantages of the scheduling
schemes are specified.

One of the issues which have less been addressed in most
workflow scheduling schemes is the concept of the secure
scheduling. Considering the ever increasing security attacks
against the cloud environment, various attacks have been pre-
sented in the literature which target the cloud schedulers and
other cloud components such as the VMs. As a result, in the
future research and studies, the security and trust-related
concept should be integrated in the cloud scheduling to differ-
entiate the workflow requests issued by the attackers and the
trusted cloud users. Thus, regarding the security vulnerabilities
of the cloud environment, cloud scheduler should be

Table 12
Time factors considered in the cloud workflow scheduling schemes.

Scheme Execution time Communication time Response time Completion time Data Transfer time

(Wu et al., 2013) ✓ – – – –

(Huang, 2014) ✓ – – – –

(Pandey et al., 2010) – – – – –

(Barrett et al., 2011) – – – ✓ ✓
(Rodriguez and Buyya, 2014) ✓ – – – –

(Huang et al., 2013) – – – ✓ –

(Liu et al., 2010) ✓ ✓ – ✓ –

(Bittencourt and Madeira, 2011) ✓ – – – –

(Chen and Zhang, 2012) – – – – –

(Verma and Kaushal, 2014) ✓ – – – –

(Jianfang et al., 2014) – – – ✓ –

(Chitra et al., 2014) ✓ – – – –

(Pragaladan and Maheswari) – – – – –

(Wu et al., 2010) ✓ – – – –

(Verma and Kaushal, 2015) ✓ – – – –

(Sridhar and Babu, 2015) ✓ – – – –

(Yassa et al., 2013) ✓ ✓ – –

(Verma and Kaushal, 2013) ✓ – – – –

(Jian et al., 2013) ✓ – – – –

(Zhou and Huang, 2013) ✓ – – – –

(Singh and Singh) – – – – –

(Bilgaiyan et al., 2014) – – – – –

(Gogulan et al., 2012) ✓ – – – –

(Kaur and Ghumman) ✓ – ✓ – –

(Delavar and Aryan, 2012) – – ✓ – –

(Delavar and Aryan, 2014) – – – ✓ –

(Ponniselvi and Seetha) ✓ – – – –

(Zhang) – – – – –

(Singh and Singh, 2013) ✓ – – – –

(Bala) ✓ ✓ ✓ – –

(Lin and Lu, 2011) ✓ – – – –

(Wu et al., 2012) – – – – –

(Verma and Kaushal, 2012) ✓ – – – –

(Kumar and Ravichandran, 2012) ✓ – – – –

(Lu et al., 2014) ✓ – – – –

(Zhu et al., 2014) ✓ – – ✓ –

(Hoenisch et al., 2013) ✓ – – – –

(Shengjun et al., 2012) ✓ – – – –

(Bessai et al., 2012) ✓ ✓ – – –

(Fard et al., 2013) ✓ – – ✓ ✓
(Abrishami et al., 2013) ✓ – – ✓ ✓
(Calheiros and Buyya, 2014) ✓ – – – –

(Zeng et al., 2015) ✓ – – – –

(Malawski et al., 2015) – – – ✓ –

(Guo et al., 2015) ✓ ✓ – ✓ –

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8280
empowered with the secure algorithms to prevent or thwart
various attacks such as the cloud internal denial of the service
attacks, the VM sprawl attacks, the VM neighbor attacks, the VM
migrate and escape attacks and so on.
References

AlZain M, et al. Cloud computing security: from single to multi-clouds. In: Pro-
ceedings of the 2012 45th Hawaii international conference on system science
(HICSS); 2012, IEEE.

Agarwal D, Jain S. Efficient optimal algorithm of task scheduling in cloud computing
environment. arXiv preprint arXiv:1404, 2076, 2014.

Alkhanak EN, Lee SP, Khan SUR. Cost-aware challenges for workflow scheduling
approaches in cloud computing environments: taxonomy and opportunities.
Future Gener Comput Syst 2015.

