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It is well understood that the range of application for an empirical ground-
motion prediction model is constrained by the range of predictor variables covered
in the data used in the analysis. However, in probabilistic seismic hazard analysis
(PSHA), the limits in the application of ground-motion prediction models
(GMPMs) are often ignored, and the empirical relationships are extrapolated. In this
paper, we show that this extrapolation leads to a quantifiable increment in the
uncertainty of a GMPM when it is used to forecast a future value of a given
intensity parameter. This increment, which is clearly of epistemic nature, depends
on the adopted functional form, on the covariance matrix of the regression
coefficients, on the used regression technique, and on the quality of the data set. In
addition, through some examples using the database of the Next Generation of
Ground-Motion Attenuation Models project and some currently favored functional
forms we study the increment in the seismic hazard produced by the extrapolation
of GMPMs. [DOI: 10.1193/1.3525379]

INTRODUCTION

Since the occurrence of small- and moderate-magnitude earthquakes is more frequent
than the occurrence of large seismic events, most of ground-motion databases used in the
development of GMPMs are primarily comprised of accelerograms produced by small and
moderate earthquakes. Hence, as magnitude increases, the sets of ground motions become
sparse. For instance, in the database used in the Next Generation of Ground-Motion Attenu-
ation Models project (NGA; Power et al. 2008 and Chiou et al. 2008) there are only five
earthquakes with Mw> 7.5 and two of them yielded only two recordings per earthquake.
For events with Mw< 6, the range of distances covered by the data is between 30 km and
200 km, while for large magnitude events the range of distances covered by the data is
between 1 and 300 km, although the set is clearly sparse in this range of magnitudes (see
Figure 2 in Chiou et al. 2008). Moreover, the database becomes even sparser for frequencies
smaller than 0.33 Hz. The same lack of data is observed in other seismic regions. The
ground-motion database for the Mexican subduction zone includes only two events with
Mw> 7.5 and two events with magnitudes between 7 and 7.5. Furthermore, there are no
data for Mw between 6.1 and 6.5 and the data become sparse for distances greater than
200 Km (Arroyo et al. 2010).

a) Universidad Autónoma Metropolitana, Avenida San Pablo #180, Colonia Reynosa Tamaulipas, Azcapotzalco,
Mexico City, email: aresda@correo.azc.uam.mx

b) Instituto de Ingenierı́a, UNAM, Torre de Ingenierı́a, Segundo piso, Coyoacan 04510, Mexico City

1

Earthquake Spectra, Volume 27, No. 1, pages 1–21, February 2011; VC 2011, Earthquake Engineering Research Institute



This lack of data has led to concerns about whether or not the available data are able to
constrain the coefficients of the functional form during the regression analysis, concerns
about the possible extrapolation of empirical GMPMs in PSHA (Abrahamson and Silva
2008 and Power et al. 2008) and concerns about the application of GMPMs right down to
the lower magnitude limit in the datasets (Bommer et al. 2007). Several studies have been
made in the past regarding the variability and uncertainty associated to GMPMs
(Abrahamson et al. 1991, Atkinson 2006, Bommer and Abrahamson 2006, Purvance et al.
2008, Strasser et al. 2009). Abrahamson et al. (1991) presented a method to model the
uncertainty in finite fault simulations. Atkinson (2006) showed that the standard deviation
of multiple recordings at single stations is smaller (roughly 10%) than the standard
deviation computed from regional recordings; Bommer and Abrahamson (2006) presented
a discussion about the correct way to include the variability of GMPMs in PSHA; Purvance
et al. (2008) suggested that the inconsistency observed in PSHA computations for
precariously balanced rocks at some sites of California may be due to the ergodic assump-
tion, or due to the fact that GMPMs previous to the NGA project yielded too high estima-
tions of median ground motions; and Strasser et al. (2009) presented a review of the current
state of knowledge regarding the estimation of the variability in PSHA.

These studies, however, dealt with uncertainty issues that are different from the one we
study here. In this paper, we develop a way to quantify how the uncertainty in a GMPM
increases due to the fact that its coefficients are not known numbers, but statistical esti-
mates, that might be good or poor depending on the quality of the data. We show that this
increase in uncertainty can be particularly large in magnitude-distance regions poorly
sampled by the ground-motion data, that is, when a GMPM is extrapolated. But we also
show that this uncertainty increase can take place even in relatively well sampled
magnitude-distance regions. This additional uncertainty is clearly of epistemic nature, since
it would vanish if the ground-motion sample was infinitely large. As we will show later,
this issue has been studied in the past and ways have been found to include this extra uncer-
tainty in PSHA. In our view, however, the approach we propose allows for two useful
things: 1) taking notice of situations in which GMPMs are not well constrained by data
even at magnitude-distance regions for which data are not particularly scarce; and 2) having
more solid grounds to find ways to include the extra uncertainty in PSHA.

