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Drought forecasting is an essential ingredient for drought risk and sustainable water resources manage-
ment. Due to increasing water demand and looming climate change, precise drought forecasting models
have recently been receiving much attention. Beginning with a brief discussion of different drought fore-
casting models, this study presents a new hybrid gene–wavelet model, namely wavelet–linear genetic
programing (WLGP), for long lead-time drought forecasting. The idea of WLGP is to detect and optimize
the number of significant spectral bands of predictors in order to forecast the original predictand
(drought index) directly. Using the observed El Niño–Southern Oscillation indicator (NINO 3.4 index)
and Palmer’s modified drought index (PMDI) as predictors and future PMDI as predictand, we proposed
the WLGP model to forecast drought conditions in the State of Texas with 3, 6, and 12-month lead times.
We compared the efficiency of the model with those of a classic linear genetic programing model
developed in this study, a neuro-wavelet (WANN), and a fuzzy-wavelet (WFL) drought forecasting models
formerly presented in the relevant literature. Our results demonstrated that the classic linear genetic
programing model is unable to learn the non-linearity of drought phenomenon in the lead times longer
than 3 months; however, the WLGP can be effectively used to forecast drought conditions having 3, 6, and
12-month lead times. Genetic-based sensitivity analysis among the input spectral bands showed that
NINO 3.4 index has strong potential effect in drought forecasting of the study area with 6–12-month lead
times.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Drought forecasting is an essential ingredient in watershed
management. In recent years, its importance is being intensified
owing to increasing water demand and looming climate change
(Mishra and Singh, 2010). The success of drought preparedness
and mitigation depends upon timely information on the drought
onset and propagation in time and space (Özger et al., 2012). This
information may be obtained through precise drought forecasting
models, which is normally generated using drought indices.

Many drought forecasting models have been developed in
recent years (e.g., Rao and Padmanabhan, 1984; Sen, 1990;
Bogradi et al., 1994; Lohani and Loganathan, 1997; Mishra and
Desai, 2005; Cancelliere et al., 2007; Modarres, 2007; Fernandez
et al., 2009; Özger et al., 2012). Mishra and Singh (2011) have
provided a comprehensive review on different drought forecasting
approaches.
In recent years, artificial intelligence (AI) techniques such as
artificial neural network (ANN), fuzzy logic (FL), and genetic
programing (GP) have been pronounced as a branch of computer
science to model wide range of hydro-meteorological processes
(Pesti et al., 1996; Whigham and Crapper, 2001; Dolling and
Varas, 2002; Morid et al., 2007; Kisi and Guven, 2010; Özger
et al., 2012; Nourani et al., 2013a). Successful application of fuzzy
rule-based modeling for short term regional drought forecasting
using two forcing inputs, El Niño–Southern Oscillation (ENSO)
and large scale atmospheric circulation patterns (CP), was
described by Pongracz et al. (1999). Mishra and Desai (2006) used
both recursive and direct multi-step ANNs for up to 6-month LT
drought forecasting and found that the recursive multi-step model
is the best suited for 1 month LT. When a LT longer than 4 months
was considered, the direct multi-step model outperformed the
recursive multi-step models. Morid et al. (2007) developed
an ANN-based drought forecasting approach with the LTs of
1–12 months using Effective Drought Index (EDI), SPI, and different
combinations of past rainfalls. The results indicated that forecasts
using EDI were superior to those using SPI for all LTs. Barros and
Bowden (2008) applied self-organizing maps and multivariate
linear regression analysis to forecast SPI at Murray-Darling Basin
in Australia up to 12 months in advance.
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Owing to the limited ability of the above-mentioned AI tech-
niques to forecast non-stationary phenomena, hybrid AI models
were developed and suggested to forecast drought and successful
results have also been reported (Kim and Valdes, 2003; Mishra
and Singh, 2010; Belayneh and Adamowski, 2012; Özger et al.,
2012; Belayneh et al., 2014). Mishra et al. (2007), using the SPI ser-
ies, developed a hybrid ANN-ARIMA model for drought forecasting
in Kansabati River Basin in India. The hybrid model was found to be
more accurate than individual stochastic and ANN models up to a
6-month LT. Bacanli et al. (2009) developed an adaptive neuro
fuzzy inference system (ANFIS) for drought forecasting using SPI
in central Anatolia, Turkey. The authors pointed out that the hybrid
method performs better than the classic ANN model. Özger et al.
(2012) developed a hybrid wavelet–FL (WFL) model for long lead
time drought forecasting using Palmer modified drought index
(PMDI) series across the State of Texas and compared the WFL
results with those of an ANN and a coupled wavelet–ANN (WANN)
models. They found that the WFL had a significant improvement
over the ad hoc FL, ANN, and hybrid WANN models. Belayneh
et al. (2014), using SPI time series, developed hybrid WANN and
wavelet-support vector regression (WSVR) models to forecast
long-term drought in the Awash River Basin of Ethiopia. They com-
pared the effectiveness of these models with those of ARIMA, ANN,
and ad hoc support vector regression models and stated that the
WANN model is the best one for 6 and 12-months LT drought fore-
casting in their study area.

