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Scheduling ambulance crews for maximum coverage
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This paper addresses the problem of scheduling ambulance crews in order to maximize the coverage throughout
a planning horizon. The problem includes the subproblem of locating ambulances to maximize expected
coverage with probabilistic response times, for which a tabu search algorithm is developed. The proposed tabu
search algorithm is empirically shown to outperform previous approaches for this subproblem. Two integer
programming models that use the output of the tabu search algorithm are constructed for the main problem.
Computational experiments with real data are conducted. A comparison of the results of the models is presented.
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1. Introduction

The effectiveness of emergency medical services (EMS) is
a crucial ingredient of an efficient healthcare system. The
quality of service for EMS systems is measured according
to multiple criteria, including average response time, the
type of care that EMS staff are trained to provide, and the
equipment to which they have access. The most commonly
used indicator of quality of service is the fraction of calls
whose response time is within a time standard, typically 8—10
minutes. In planning models, this quantity is often approxi-
mated using the concept of coverage, where a demand node
is assumed to be covered by an ambulance station if the
average response time is within a preset limit. Many studies
exist on improving the quality of service of EMS systems.
We refer the reader to Goldberg (2004) for a recent review.
Although the basic assumptions of such studies vary, based
on the perspective of the modeller and the EMS system at
hand, one common assumption is the static availability of
the service resources. In other words, once an ambulance
is introduced into the system, it is assumed to be active at
any given time. However, this is usually not the case in real-
world applications because of the human element involved.
As prescribed by laws and legislations governing the working
conditions of EMS staff, there are limits on the amount
and the periods of time an ambulance crew can work in a
day. Consequently, there usually exists a limited number of
working hour patterns called shifts resulting in time-varying
service resources. Scheduling the working hours of EMS
staff based on these shifts to maximize coverage is a problem
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that arises periodically. Even when the scheduling decisions
are made, the subproblem of locating ambulances based on
the varying number of calls still remains unsolved. When
implementing results based on existing ambulance location
methods, it is crucial to account for the dynamic availability
of resources over time.

The purpose of this paper is to develop a solution method
for the combined problem of scheduling the working hours
of ambulance crews for a given planning horizon and allo-
cating the ambulances to stations distributed throughout a
geographical region. The objective is to maximize expected
coverage, taking into account the probabilistic nature of the
problem. The core decision is to allocate ambulance crews
to shifts, subject to the maximum number of work hours
that can be afforded by the decision makers. The output
of the crew-shift assignment is the number of ambulances
available for every time interval within the planning horizon.
The number of ambulances available at a given time interval
should respect a lower limit based on the average number of
calls arriving within that time interval. Locating these ambu-
lances to stations in order to maximize expected coverage for
the time interval while not exceeding the capacity limits of
the stations is also a part of the problem.

The complexity resulting from the time element of the
problem can be handled by discretizing it, that is, by dividing
the planning horizon into equal-length time intervals. In
most applications a planning horizon of one week is appro-
priate for two reasons: (1) the number of emergency calls
received behaves in a cyclic manner with a one-week period;
(2) shifts are usually planned so that staffing is constant from
week to week. The length of the time intervals is typically
considered to be 1 hour. A solution method for the shift
scheduling problem should be able to assess the result of allo-
cating a given number of ambulances for a given hour of the
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week in the form of expected number of calls covered within
the hour. However, this assessment is an ambulance location
problem on its own. Combining a weekly shift scheduling
problem and an ambulance location problem for every hour
into a single model is likely to result in an intractable model.
A useful observation is that once the scheduling decisions
are made, the ambulance location problems for each hour
become independent of each other. This assumes that ambu-
lances can be moved between stations every hour to achieve
an optimal configuration. Based on our observations of real
systems, where dynamic redeployment of ambulances in
order to maintain coverage is increasingly the norm, we
believe this is a reasonable assumption. In systems where it
is not possible to move ambulances as frequently, our model
will provide an upper limit on the expected number of covered
calls. In such systems, it might be necessary to modify the
schedule that our model generates to reduce the number of
moves.