Anju Baby J. A survey on honey bee inspired load balancing of tasks in cloud
computing. In: Proceedings of the international journal of engineering research
and technology; 2013. ESRSA Publications.

Aryan Y, Delavar AG. Abi-objective workflow application scheduling in cloud
computing systems.

Abrishami S, Naghibzadeh M, Epema DH. Deadline-constrained workflow sche-
duling algorithms for Infrastructure as a Service Clouds. Future Gener Comput
Syst 2013;29(1):158–69.

Amiry V, et al. Implementing hadoop platform on eucalyptus cloud infrastructure.
In: Proceedings of the P2P, 2012 seventh international conference on parallel,
grid, cloud and internet computing (3PGCIC); 2012, IEEE.
Buyya R, Ranjan R, Calheiros RN. Intercloud: utility-oriented federation of cloud
computing environments for scaling of application services, In: Algorithms and
architectures for parallel processing; 2010, Springer. p. 13–31.

Basishtha S, Boruah S. Cloud computing and its security aspects.
Bala A, Chana I. A survey of various workflow scheduling algorithms in cloud

environment. In: Proceedings of the 2nd national conference on information
and communication technology (NCICT); 2011.

Barrett E, Howley E, Duggan J. A learning architecture for scheduling workflow
applications in the cloud. In: Proceedings of the 2011 ninth IEEE European
conference on web services (ECOWS); 2011. IEEE.

Bilgaiyan S, Sagnika S, Das M. Workflow scheduling in cloud computing environ-
ment using cat swarm optimization. In: Proceedings of the 2014 IEEE Inter-
national advance computing conference (IACC); 2014. IEEE.

Bala, RaGS. An improved heft algorithm using multi-criterian resource factors.
Bittencourt LF, Madeira ERM. HCOC: a cost optimization algorithm for workflow

scheduling in hybrid clouds. J Internet Serv Appl 2011;2(3):207–27.
Bessai K, et al. Bi-criteria workflow tasks allocation and scheduling in Cloud com-

puting environments. In: Proceedings of the 2012 IEEE 5th international con-
ference on cloud computing (CLOUD); 2012. IEEE.

Chawla Y, Bhonsle M. A study on scheduling methods in cloud computing. Int
J Emerg Trends Technol Comput Sci 2012;1(3):12–7.

Chen W-N, Zhang J. A set-based discrete PSO for cloud workflow scheduling with
user-defined QoS constraints. In: Proceedings of the 2012 IEEE international
conference on systems, man, and cybernetics (SMC).

Chitra S, et al., Local minima jump PSO for workflow scheduling in cloud computing
environments, In: Advances in computer science and its applications; 2014,
Springer. p. 1225–1234.

Calheiros RN, Buyya R. Meeting deadlines of scientific workflows in public clouds
with tasks replication. Parallel Distrib Syst IEEE Trans 2014;25(7):1787–96.

http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref1
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref1
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref1
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref2
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref2
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref2
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref2
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref3
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref3
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref3
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref4
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref4
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref4
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref5
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref5
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref5

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–82 81
Calheiros RN, et al. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Softw: Pract Exp 2011;41(1):23–50.

Chopra N, Singh S. HEFT based workflow scheduling algorithm for cost optimiza-
tion within deadline in hybrid clouds. In: Proceedings of the 2013 fourth
international conference on computing, communications and networking
technologies (ICCCNT); 2013. IEEE.

Dillon T, Wu C, Chang E. Cloud computing: issues and challenges. In: Proceedings of
the 2010 24th IEEE international conference on advanced information net-
working and applications (AINA); 2010. IEEE.

Delavar AG, Aryan Y. A goal-oriented workflow scheduling in heterogeneous dis-
tributed systems. Int J Comput Appl 2012;52(8):27–33.

Delavar AG, Aryan Y. HSGA: a hybrid heuristic algorithm for workflow scheduling in
cloud systems. Cluster Comput 2014;17(1):129–37.