Despite providing plausible forecasting accuracy, all the afore-
mentioned ANN-based models provide implicit formulations with
huge matrix of synaptic weights and biases. Thus, necessity for fur-
ther studies in order to develop not only precise but also explicit
models is still receiving serious attention. In recent years, different
variants/advancements of genetic programing (GP) approach has
been pronounced as a robust explicit method to solve wide range
of modeling problems in water resources engineering such as rain-
fall-runoff modeling (Dorado et al., 2003; Nourani et al., 2012),
evapotranspiration (Kisi and Guven, 2010), unit hydrograph deter-
mination (Rabuñal et al., 2007), sediment transport (Aytek and Kisi,
2008), sea level forecasting (Ghorbani et al., 2010), streamflow pre-
diction (Danandeh Mehr et al., 2013a) and others. A comprehen-
sive review on application of hybrid wavelet–AI models in
hydrology has been provided by Nourani et al. (2014). The authors
also highlighted and discussed the importance of available hybrid
models for drought forecasting. Moreover, our review indicated
that there is no research in the relevant literature examining the
performance of any hybrid GP technique in drought forecasting.
It is also important to understand different modeling methods as
well as their benefits and limitations (Mishra and Singh, 2011).
These are the main reasons inspired us to develop an explicit
model based on one of the advancements of GP namely linear
genetic programing (LGP) GP to forecast drought in this study.

It is already proven that the drought process contains high non-
stationary and long-term patterns (seasonality) and classic AI tech-
niques such as ANN and FL may not be sufficient for long LT
drought forecasting (Özger et al., 2012). Therefore, our study was
commenced with a data pre-processing, i.e. de-noising our predic-
tor time series using continuous wavelet transform technique, and
accomplished by a LGP–based model. In this study, based upon
lagged values of drought index across the State of Texas along with
NINO 3.4 index, symbolizing the sea surface temperature anoma-
lies, we developed a hybrid wavelet–linear genetic programing
(WLGP) model (here after gene–wavelet model) for long LT
drought forecasting. For this aim, we initially applied wavelet
transform to decompose the predictor time series into its major
sub-series and then we employed a LGP technique to make fore-
casts. The LGP component of the model can handle the nonlinearity
elements, while the wavelet component can deal with periodicity
of the hydro-climatic variables. Furthermore, the performance of
the proposed gene–wavelet model was compared with those of
hybrid WANN and WFL models previously reported by Özger
et al. (2012).

Since the black-box models are often case-sensitive, in the pres-
ent study, we do not attempt to claim or assert superiority of a par-
ticular model over the others. The main goal of this paper is, for the
first time, to introduce a new explicit gene–wavelet model (WLGP)
for drought forecasting.