In order to cope with the complexity of the shift scheduling
problem, we propose to solve the ambulance location problem
for the combinations of the call density of every hour in a
week and every possible number of ambulances, and use the
results as an input to the shift scheduling problem. To this end,
we develop a tabu search algorithm for the hourly ambulance
location problem. We then construct two alternative models
for the shift scheduling problem, which use the output of the
tabu search algorithm and vary by their objective function.
The first model aims at maximizing the aggregate expected
coverage, that is, the ratio of the sum of the expected number
of calls covered to the total number of calls. The second
model is a lexicographic biobjective model, in which the first
objective is to maximize the minimum expected coverage
over every hour, and the second objective is to maximize the
aggregate expected coverage.

The remainder of the paper is organized as follows. In
Section 2, we review the existing models for the ambulance
location and shift scheduling problems. In Section 3, we
develop a tabu search algorithm to solve the subproblem of
allocating ambulances to stations and compare our results
with those of the previous studies. We construct two integer
programming models for the main problem in Section 4.
Computational results for both models are presented in
Section 5 and conclusions follow in Section 6.

2. Review of related literature

In this section we review the existing literature on the ambu-
lance location models and the shift scheduling models.

2.1. Ambulance location models

Ambulance location problems have received a great deal of
interest. We refer the reader to Swersey (1994), Marianov
and ReVelle (1995), Brotcorne et al (2003), and Jia et al
(2007) for detailed reviews of the related literature. The paper
by Brotcorne et al (2003) identifies 18 different models for

ambulance location. The level of sophistication of a model can
be evaluated on its ability to handle the probabilistic nature
of the problem, that is, how expected coverage is computed.
The models involving expected coverage follow two
tracks:

(1) Incorporating the probability that a station may have
no ambulances to respond to a call: if the probability
of having an idle EMS vehicle at a given station is p,
then the expected coverage for a demand point within
the coverage time limit is not 1 but p (eg, Daskin,
1983; Saydam and McKnew, 1985; ReVelle and Hogan,
1989).

(2) Incorporating response time uncertainty: if the proba-
bility of responding from the closest station to a demand
point within the given time limit is ¢ and if the closest
station has an ambulance, then the expected coverage for
that demand point is g (Daskin, 1987).

In a model that incorporates both EMS vehicle availability
and response time uncertainty, the expected coverage for a
unit demand would be pg, assuming the two sources of uncer-
tainty are independent. Goldberg and Paz (1991) were the
first, to our knowledge, to formulate a mathematical program
that addressed both sources of uncertainty. They allowed
ambulance busy probabilities to vary between stations and
used pairwise exchange heuristics to optimize expected
coverage, as evaluated by the Approximate Hypercube (AH)
model of Larson (1975). Ingolfsson et al (2008) made the
same assumptions but used a different solution heuristic, one
that iterates between solving a nonlinear integer program
and the AH model. We will refer to the problem studied
by Goldberg and Paz (1991) and Ingolfsson et al (2008) as
the Maximum Expected Coverage Location Problem with
Probabilistic Response Times and Station Specific Busy
Probabilities (MEXCLP+PR+SSBP).

Parameters

n number of stations

m number of demand nodes

q number of ambulances

d; the average number of calls originating at demand
node i

c¢;  the maximum number of ambulances that can be

located at station j

p;  the probability that an ambulance located at
station j is busy

P;;  the probability that an ambulance dispatched from
station j covers demand node i

i(j) the jth preferred station for demand node i. The
preference order is based on the distance between the
station and the demand node, with ties broken
randomly



G Erdogan et a—Scheduling ambulance crews 545

Letting z; be the number of ambulances located at station
J, the problem can be defined as:

maximize s(zq, ..., Zn) 1)
subject to
ZZJ‘ <q (2)
Jj=1
G el ) )

where the objective function s(zj,...,z,) in (1) is the
expected number of calls covered, constraint (2) sets the total
number of ambulances to be allocated, and constraints (3)
set upper bounds on the number of ambulances allocated to
each station.

The function s(.) has no known closed-form expression
and is only defined for non-negative integer values of its argu-
ments. It can be evaluated using the AH model. Alternatively,
if one assumes that the status (busy or idle) of one ambu-
lance is independent of the status of all other ambulances (an
assumption made, eg, in Daskin, 1983; Goldberg and Paz,
1991), then (1) can be expressed as

m n j—1
masimize Y 4,3 P - i 1oy @
i=1 j=1 u=1
For a recent study comparing the performance of several
ambulance location models including MEXCLP+PR+SSBP,
we refer the reader to Erkut et al (2009).