Diallo S, et al. Simulator of amazon EC2 spot market.
Evangelinos C, Hill C. Cloud computing for parallel scientific HPC applications:

Feasibility of running coupled atmosphere-ocean climate models on Amazon’s
EC2. Ratio 2008;2(2.40):2–34.

Fard HM, Prodan R, Fahringer T. A truthful dynamic workflow scheduling
mechanism for commercial multicloud environments. Parallel Distrib Syst IEEE
Trans 2013;24(6):1203–12.

Gogulan R, Kavitha A, Karthick Kumar U. An multiple pheromone algorithm for
cloud scheduling with various QOS requirements. Int J Comput Sci 2012;9:3.

Guo F, et al. A workflow task scheduling algorithm based on the resources' fuzzy
clustering in cloud computing environment. Int J Commun Syst 2015;28
(6):1053–67.

Gai K, et al. Dynamic energy-aware cloudlet-based mobile cloud computing model
for green computing. J Netw Comput Appl 2015.

Huang J. The workflow task scheduling algorithm based on the GA model in the
cloud computing environment. J Softw 2014;9(4):873–80.

A.HuthJ.CebulaThe basics of cloud computing. United States Computer; 2011.
Hong I, Potkonjak M. Power optimization in disk-based real-time application spe-

cific systems. In: Proceedings of the 1996 IEEE/ACM international conference on
Computer-aided design; 1997. IEEE Computer Society.

Huang J, et al. A tunable workflow scheduling algorithm based on particle swarm
optimization for cloud computing. Criterion 2013;12:14.

Hoenisch P, Schulte S, Dustdar S. Workflow scheduling and resource allocation for
cloud-based execution of elastic processes. In: Proceedings of the 2013 IEEE 6th
international conference on service-oriented computing and applications
(SOCA); 2013. IEEE.

Igugu JO, Biltoria P. STAF-on-eucalyptus: a cloud-based software testing environ-
ment for distributed systems; 2011.

Instances E. Getting started with cloud computing: amazon EC2 on red hat enter-
prise linux; 2008.

Jensen M, et al. Security prospects through cloud computing by adopting multiple
clouds. In: Proceedings of the 2011 IEEE international conference on cloud
computing (CLOUD); 2011. IEEE.

Jayadivya S, Bhanu SMS. Qos based scheduling of workflows in cloud computing. Int
J Comput Sci Electr Eng 2012:2315–4209 ISSN.

Jianfang C, Junjie C, Qingshan Z. An optimized scheduling algorithm on a cloud
workflow using a discrete particle swarm. Cybern Inform Technol 2014;14
(1):25–39.

Jian C, et al. Time-constrained workflow scheduling in cloud environment using
simulation annealing algorithm. J Eng Sci Technol Rev 2013;6(5):33–7.

Kaur N, Aulakh TS, Cheema RS. Comparison of workflow scheduling algorithms in
cloud computing. Int J Adv Comput Sci Appl 2011;2:10.

Kapoor N, Kakkar P., Workflow scheduling in mobile cloud computing
environment.

Kumar PaSA. Priority Based Workflow Task Scheduling In Cloud Computing
Environments. Aust J Basic Appl Sci 2014;8:17.

Kaur A. A review of workflow scheduling in cloud computing environment.
Kaleeswaran A, Ramasamy V, Vivekanandan P. Dynamic scheduling of data using

genetic algorithm in cloud computing. Park Coll Eng Technol 1963.
Kumar BA, Ravichandran T. Time and cost optimization algorithm for scheduling

multiple workflows in hybrid clouds. Eur J Sci Res 2012;89(2):265–75.
Kaur R, Ghumman N. Hybrid improved max min ant algorithm for load balancing in

cloud.
Lopez MM, Heymann E, Senar M. Analysis of dynamic heuristics for workflow

scheduling on grid systems. In: Proceedings of the fifth international sympo-
sium on parallel and distributed computing, 2006. ISPDC'06; 2006. IEEE.

Liu K, et al. A compromised-time-cost scheduling algorithm in SwinDeW-C for
instance-intensive cost-constrained workflows on cloud computing platform.
Int J High Perform Comput Appl 2010.