2. Wavelet transform

Wavelet transform (WT) provides multi-resolution of a signal in
time and frequency domains and has been employed for studying
non-stationary time series, where it is difficult to detect the time of
occurrence of a particular event if Fourier transform (FT) is used
(Özger et al., 2012). In other words, while FT separates a signal into
sine-waves of various frequencies, WT separates a signal into
shifted and scaled version of the original (or mother) wavelet
(Özger, 2010). WT allows the use of long-time intervals for low
frequency signals and shorter intervals for high frequency signals
and is able to expose some statistical features of time series like
trend and jump that other signal analysis techniques such as FT
might miss (Danandeh Mehr et al., 2013a). Since the ENSO indica-
tors (such as NINO 3.4 index) and drought occurrence have long
time intervals to develop, low frequency components gain
importance in comparison with high frequency. High frequency
components of the NINO 3.4 index and PMDI series are detected
with lower scales that refer to a compressed wavelet (Özger
et al., 2012).

2.1. Continuous wavelet transform (CWT)

In mathematics, an integral transform (Tf) is particular kind of
mathematical linear operator, which has the following form:

Tf ðuÞ ¼
Z t2

t1
Kðt;uÞf ðtÞdt ð1Þ

where f(t) is an square-integrable function such as a continuous
time series and K is a two variable, t and u, function called kernel
(Danandeh Mehr et al., 2013b).

According to Eq. (1), any integral transform is specified by a
choice of the kernel function. If function K is chosen as wavelet
function, then CWT is (Mallat, 1998):

Tða; bÞ ¼ 1ffiffiffiffiffiffi
jaj

p
Z þ1

�1
W�
�

t � b
a

�
f ðtÞdt ð2Þ

where T(a, b) is the wavelet coefficients, W(t) is a mother wavelet
function, in time and frequency domain, and � denotes operation
of complex conjugate.

The parameter a can be interpreted as a dilation (a > 1) or con-
traction (a < 1) coefficient of the W(t) corresponding to different
scales of observation. The parameter b can be interpreted as a tem-
poral translation (or shift) of the wavelet function, which allows
the study of the signal f(t) locally around the time b (Wu et al.,
2009). The main property of wavelets is localized in both frequency
(a) and time (b), whereas the Fourier transform is only localized in
frequency (Danandeh Mehr et al., 2013b).

Appropriate selection of the type of mother wavelet to decom-
pose input time series is one of the important tasks of modellers. It
has been recommended that the suitable mother wavelet can be
selected according to the shape pattern similarity between the
mother wavelet and the investigated time series (Nourani et al.,
2009b; Danandeh Mehr et al., 2013a; Onderka et al., 2013). A
Brute-force search method has also been adopted as an alternative
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to find the best mother wavelet in practice (Nourani et al., 2009a,
2011, 2012, 2013a). Since successful application of Morlet wavelet
has already been reported at drought forecasting studies (Özger
et al., 2012), we considered this as our mother wavelet function
in this study. Further information about Morlet wavelet functions
can be found at Labat et al. (2000) and Labat (2005).
3. Linear genetic programing (LGP)

Genetic programming (GP) is an evolutionary computing tech-
nique that generates a structured representation of the system
being studied using initial potential solutions and transformation
operators (Koza, 1992). The nature of GP allows to gain additional
information on how the system performs, i.e., it gives an insight
into the relationship between input and output data (Nourani
et al., 2013b). GP holds candidate solutions in a tree-based genome
and the transformation operators (crossover and mutation) act on
tree-based genomes (Koza, 1992). LGP is distinct from canonical GP
systems in that the candidate solutions are programs and transfor-
mation operators act on a linear—not tree-based—genome
(Banzhaf et al., 1998).

At the most brief level LGP is a steady-state, evolutionary algo-
rithm using fitness-based tournament selection to continuously
improve a population of machine-code functions (Francone,
2010). Generally, LGP solves any problem through the following
six steps: (i) generation of an initial population (machine-code
functions) using the user defined functions and terminals; (ii)
Selection of two functions from the population randomly, Compar-
ison of the outputs and designation of the function that is more fit
as winner_1 and less fit as loser_1; (iii) Selection of two other
functions from the population randomly and designation of the
winner_2 and loser_2; (iv) Application of transformation operators
to winner_1 and winner_2 to create two similar, but different
evolved programs (i.e. offspring) as modified winners (v) replace
The loser_1 and loser_2 in the population with modified winners
and (vi) Repetition of steps (i)–(v) until the predefined run
termination criterion. More information about the application of
LGP in predictive modeling can be obtained from Poli et al. (2008).