2.2. Shift scheduling models

As underlined in the survey by Goldberg (2004), shift
scheduling for ambulances has received almost no attention
in the research literature. We refer the reader to Ernst et al
(2004) for a general review on staff scheduling and rostering.
Typically, such models decouple performance evaluation
from scheduling, by assuming a set of staffing requirements
for each period that will guarantee the quality of service.
Two notable exceptions are Thompson (1997) and Koole and
van der Sluis (2003), both of whom maximize an aggregate
quality of service measure based on an M /M /s queueing
model. In contrast, the quality of service measure that we
maximize is based on the hypercube queueing model, where
the ‘servers’ are spatially distributed and closed-form expres-
sions are not available.

Like most of the shift scheduling literature, we use a steady-
state approximation to evaluate performance in each period.
Green et al (2001) have investigated such approximations
when the system can be modelled as an M /M /s queue and
found that although they are often adequate, they are unreli-
able in certain situations, such as when average service times
are relatively long. Ambulances typically take about an hour
to handle a call, suggesting that it may be worthwhile to inves-
tigate models that incorporate transient effects, but we leave
this for future research.

3. Static allocation of ambulances to stations

In this section we present a tabu search algorithm (Glover and
Laguna, 1997) to solve the MEXCLP+PR+SSBP. We use the
version of the AH model developed by Budge et al (2008),
which allows for the possibility of multiple ambulances per
station to directly compute the expected coverage, s(.) for a
given solution, instead of using the approximation in (4). The
solution is encoded in a vector z;, as the model given in the
previous section. At every iteration, we consider moving a
single ambulance from one station to another.

Parameters

Kk number of iterations since the last update of the best
solution value

1 the maximum number of iterations without updating the
best solution

0 number of iterations for which a vertex stays in the tabu
list

{ the maximum number of ambulances, that is, { = Z'}:l cj

Step 1 (Initialization): Construct a vector (aj, ..., ag) with
binary components, corresponding to an actual phys-
ical capacity for ambulance storage. The storage space
of a station j is represented by entries in the range
[sj.1;], where sy =1, 5; = Z{;llc,» + 1 for j > 1, and
tj = Z'l.f:]c'i. Set the first ¢ components of the vector
to be equal to 1, thatis, a; =1, Vi € {1,..., g}. Set
the rest of the components to be equal to 0, that is,
a=0,Vie{g+1,....,0} Fori=1,...,(—1,
swap the value of the ith component with the value
of the kth component, where k is a randomly selected
integer from the interval [i, {]. Determine the number
of ambulances allocated at station j as z; = jj:sia,v.
Evaluate the solution, and record it as the best solution
found. Set k = 1.

Step 2 (Termination check): If k =1, stop.

Step 3 (Local search): For every station i with z; >0 and
J # i with z; <c;, evaluate the allocation resulting
after moving an ambulance from i to j, and record the
best new allocation as well as the best new allocation
for which the station that lost an ambulance is not in
the tabu list. If the best new allocation has a higher
expected coverage value than the best solution found
so far, set the current solution to be the new solution,
update the best solution found, and set x = 1. Else,
set the current solution to be equal to the best new
allocation for which the station that lost an ambulance
is not in the tabu list. Add the station that received an
ambulance to the tabu list.

Step 4 (Tabu list update): Increase the tabu tenure of each
vertex in the tabu list by one. Remove from the tabu
list the vertices having a tabu tenure greater than or
equal to 0. Increment x by 1. Go to Step 2.
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Table 1 Per cent improvement of expected coverage for the
tabu search algorithm

q System-wide busy probability
0.1 (%) 0.2 (%) 0.3 (%) 04 (%) 0.5(%) 0.6 (%)

5 0.00 0.21 1.40 2.10 3.47 0.00
6 0.00 0.03 0.90 1.62 1.34 1.68
7 0.00 1.60 0.21 2.01 1.06 1.30
8 0.02 0.25 2.96 0.14 0.42 1.18