Lin C, Lu S. Scheduling scientific workflows elastically for cloud computing. In:
Proceedings of the 2011 IEEE international conference on cloud computing
(CLOUD) 2011. IEEE.

Lu G, et al. QoS constraint based workflow scheduling for cloud computing ser-
vices. J Softw 2014;9(4):926–30.

Lee YC, et al. Resource-efficient workflow scheduling in clouds. Knowl.-based Syst
2015;80:153–62.

Marcon DS, et al. Workflow specification and scheduling with security constraints
in hybrid clouds. In: Proceedings of the 2nd IEEE Latin American conference on
cloud computing and communications (LatinCloud); 2013. IEEE.

Maruthanayagam D, Prakasam TA. Job scheduling in cloud computing using ant
colony optimization. Int J Adv Res Comput Eng Technol, 3, p. 540–47.
Motahari-Nezhad HR, Stephenson B, Singhal S. Outsourcing business to cloud
computing services: opportunities and challenges. IEEE Internet Comput
2009;10.

Mary NABaKJ. An extensive survey on QoS in cloud computing. Int J Comput Sci
Inform Technol 2014;5:1.

Madić M, Marković D, Radovanović M. Comparison of metaheuristic algorithms for
solving machining optimization problems. Facta Univ Series: Mech Eng 2013;11
(1):29–44.

Malawski M, et al. Scheduling multilevel deadline-constrained scientific workflows
on clouds based on cost optimization. Sci Progr 2015;2015.

Nallakumar R. A survey on deadline constrained workflow scheduling algorithms in
cloud environment. arXiv preprint arXiv:1409, 7916; 2014.

Nagadevi S, Satyapriya K, Malathy D. A survey on economic cloud schedulers for
optimized task scheduling. Intemational J Adv Eng Technol 2013;4(1):58–62.

Nair T, Sooda K. Comparison of genetic algorithm and simulated annealing tech-
nique for optimal path selection in network routing. arXiv preprint arXiv:1001,
3920; 2010.

Nurmi D, et al. The eucalyptus open-source cloud-computing system. In: Pro-
ceedings of the 9th IEEE/ACM international symposium on cluster computing
and the grid, 2009. CCGRID'09; 2009. IEEE.

Pandey S, et al. A particle swarm optimization-based heuristic for scheduling
workflow applications in cloud computing environments. In: Proceedings of
the 2010 24th IEEE International Conference on advanced information net-
working and applications (AINA); 2010. IEEE.

Patel R, Mer H. A survey of various Qos-based task scheduling algorithm in cloud
computing environment.

Patel S, Bhoi U. Priority based job scheduling techniques in cloud computing: a
systematic review. Int J Sci Techno Res 2013;2:147–52.

Pragaladan R, Maheswari R. Improve workflow scheduling technique for novel
particle swarm optimization in cloud environment.

Ponniselvi MD, Seetha E. Analysis of workflow scheduling process using enhanced
superior element multitude optimization in cloud.

Poola D, Ramamohanarao K, Buyya R. Fault-tolerant workflow scheduling using
spot instances on clouds. Proc Comput Sci 2014;29:523–33.

Parsa S, Entezari-Maleki R. RASA: a new task scheduling algorithm in grid envir-
onment. World Appl Sci J 2009;7:152–60.

Rahman M, et al. Adaptive workflow scheduling for dynamic grid and cloud
computing environment. Concurr Comput: Pract Exp 2013;25(13):1816–42.

Rodriguez MA, Buyya R. Deadline based resource provisioningand scheduling
algorithm for scientific workflows on clouds. Cloud Comput IEEE Trans 2014;2
(2):222–35.

Ryu KD, et al. RC2-A living lab for cloud computing. In: Proceedings of the LISA;
2010.

Rius J, Cores F, Solsona F. Cooperative scheduling mechanism for large-scale peer-
to-peer computing systems. J Netw Comput Appl 2013;36(6):1620–31.

Singh L, Singh S. A survey of workflow scheduling algorithms and research issues.
2013.