In this study, different mathematical functions including basic
arithmetic (+, �, �, /), absolute value, square root, power, and
trigonometric (Cosine, Sine) functions were utilized in modeling
function sets. A set of random values between �1 and 1 in
combination with the NINO 3.4 index and antecedent PMDI values
are also defined as our terminal set. The mean square error (MSE)
fitness function is used to rank the randomly generated initial pro-
grams and then new programs are evolved by using both crossover
and mutation operators. As it is given in Table 1, in order to avoid-
ance overfitting problem, the maximum size of the program and
maximum number of generations was limited to 512 byte and
1000 generations, respectively. Further information about these
parameters can be found at Francone (2010). We applied Discipu-
lus�, the LGP soft-ware package developed by Francone (2010), to
establish our LGP models.
Table 1
Parameter settings for the LGP system.

Parameter Value

Initial populations (programs) 500
Mutation frequency 95%
Crossover frequency 50%
Initial program size 80 (Byte)
Maximum program size 512 (Byte)
Generation without improvement 300
Generation since start 1000
4. Gene–wavelet model

The proposed gene–wavelet model is a hybrid WLGP model,
which means the pre-processed data via CWT are entered to the
predictive LGP system in order to achieve powerful nonlinear
approximation ability. In other words, the WLGP is a hybrid fore-
casting model that combines the power of CWT with LGP to
improve the accuracy of ad hoc LGP. The schematic structure of
the proposed WLGP model is illustrated in Fig. 1. The structure
comprises two phases. In the first phase, pre-processing phase,
the original predictor time series (i.e. NINO 3.4 and PMDI) are
decomposed into sub-series of average wavelet spectra (A) through
low-pass filter coefficients of a chosen mother wavelet. As men-
tioned previously, we implemented Morlet mother wavelet to
decompose the original PMDI and NINO 3.4 series into their aver-
age wavelet spectra. Each of resulted average wavelet spectra may
consists of several frequencies (bands). The prediction can be diffi-
cult and less accurate if the whole bands are taken into account
without separation into significant bands and elimination of
noises. Therefore, significant bands are determined in the next step
of pre-processing phase. In this study, we used significant vari-
ances method in the wavelet spectra for the selection of significant
frequency bands as suggested by Webster and Hoyos (2004). In the
last step of the first phase, the corresponding time series of each
significant band (B1, B2, . . . , Bi) is determined by inverse wavelet
filtering method which provides input variables for the LGP model.

In the second phase, simulation phase, at first, the LGP model is
built such that the significant bands (B1, B2, . . . , Bi) of the original
time series are the input variables of the model. Then, training
and validation processes are performed using the input variables
and target variable to determine output time series. One important
Fig. 1. Schematic structure of the proposed gene–wavelet drought forecasting
model.
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point in this phase that a modeller may encounter is the magnify-
ing of prediction errors due to considerable rise in the number of
input variables resulting from wavelet decomposition. In such
cases, decreasing (or optimizing) of input significant band time ser-
ies by selection of the most dominant ones was suggested (Nourani
et al., 2012). The proposed LGP model can optimize the number of
the original input signals (or sub-signals) via its heuristics-based
evolutionary optimization feature which acts like an internal
sensitivity analysis, whereas in WFL or WANN models an external
sensitivity analysis is usually performed to optimize them (Partal
and Kis�i, 2007; Kis�i, 2008). This is the reason why we prefer
gene–wavelet models to other hybrid models suggested in the
literature such as neuro-wavelet and/or neuro-fuzzy models.
5. Data and model precision criteria