9 0.37 0.06 1.17 2.51 1.01 1.27
10 0.00 0.58 3.03 0.25 3.45 0.93
11 0.00 0.20 0.82 0.63 0.96 0.88
12 0.00 0.08 0.75 0.00 0.89 2.55
13 0.36 0.15 0.26 0.98 0.89 2.06
14 0.00 0.26 0.15 0.38 1.71 2.77
15 0.00 0.34 0.00 0.00 1.06 221
16 0.00 0.41 0.35 1.08 0.77 1.26
17 0.00 0.40 0.00 0.37 2.04 2.43
18 0.00 0.00 0.03 1.95 1.20 1.24
19 0.00 0.00 0.00 1.18 1.27 2.75
20 0.00 0.00 0.00 0.73 3.08 2.05
21 0.00 0.00 0.00 0.22 2.10 2.03
22 0.00 0.00 0.00 0.00 2.06 3.31
23 0.00 0.00 0.00 0.00 1.34 2.37
24 0.00 0.00 0.00 0.07 0.66 2.06
25 0.00 0.00 0.00 0.20 0.36 1.73

Average 0.04 0.22 0.57 0.78 1.48 1.81

We have implemented our tabu search algorithm using
C++ on a Linux workstation with a 64-bit AMS Opteron 275
CPU running at 2.4 GHz. We have conducted computational
experiments to compare the performance of our algorithm
with the algorithm of Ingolfsson et al (2008), using real-
world data available from http://www.business.ualberta.ca/
aingolfsson/data/. The data consist of the average response
times and demand intensity for 16 stations and 180 demand
nodes from the city of Edmonton, Canada. Our computational
experiments involve two dimensions following the example
of Erkut et al (2009). The first one is the number of ambu-
lances, and the second is the system-wide busy-probability.
The demand data is scaled based on the system-wide busy-
probability to reflect the corresponding call intensity. For the
tabu search algorithm, we have used # =20 and 6 = |n/2].
We have performed five replications for each experimental
design setting, to eliminate the effect of the random initial
solution. Notably, the results of the five replications were
always the same for all 126 experimental settings except
for one. The performance of our algorithm is never worse
than that of the algorithm by Ingolfsson et al (2008), and is
strictly better for 86 out of 126 cases. The average improve-
ment is 0.82%, with the effect becoming more pronounced
for higher values of system-wide busy-probability. The
average CPU time is 50.07 seconds for our tabu search algo-
rithm, as compared to 106.56 seconds of the algorithm by
Ingolfsson et al (2008). Table 1 shows the percent improve-
ment in expected coverage when the tabu search algorithm is
used instead of the algorithm by Ingolfsson et al (2008).
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Figure 1 Expected coverage versus number of ambulances.

We have extended our experimentation to the rest of the
possible number of ambulances and analysed the resulting
expected coverage as computed by our algorithm. Three repre-
sentative results for the cases of low, medium, and high call
intensity are depicted in Figure 1. The figure shows that
the best bound for the expected coverage increases with the
number of ambulances in accordance with an S-curve, which
is initially convex and then concave. Initially, the curve is
close to linear, but ever so slightly convex. After the inflec-
tion point, each additional ambulance adds less additional
coverage, because there are fewer and fewer uncovered calls
and it becomes increasingly difficult to cover these uncov-
ered calls. The behaviour of the expected coverage as a func-
tion of the number of ambulances is similar to, for example,
the admission probability as a function of the number of
servers in the Erlang B loss model and the no-delay proba-
bility as a function of the number of servers in the Erlang C
delay model (M /M /c queue) with abandonments. We note
that the expected coverage in our model will not necessarily
approach 100% as the number of ambulances approaches
infinity, because some of the demand locations may be so
far from the closest existing station that the probability of
coverage will be low no matter how many ambulances are
allocated to that station. The asymptotic expected coverage
of just over 80% reflects conditions in Edmonton a few years
ago, when the city was experiencing rapid growth in popula-
tion and area, and new stations had yet to be built to accom-
modate the growth.

4. Weekly scheduling of ambulances

We now turn to the main problem of scheduling ambulance
crews. We constructed two integer programming models, their
main difference lying in the objective function. Additional
notation required to state our models follows.