Sajid M, Raza Z. Cloud computing: issues and challenges. In: Proceedings of the
international conference on cloud, big data and trust; 2013.

Sridhar M, Babu G. Hybrid particle swarm optimization scheduling for cloud
computing. In: Proceedings of the 2015 IEEE International Advance Computing
Conference (IACC); 2015. IEEE.

Singh L, Singh S. Deadline and cost based ant colony optimization algorithm for
scheduling workflow applications in hybrid cloud.

Singh R, Singh S. Score based deadline constrained workflow scheduling algorithm
for Cloud systems. Int J Cloud Comput: Serv Archit 2013;3(6):31–41.

Shengjun X, Jie Z, Xiaolong X. An improved algorithm based on ACO for Cloud
service PDTs Scheduling. Adv Inf Sci Serv Sci 2012;4:18.

Tiwari SM., Cloud computing using cloud-level scheduling: a survey.
Tao Q, et al. QoS constrained grid workflow scheduling optimization based on a

novel PSO algorithm. In: Proceedings of the eighth international conference on
grid and cooperative computing, 2009. GCC'09; 2009. IEEE.

Vijayalakshmi R, Vasudevan V. Static batch mode heuristic algorithm for mapping
independent tasks in computational grid. J Comput Sci 2015;11(1):224.

Verma A, Kaushal S. Cost minimized PSO based workflow scheduling plan for cloud
computing; 2015.

Verma A, Kaushal S. Bi-criteria priority based particle swarm optimization work-
flow scheduling algorithm for cloud. In: Proceedings of the 2014 Recent
Advances in Engineering and Computational Sciences (RAECS); 2014. IEEE.

Verma A, Kaushal S. Budget constrained priority based genetic algorithm for
workflow scheduling in cloud. In: Proceedings of the Fifth International Con-
ference on Advances in Recent Technologies in Communication and Computing
(ARTCom 2013); 2013. IET.

Verma A, Kaushal S. Deadline and budget distribution based cost-time optimization
workflow scheduling algorithm for cloud. In: Proceedings of the IJCA on
International Conference on Recent Advances and Future Trends in Information
Technology (iRAFIT’12). 2012.

Wu Z, et al. A market-oriented hierarchical scheduling strategy in cloud workflow
systems. J Supercomput 2013;63(1):256–93.

Wang J, et al. Workflow as a service in the cloud: architecture and scheduling
algorithms. Proc Comput Sci 2014;29:546–56.

Wu L, Garg SK, Buyya R. SLA-based resource allocation for software as a service
provider (SaaS) in cloud computing environments. In: Proceedings of the 2011
11th IEEE/ACM international symposium on cluster, cloud and grid computing
(CCGrid); 2011. IEEE.

http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref6
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref6
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref6
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref6
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref7
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref7
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref7
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref8
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref8
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref8
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref9
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref9
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref9
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref9
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref10
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref10
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref10
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref10
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref11
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref11
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref12
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref12
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref12
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref12
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref13
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref13
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref14
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref14
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref14
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref15
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref15
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref16
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref16
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref16
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref17
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref17
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref17
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref17
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref18
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref18
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref18
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref19
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref19
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref20
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref20
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref21
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref21
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref22
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref22
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref22
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref23
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref23
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref23
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref24
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref24
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref24
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref26
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref26
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref26
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref27
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref27
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref29
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref29
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref30
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref30
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref30
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref31
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref31
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref31
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref32
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref32
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref32
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref33
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref33
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref33
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref34
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref34
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref34
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref35
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref35
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref35
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref35
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref36
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref36
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref36
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref37
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref37
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref37
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref38
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref38
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref39
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref39
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref40
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref40
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref40
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref41
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref41
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref41

M. Masdari et al. / Journal of Network and Computer Applications 66 (2016) 64–8282
Wang L, et al. Schedule distributed virtual machines in a service oriented envir-
onment. In: Proceedings of the 2010 24th IEEE international conference
onadvanced information networking and applications (AINA); 2010. IEEE.