As mentioned previously, the monthly time series of NINO 3.4
index and persistence in PMDI values (1951–2007, Fig. 2) were
used as original drought predictor variables in this study. Future
PMDI values were considered as target variable (predictand) of
the model. PMDI is the modified version of PDSI which allows com-
putation of PDSI operationally by taking the sum of the wet and dry
terms after they have been weighted by their probability factors
(Heim, 2002). The PMDI time series employed in current study is
the average values across the State of Texas. The NINO 3.4 index,
which is the mean sea surface temperature throughout the
equatorial Pacific east of the dateline (5�North-5�South and
170–120�West), was used to represent the ENSO events. A strong
relationship between the PDSI and ENSO events has well discussed
by Piechota and Dracup (1996). The authors pointed out that dry
condition at the region one of the Gulf of Mexico (GM1), which
encompasses the entire State of Texas, Occur consistently during
La Niña events. A long-term precipitation change in the State of
Texas affected by ENSO is also informed by Özger et al. (2009).

The coefficient of determination (R2) and the root mean square
error (RMSE) measures, which widely used in the hydrological
forecasting studies (e.g. Nourani et al., 2009b; Danandeh Mehr
et al., 2013a), were applied to measure the efficiency, goodness
of fit, of the proposed forecasting model in this study. Obviously,
a high value for R2 (up to one) and small values for RMSE indicate
high efficiency of the model.
6. Results and discussion

According to the following expressions, we have considered 3,
6, and 12-month LTs for performing the proposed gene–wavelet
Fig. 2. PMDI and NINO 3.4 tim
drought forecasting model in this study. The given expressions
have already been reported by Özger et al. (2012) as the best pos-
sible structures for long LT drought forecasting in the State of
Texas.

� 3-Month LT: PMDIt+3 = f (NINO3.4t, PMDIt, PMDIt�1).
� 6-Month LT: PMDIt+6 = f (NINO3.4t, PMDIt, PMDIt�1, PMDIt�2).
� 12-Month LT: PMDIt+12 = f (NINO3.4t, PMDIt, PMDIt�1, PMDIt�2,

PMDIt�3).

For each of these structures (i.e. different LT scenarios), firstly
we applied the classic LGP modeling technique (Danandeh Mehr
et al., 2013a) to develop our reference models. Then, the proposed
WLGP model was performed for each scenario. As mentioned pre-
viously, a sensitivity analysis is carried out coincident with WLGP
performance in order to optimize the inputs of the model. Eventu-
ally, the efficiency results of the best developed LGP and WLGP
models at each scenario were compared with those of ANN, WANN,
and WFL drought forecasting models which were already devel-
oped by Özger et al. (2012).
6.1. LGP results

Prior to applying the proposed WLGP model, an attempt has
been done to assess the ability of ad hoc LGP to model the investi-
gated phenomena using the original time series. For this aim,
monthly observation data (the NINO3.4 and PMDI series during
the period 1951–2006) was divided into two parts; namely, train-
ing (calibration) and testing (validation). The first 36 years of the
entire data set (56 years or 672 months) was employed for the
training period and the remaining part was used to test the validity
of the model. Fig. 3 shows the observed and forecasted PMDI time
series for 3-month LT. The figure illustrates that LGP reasonably
forecasts the general behavior of the observed data. But it is not
able to estimate extreme values satisfactorily. The obtained effi-
ciency values are summarized in Table 2 along with comparison
to those of FL and ANN models reported by Özger et al. (2012).

Table 2 indicates that the classic LGP likewise FL and ANN tech-
niques are not able to produce sufficient accuracy for long LT
drought forecasting except in 3-month scenario. It may be due to
the presence of significant periodicity and seasonality in our
drought index time series. The testing period performance results
show that LGP in all scenarios yields slightly higher accuracy than
those of FL and ANN. There is also a remarkable difference among
the efficiency results of these models at testing period when they
were applied for 12-month LT forecasting. Both FL and ANN models
e series used in the study.



Fig. 3. Results of 3-month LT LGPdrought forecasting model in Texas state.

Table 2
Efficiency results of LGP, FL, and ANN drought forecasting models in Texas.