Notation

0;; additional number of expected calls covered at hour i by
adding the jth ambulance. This value is precomputed
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as the difference of expected coverage for locating j
ambulances and j — 1 ambulances at the ith hour

hy  the number of working hours for shift s

e;  the average number of calls received during hour i

a;s 1 if shift pattern s includes hour i and 0 otherwise

o the average amount of work hours required to serve a
call

T the number of hours in the planning horizon

o  the number of shift patterns

f  the benchmark budget, computed as the total amount of
work hours required to serve all calls, i.e., f=0a) ;_,e;

¥y a parameter denoting the amount of budget allocated in
terms of the benchmark budget

4.1. Model 1: Maximizing aggregate expected coverage

As stated in the introduction, our first model aims to maximize
the aggregate expected coverage, that is, the ratio of the sum
of the expected number of calls covered during every hour to
the total number of calls. Since we consider coverage to be
the primary indicator of quality of service, this model aims to
maximize the performance of the system. Let x, be equal to
the number of ambulance crews scheduled to work on shift
s, and let y;; be equal to 1 if the total number of ambulance
crews during hour i is at least j, 0 otherwise. Our first model
is then:

(SSP1)
t { T
maximize ZZéijyij/Zei %)
i=1 j=1 i=1
subject to
a ¢
Yoax= vy Gefl,....t) 6)
s=1 Jj=1
)’ijg)’i,j—l (i6{15-"!’[}5]‘6{27"-’&}) (7)
¢
Y oviizloe] Gefl,....t) ®)
j=1
> hex <LyB) ©)
s=1
x €N (sefl,...,a}) (10)
vij€{0,1} Gefl,....,thjef{l,....H) (1)

Constraints (6) set the sum of the number of crews sched-
uled to shifts that are active during a given hour to be equal to
the number of ambulances available in that hour. Constraints
(7) state that the jth ambulance can be available only if the
J — Ist is available. Constraints (8) set the lower bound on the
ambulances available in a given hour as the number of work
hours required to serve all calls in that hour. Although it is
conceivable that overall expected coverage could be increased
by violating these constraints in certain hours, this would
amount to planning to refuse service to some patients, which is

unlikely to be acceptable in practice. Note that the constraints
(7) for a given hour can be discarded if the constraints (8) put
the minimum number of ambulances in that hour above the
inflection point of the S-curve. Finally, constraint (9) limits
the ambulance crews in terms of maximum work hours that
can be afforded. The right-hand side of (9) is stated in a para-
metric way for ease of experimentation.

4.2. Model 2: Maximin expected coverage, maximum
aggregate expected coverage

Although the first model captures the essence of the system
at hand, it disregards the concept of temporal equity. In order
to cover more calls, it could keep the number of ambulances
at the bare minimum at hours with low call intensity and
place more ambulances at hours with peak call intensity. A
remedy to this problem is to maximize the minimum expected
coverage over every hour. However, this approach may result
in an underutilization of system resources because this alterna-
tive objective function does not differentiate between optimal
solutions with differing aggregate expected coverage values.
Our aim should then be to find the solution with maximum
expected coverage and aggregate expected coverage. Conse-
quently our second model is lexicographically multiobjective,
where the first objective is to maximize the minimum expected
coverage over every hour, and the second objective is to maxi-
mize the aggregate expected coverage. We write maximize
(z1, 22) to denote a lexicographic maximization with z; being
the first objective and z, being the second. Let w be equal to
the minimum expected coverage over every hour.

(SSP2)
t T
maximize | w, Z 0ijyij/ Zei (12)
i=1 j=1 i=1
subject to
{
w< Y Siyisfer (i e€{l,....T}) (13)

j=1

and (6), (7), (8), (9), (10), and (11).

Solving SSP2 requires solving two integer programming
models sequentially, the first of which is simply the model
above with the first objective function. Denoting the optimal
objective value of the first stage as w*, the second stage
problem is:

t (L T
maximize Z Z 0ijYij/ Z e (14)
j=1

i=1j i=1

subject to
¢
w <Y dyyij/di (el ..., 1) (15)
j=1

and (6), (7), (8), (9), (10), and (11).
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The first stage maximizes the minimum expected coverage,
while the second stage maximizes the aggregate expected
coverage subject to the constraint that the minimum expected
coverage is greater than or equal to the optimal solution value
of the first stage.

We use the output of both models to find the number of
ambulances available at each hour. We then allocate these
ambulances as determined in the preprocessing phase.