Wu Z, et al. A revised discrete particle swarm optimization for cloud workflow
scheduling. In: Proceedings of the 2010 international conference on computa-
tional intelligence and security (CIS); 2010. IEEE.

Wu H, Tang Z, Li R. A priority constrained scheduling strategy of multiple work-
flows for cloud computing. In: Proceedings of the 2012 14th international
conference on advanced communication technology (ICACT); 2012. IEEE.

Xhafa F, Abraham A. Computational models and heuristic methods for Grid sche-
duling problems. Future Gener Comput Syst 2010;26(4):608–21.

Xu M, et al. A multiple QoS constrained scheduling strategy of multiple workflows
for cloud computing. In: Proceedings of the 2009 IEEE international symposium
on parallel and distributed processing with applications; 2009. IEEE.

Yaseen SG, Al-Slamy NM. Ant colony optimization. IJCSNS 2008;8(6):351.
Yassa S. Multi-objective approach for energy-aware workflow scheduling in cloud

computing environments. Sci World J 2013;2013.
Zhao L, Ren Y, Sakurai K. Reliable workflow scheduling with less resource redun-
dancy. Parallel Comput 2013;39(10):567–85.

Zhou Y, Huang X.. Scheduling workflow in cloud computing based on ant colony
optimization algorithm. In: 2013 sixth international conference on proceedings
of the business intelligence and financial engineering (BIFE); 2013. IEEE.

Zhang F, et al. Adaptive workflow scheduling on cloud computing platforms with
iterative ordinal optimization.

Zhu MM, Cao F, Wu CQ. High-throughput scientific workflow scheduling under
deadline constraint in clouds; 2014.

Zeng L, Veeravalli B, Li X. SABA: a security-aware and budget-aware workflow
scheduling strategy in clouds. J Parallel Distrib Comput 2015;75:141–51.

Zhao Q, et al. A new energy-aware task scheduling method for data-intensive
Applications in the cloud. J Netw Comput Appl 2015.

http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref42
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref42
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref42
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref43
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref44
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref44
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref45
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref45
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref45
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref46
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref46
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref46
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref47
http://refhub.elsevier.com/S1084-8045(16)00045-X/sbref47

	Towards workflow scheduling in cloud computing: A comprehensive analysis
	Introduction
	Types and objectives of scheduling in cloud
	Analysis of the workflow scheduling schemes
	Metaheuristic-based scheduling
	PSO-based workflow scheduling
	GA-based workflow scheduling
	SA-based workflow scheduling
	CSO -based workflow scheduling
	ACO-based workflow scheduling
	Enhanced superior element multitude optimization (ESEMO) algorithm

	Heuristic workflow scheduling
	Deadline constraint scheduling algorithm
	HEFT-based scheduling
	Priority Impact Scheduling Algorithm
	Hybrid Cloud Optimized Cost scheduling algorithm
	CTC scheduling algorithm
	Deadline and budget distribution-based cost-time optimization (DBD-CTO)
	Time and cost optimization for the hybrid clouds (TCHC) algorithm
	Multiple QoS constrained scheduling strategy of multi-workflows (MQMW)
	QoS based workflow scheduling
	Scientific workflow scheduling under the deadline constraint
	IaaS cloud partial critical paths
	Just-in-time and adaptive scheduling heuristic Algorithm
	Bi-criteria workflow scheduling

	Hybrid metaheuristic and heuristic scheduling
	Hybrid improved max min ant algorithm
	A goal-oriented workflow scheduling
	A hybrid heuristic algorithm for workflow scheduling
	Multi-objective workflow scheduling

	Task and workflow scheduling

	Discussion
	Simulation of the workflow scheduling
	CloudSim
	Eucalyptus
	EC2
	IBM RC2
	Simulation analysis

	Applied Algorithms
	Scheduling objectives
	Cost factors
	Time factors

	Conclusion
	References