LGP FL ANN

R2 RMSE R2 RMSE R2 RMSE

Forecasting scenario Train Test Train Test Train Test Train Test Train Test Train Test

3-month LT 0.642 0.516 1.75 1.78 0.666 0.501 1.69 1.84 0.673 0.474 1.67 1.89
6-month LT 0.402 0.144 2.25 2.39 0.434 0.106 2.21 2.43 0.476 0.097 2.13 2.44
12-month LT 0.109 0.034 2.72 2.55 0.348 �0.19 2.35 2.82 0.189 �0.12 2.62 2.73
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resulted in negative R2 values at testing period, however LGP still
provides positive R2 value. Considering the higher training R2

values of FL and ANN models than LGP, it can be indicated that
FL and ANN models suffer from overfitting (overtraining) problem
in this scenario. It also implied the fact that the avoidance overfit-
ting technique adopted for LGP in this study acted well as it was
supposed.
Fig. 4. Significant spectral bands of observed PMDI and NINO 3.4, (a) 7–16, (
6.2. WLGP results

Data pre-processing is the first phase of the proposed WLGP
drought forecasting model. In this phase, each of the predictor time
series is decomposed into their average wavelet spectra through
the low-pass filter coefficients of continuous Morlet mother wave-
let, and then, significant frequency bands are detected. For the
b) 17–33, (c) 34–56, (d) 57–93, (e) 94–222, and (f) >223 months bands.
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employed data (see Fig. 1), six distinct frequency bands have
already been detected and reported by Özger et al. (2012). The cor-
responding time series of wavelet bands obtained by the inverse
wavelet filtering is given in Fig. 4, showing significant wavelet
bands of each predictor at time t that are employed as input vari-
ables of WLGP at all 3, 6, and 12-month LT scenarios.

For different LT forecasting, it is required to establish different
WLGP models by using the relevant inputs spectral bands. For
instance, in 3-month LT scenario, the significant spectral bands of
NINO 3.4t, PMDIt, and PMDIt�1 are the input variables in the simula-
tion phase of the proposed gene–wavelet model. In this phase, the
significant spectral bands of PMDIt�1 can be derived from significant
spectral bands of PMDIt with one month lag. Fig. 5 illustrates WLGP
forecasted PMDI values at different LTs in comparison with corre-
sponding observations. The forecasting performance of the model
for each scenario is also presented in Table 3 and compared with
those of WANN and WFL models reported by Özger et al. (2012).

From the efficiency results given in Tables 2 and 3, it can be con-
cluded that the WLGP model provided significant improvement for
drought forecasting in comparison with the LGP model particularly
Fig. 5. Results of WLGPdrought forecasting model for the State
at 6 and 12-month LT. At 12-month LT forecasting, The R2 values
about zero resulted in LGP modeling was improved up to 0.58 by
WLGP. This remarkable improvement puts forward the advance-
ment on explicit long LT drought forecasting models. This signifi-
cant increment can be verified considering the elimination of
some noisy data with the aid of wavelet transform. Since the
ENSO-related drought occurrences developed in low frequencies,
the removal of noisy and high frequency data captured by wavelet
transform resulted in more consistent PMDI estimates. Table 3 also
implies that WLGP is slightly less accurate than the WFL and
WANN models. The reason behind this may be related to the fact
that in the both WFL and WANN models, prior to training, the ori-
ginal predictand time series is decomposed into its average wave-
let spectra bands as well as the original predictors. Each band of
predictand was estimated from its corresponding predictor bands
in these models. Then, spectral bands of the predictand were
reconstructed to produce the original time series of future PMDI.
But in WLGP, original time series of future PMDI entered to the
model (i.e. target variable) and is estimated directly from the
predictor bands.
of Texas, (a) 3 month LT, (b) 6 month LT, (c) 12 month LT.



Table 3
Efficiency results of WLGP, WFL and WANN drought forecasting models at Texas.