5. Computational results

We used the platform and data described in Section 3 to
experiment with the models presented in the previous section.
The first part of the experimentation was to run our tabu
search algorithm for every hour of the week and every possible
number of ambulances in that hour. The computational effort
can be reduced by only considering the number of ambulances
that satisfy constraint (8). Note that since a new problem is
solved for every different hour, response times that depend on
the hour can be easily incorporated into this procedure. If the
response times are assumed to be the same for every hour, and
several hours of the week have the same demand, then one
can just do the computations for one of those hours. We have
performed a single replication for each instance. This resulted
in a total of 7 x 24 x { =7 x 24 x 27=4536 runs and required
59.4 CPU hours (2.5 days). Although the computing time is
large, every instance of the preprocessing stage is independent
of each other and does not require licensed software that
allows parallel computation without tedious implementation.
On a computing grid consisting of 32 Linux workstations with
64-bit AMD Opteron CPUs, the wall clock time required to
complete the preprocessing phase was a little more than two
hours.

We emphasize that the models we have presented in the
previous section can use the output of every possible solution
method for the ambulance location problem. We have used
our tabu search algorithm to obtain results that are as realistic
as possible. In the case where no more than one CPU can
be allocated to the preprocessing stage, one may opt for less
sophisticated ambulance location models such as MEXCLP
of Daskin (1983) to save computational effort.

The extra piece of information we needed for the second
stage was the a;; matrix of shift patterns. We used a matrix
with 15 shift patterns that correspond to the shifts that are
in current use by a Canadian EMS operator in a mid-size
Canadian city. The first shift pattern is a 24-hour shift denoting
two crews working shifts of either 12 4 12 or 10 + 14 hours
using the same ambulance. The next nine shifts are 12-hour
patterns with start times at the beginning of every hour from
7 am to 3 pm. The last four shift patterns consist of 10.5-hour
shifts, which we approximated as 11-hour shifts, with start
times at 6 am, 7 am, 10 am, and 4 pm. Based on the output
of the preprocessing stage, we solved both models from the
previous section for values of y € {1.5, 2, 2.5, 3, 3.5, 4}. Both
models involve about 4500 variables and constraints. Using
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Figure 2 Aggregate expected coverage versus 7.
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Figure 3 Minimum expected coverage versus 7.

C++ and the callable library of CPLEX 10.1, the average
computing times per instance for SSP1 and SSP2 were 8.99
and 27.14 CPU seconds, respectively. Figure 2 compares the
aggregate expected coverage achieved by the two models.
Both models behave in a similar manner, starting around 40%
and converging to 80% at y =4, at which point the system
saturates. The average difference is 0.36% and the maximum
difference is 1.17% at y=2. We conclude that the emphasis on
equity does not result in a severe loss in aggregate expected
coverage. This lack of a serious conflict between the equity
and system performance metrics is certainly good news for
EMS planners who must be concerned with both.

Figure 3 compares the minimum expected coverage over
all hours of the week for the two models. The difference is
more pronounced in this case, with an average of 6.19% and
a maximum of 18.34% for y = 2. Experiment makes it clear
that the lack of equity concerns in SSP1 can result in rather
poor solutions from an equity perspective.

We have also analysed the variation of the number of ambu-
lances with respect to call intensity. Figure 4 depicts the
comparison of the number of ambulances allocated to each
hour of the week by both models, and the pattern of the
demand intensity. When the budget is low (y=1.5), the staffing
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Figure 4 Number of ambulances per hour based on the output of both models. Note that both curves closely follow the demand pattern,

with differences in amplitude.

curves are driven primarily by the hourly minimum staffing
requirements (8) and are therefore similar for both models.
When the budget is large (y = 3.5 or 4), the models behave
identically. For more realistic intermediate budgets (y =2 or
2.5, corresponding to ambulance utilization of 40 to 50%),
the SSP1 model places more emphasis on the peak intensity
hours and relatively less emphasis on the low intensity hours.
SSP2, on the other hand, is more stable, with a staffing curve
that is roughly proportional to the demand intensity.