WLGP WFL WANN

R2 RMSE R2 RMSE R2 RMSE

Prediction scenario Train Test Train Test Train Test Train Test Train Test Train Test

3 month LT 0.847 0.775 1.14 1.22 0.919 0.911 0.83 0.77 0.921 0.867 0.82 0.95
6 month LT 0.827 0.735 1.21 1.34 0.929 0.896 0.78 0.83 0.928 0.871 0.79 0.92
12 month LT 0.661 0.580 1.69 1.67 0.856 0.734 1.10 1.33 0.855 0.764 1.11 1.25
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6.3. Sensitivity analysis results

It is inevitable that more input variables in evolutionary com-
puting methods may lead to more complex formulations
(Nourani et al., 2012). Owing to the wavelet filtering, considerable
rise in the number of input variables might also magnify prediction
errors (Danandeh Mehr et al., 2013a). Therefore, a genetic-based
sensitivity analysis loop was embedded in the proposed gene–
wavelet model, which can be applied during the simulation phase
(see Fig. 1). By the aid of this loop, the most effective bands of input
significant spectra are distinguished and re-entered to the LGP sys-
tem as new input variable sets. The LGP system is performed once
more for the same target variable and consequently population of
new programs are generated that might lead the initial model to
higher efficiency.

In order to identify the most effective bands, we considered the
exceedance probability of each input band in the thirty best pro-
grams evolved by WLGP. Exceedance probabilities of input bands
for the thirty best WLGP models in terms of frequency were listed
in Table 4. The frequency values show what percentage of the best
thirty programs from the model contained the referenced band. A
similar sensitivity analysis among wavelet decomposed rainfall
and runoff time series was also carried out by Nourani et al.
(2012) counting the number of selections of each band at fifty GP
runs.

According to Table 4, it can be concluded that at 3-month LT
forecasting scenario, all input bands contributed in generation of
Table 4
Frequency of each band in WLGP Model for PMDI prediction (1.0 = 100%).

Input parameter Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

3 month LT scenario
NINO 3.4 (t) 0.07 0.17 0.2 0.23 0.13 0.47
PMDI (t � 1) 0.13 1 0.47 0.2 0.57 0.53
PMDI (t) 0.1 1 1 1 0.83 0.33

6 month LT scenario
NINO 3.4 (t) 0.2 0.17 0.3 0.4 0.43 0.4
PMDI (t � 2) 0 1 0.77 0.23 0.5 0.3
PMDI (t � 1) 0 0.13 0.23 0 0.33 0.17
PMDI (t) 0.43 1 1 1 0.93 0.03

12 month LT scenario
NINO 3.4 (t) 0.03 0.5 0.27 0.57 0 0.2
PMDI (t � 3) 0 0.83 1 0.63 0.5 0.4
PMDI (t � 2) 0 0 0 0.03 0 0.33
PMDI (t � 1) 0 0.17 0.27 0.17 0.43 0.2
PMDI (t) 0 1 0.5 0.83 0.7 0.07

Table 5
Efficiecny results of WLGP model without and with sensitivity analysis.

Prediction scenario WLGP without sensitivity analysis

R2 RMSE

Train Test Train

3 month LT 0.847 0.775 1.14
6 month LT 0.827 0.735 1.21
12 month LT 0.661 0.580 1.69
the best thirty forecasting programs with more or less impact.
The bands 2 through 4 of PMDI (t) have the most impact (100%
frequency) in the value of PMDI (t + 3). The first, second, and fifth
bands of NINO 3.4 have the least impacts (less than 20% frequency)
in this scenario.

At 6-month LT forecasting scenario, PMDI (t) and PMDI (t � 2)
have the most impact, respectively and NINO 3.4 bands are more
effective than those of PMDI (t � 1). The bands 2 through 4 of PMDI
(t) are the most effective bands in prediction of PMDI (t + 6) as well
as PMDI (t + 3). The bands 3 through 5 of NINO 3.4 (t) show signif-
icant increment in prediction of 6-month LT drought in comparison
with corresponding bands at 3-month LT. Such a comparative
significant increment is also observed at 12-month LT forecasting
scenario among the bands 2 through 4 of NINO 3.4 (t) and corre-
sponding bands in 3-month LT. It implies the high potential effect
of the NINO 3.4 (t) index in 6-month through 12-month LT drought
forecasting. Details on physical mechanism behind the fact that
ENSO events are correlated with drought conditions in Gulf of
Mexico region can be found in the literature (e.g., Kahya and
Dracup, 1993, 1994; Dracup and Kahya, 1994; Piechota and
Dracup, 1996; Rajagopalan et al., 2000). As given in the caption
for Fig. 4, significant spectral bands of NINO 3.4 values at the bands
3 and 4 represent the 34–56 and 57–93-month spectrums, respec-
tively. In other words, these bands roughly represent 3–8 year
spectrums that are more or less equal to the prevalent frequency
of ENSO events. It implies mid to long range forecasting potential
of NINO 3.4 index that is consistent with results of the study con-
ducted by Piechota and Dracup (1996). As it was mentioned previ-
ously, a strong relationship between dry condition and La Niña
events in the State of Texas has been reported by Piechota and
Dracup (1996). The authors pointed out that significant PDSI
related La Niña signal appeared to be even negative during the
period starting from November of event year continuing by the
end of the following year. It is also important to emphasize that
the magnitude of these negative PDSI anomalies in GM1 region
were the largest among all regions in their study domain. This
shows that the impacts of La Niña events on the PDSI pattern are
long lasting in the Texas area implying a mid to long range
forecasting potential.

Based upon frequency of input bands tabulated in Table 4, the
bands possessing less than 50% frequency at the best thirty pro-
grams were eliminated from input variables of simulation phase
of WLGP (see Fig. 1) and the rest of the bands spectra considered
in re-performing of the WLGP as the effect of sensitivity analysis
loop. For example, the NINO3.4 index does not have any band with
more than 50% frequency at 3 and 6-month LT scenarios (see
WLGP with sensitivity analysis

R2 RMSE

Test Train Test Train Test

1.22 0.841 0.761 1.16 1.26
1.34 0.804 0.686 1.28 1.46
1.67 0.770 0.642 1.39 1.54
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Table 4). Thus, none of the NINO 3.4 bands entered in re-performing
the model for 3 and 6-month LT forecasting. However its second and
fourth bands are considered in model re-performing 12-month LT.

The efficiency results of the WLGP model with the effect of
sensitivity analysis for drought forecasting in the State of Texas
with 3, 6, and 12-month LT were presented in Table 5 and were
compared with those of WLGP without considering the sensitivity
analysis loop. It is evident from the table that the use of sensitivity
analysis generated more accurate forecasts of PMDI only in
12-month LT scenario. It indicates that: (i) The uncertainty feature
of our data (noise) is formerly well diminished at 3 and 6-month LT
forecasting due to the wavelet transform, (ii) increasing in the
number of input sub-signals in 12-month LT scenario may magnify
prediction errors and lead to unreliable outputs unless sensitivity
analysis has been employed, and (iii) There is a strong potential
in NINO 3.4 index to forecast drought with one year LT.

7. Conclusions

In this study, the LGP and wavelet transform concepts were
combined to develop an explicit hybrid gene–wavelet model,
WLGP for long LT drought forecasting using PMDI and NINO 3.4
values as predictors and forthcoming PMDI index as a predictand.
The model is capable: (i) to obtain the average wavelet spectra, (ii)
to detect the significant spectral bands (iii) to forecast future PMDI,
and (iv) to optimize the number of significant spectral bands via its
heuristics-based sensitivity analysis feature. The application of the
WLGP across the State of Texas provided significant improvement
in accuracy over the ad hoc LGP models particularly at 6 and 12-
month LT forecasting. Sensitivity analysis among input variable
bands indicated that the preceding values of PMDI have higher
impact than NINO 3.4 for drought forecasting up to 6-month LT,
whereas the latter has high potential to forecast drought for 6
through 12-month LT.

As a suggestion for future research, with the aid of the proposed
model, other climatic indices impacts on drought condition can be
investigated. The model also can be used to investigate the effec-
tiveness of NINO 3.4 and PMDI indices in order to predict drought
having LTs longer than a year. In this study, we used a fixed mother
wavelet (Morlet wavelet functions) to decompose our input time
series. Effect of different wavelet functions may be considered as
a way to optimize the current model in future studies.
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