6. Conclusions

In this study we have analysed the problem of scheduling
ambulance crews to shifts in order to maximize coverage.
The subproblem of locating the ambulances at stations was

solved using a tabu search algorithm, which was empirically
shown to outperform the previous approaches in the litera-
ture. Two integer programming models were constructed for
the problem. Both require the outcome of allocating a given
number of ambulances to a given time slot in the planning
horizon. The first model emphasizes overall system perfor-
mance, that is, maximizing the aggregate expected coverage.
The second model is a lexicographic biobjective model maxi-
mizing temporal equity first, that is, the minimum of hourly
expected coverage and the performance second. A computa-
tional experiment with real data was conducted. The experi-
ment consists of a parallel preprocessing phase regarding the
tabu search algorithm, and running the models on the output
of the preprocessing phase. The outputs of the models were
graphically analysed. Our results indicate that the second
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model can handle the maximization of equity with an average
of 0.29% and a maximum of 1.44% loss in performance.

Acknowledgements— This work was partially funded by the Canadian
Natural Sciences and Engineering Research Council under Grants 39682-
05 and 203534-07. This support is gratefully acknowledged. We thank
the Edmonton and Calgary EMS departments for providing access to
data, and Dan Haight and Matt Stanton of the Centre for Excellence
in Operations at the University of Alberta School of Business for their
assistance with data preparation. Finally, thanks are due to two referees
for their valuable comments.

References

Brotcorne L, Laporte G and Semet F (2003). Ambulance location and
relocation models. Eur J Opl Res 147: 451-463.

Budge S, Ingolfsson A and Erkut E (2008). Approximating vehicle
dispatch probabilities for emergency service systems with location-
specific service times and multiple units per location. Opns Res,
forthcoming.

Daskin MS (1983). A maximum expected covering location model:
Formulation, properties, and heuristic solution. Transport Sci 17:
48-170.

Daskin MS (1987). Location, dispatching, and routing model for
emergency services with stochastic travel times. In: Ghosh A and
Rushton G (eds). Spatial Analysis and Location Allocation Models.
Van Nostrand Reinhold: New York, pp 224-265.

Erkut E, Ingolfsson A, Sim T and Erdogan G (2009). Computational
comparison of five maximal covering models for locating
ambulances. Geogr Anal 41: 43-65.

Ernst AT, Jiang H, Krishnamoorthy M and Sier D (2004). Staff
scheduling and rostering: A review of applications, methods and
models. Eur J Opl Res 153: 3-27.

Glover F and Laguna M (1997). Tabu Search. Kluwer Academic
Publishers: Boston.

Goldberg JB (2004). Operations research models for the deployment
of emergency services vehicles. EMS Mngt J 1: 20-39.

Goldberg JB and Paz L (1991). Locating emergency vehicle bases
when service time depends on call location. Transport Sci 25:
264-280.

Green LV, Kolesar PJ and Soares J (2001). Improving the SIPP
approach for staffing service systems that have cyclic demands.
Opns Res 49: 549-564.

Ingolfsson A, Budge S and Erkut E (2008). Optimal ambulance
location with random delays and travel times. Health Care Mngt
Sci 11: 262-274.

Jia H, Ordonez F and Dessouky M (2007). A modeling framework for
facility location of medical services for large-scale emergencies.
IIE Trans 39: 41-55.

Koole G and van der Sluis E (2003). Optimal shift scheduling with a
global service level constraint. I[E Trans 35: 1049-1055.

Larson RC (1975). Approximating the performance of urban
emergency service systems. Opns Res 23: 845-868.

Marianov V and ReVelle CS (1995). Siting emergency services. In:
Drezner Z (ed). Facility Location: A Survey of Applications and
Methods. Springer-Verlag: New York, pp 199-222.

ReVelle CS and Hogan K (1989). The maximum availability location
problem. Transport Sci 23: 192-200.

Saydam C and McKnew M (1985). A separable programming
approach to expected coverage: An application to ambulance
location. Decision Sci 16: 381-398.

Swersey AJ (1994). The deployment of police, fire, and emergency
medical units. In: Barnett A, Pollock SM and Rothkopf MH (eds).
Handbooks in Operations Research and Management Science,
Operations Research and the Public Sector, Vol. 6. North Holland:
Amsterdam, pp 151-200.

Thompson GM (1997). Labor staffing and scheduling models for
controlling service levels. Nav Res Log 44: 719-740.

Received April 2008;
accepted November 2008 after one revision