METHOD

Consider the linear regression model defined in Equation 1:

Y ¼ Xaþ E (1)

where Y is a known no� 1 matrix which includes no observations of a certain measure of
seismic intensity (typically the logarithm of a spectral acceleration), X is a known no� np

matrix which comprises no observations of np parameters considered in the model, a is an
unknown np� 1 matrix which comprises the coefficients to be determined by regression
analysis, and E is a unknown no� 1 matrix which comprises the regression residuals.

Nowadays, the common regression methods used in the development of GMPMs are
the one-stage maximum-likelihood method and the two-stage method. The one-stage
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maximum-likelihood approach was introduced by Brillinger and Priesler (1984), and later,
Abrahamson and Youngs (1992) and Joyner and Boore (1993, 1994) proposed computa-
tional algorithms to implement it. In addition, Joyner and Boore (1993, 1994) studied how
the one-stage maximum-likelihood method and the two-stage method are related; they
found that both methods lead essentially to the same results. In the case of the one-stage
maximum-likelihood method, which is the method we will use in the present paper, it is
assumed that the elements of E are correlated, normally distributed random variables with
zero mean. The correlation between elements of E is defined through an unknown no� no

matrix X, which is defined in Equation 2:

X ¼ UR (2)

where U is an unknown no� no matrix which accounts for the correlation between the rows
of Y, while the scalar R is the variance of the residuals.

For this model the likelihood of Y is defined in Equation 3:

LðY ja;R;U;XÞ / R�n0=2jUj�1=2 exp � 1

2
½R�1ðY � XaÞTU�1ðY � XaÞ�

� �
(3)

where the symbol / stands for proportionality, since we have omitted the normalization
constant.

Following Joyner and Boore (1993, 1994) we considered that the elements of E, say eij,
can be expressed as the sum of earthquake-to-earthquake variability (ee) and record-to-record
variability (er). In addition, the following considerations were made:

a) For a given earthquake, the coefficient of correlation between residuals at different
sites is equal to ce.

b) Residuals related to different earthquakes are independent.

According to these assumptions, the matrix U is a block diagonal matrix:

U ¼

u1 0 � � � 0

0 u1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � une

2
6664

3
7775 (4)

where ne is the number of earthquakes and the square submatrix ui related to earthquake i is
given by

ui ¼

1 ce � � � ce

ce 1 � � � ce

..

. ..
. . .

. ..
.

ce ce � � � 1

2
6664

3
7775 (5)
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The rank of ui is equal to the number of records for earthquake i. Note that ce is equal to pa-
rameter c in Joyner and Boore (1993 and 1994).

For a given ce the values of a and R which maximize the likelihood are the well known
weighted least-squares estimators, given by Equations 6 and 7 (Searle 1971, Drapper and
Smith 1981, Rowe 2002):

â ¼ XTU�1X
� ��1

XTU�1Y (6)

R̂ ¼ Y � X âð ÞTU�1 Y � X âð Þ
n0

(7)

Furthermore, the variance of the inter-event residual (r2
e) is equal to ceR̂, while the variance

of the record-to-record residual (r2
r ) can be computed from R̂ ¼ r2 ¼ r2

e þ r2
r .

In the maximum likelihood method, the value of ce which maximizes the likelihood is
found iteratively and the final values of a and R are the ones related to ce of maximum
likelihood.

Based on these considerations, the covariance matrix of â for a given U is defined by
(Searle 1971, Drapper and Smith 1981, Broemeling 1984, Rowe 2002):

COV âð Þ ¼ 1

no � np � 2
½ðXTU�1XÞ�1ððY � X âÞTU�1ðY� X âÞÞ� (8)

Note that the least squares method is a particular case of the maximum likelihood method.
The well-known least squares estimators can be found setting ce¼ 0.0 (i.e., U¼ I) in Equa-
tions 3 to 8.

Normally, â and R̂ related to the maximum likelihood are used to forecast future obser-
vations of Y for a given future value of X. However, we note that â and R̂ are conditioned
to the data employed in the analysis (i.e., Y and X) and may not be valid to forecast a future
value of Y for any given value of X. For instance, suppose that the regression analysis is
performed over the linear model defined in Equation 1 with only two data points. According
to Equation 7, R̂ would be equal to zero. Is this value a rational estimation of the variability
of the model even if the model is extrapolated? Of course the answer is no. Certainly, this is
an extreme case of application of regression analysis; nevertheless it is useful to qualita-
tively illustrate that the variability related to a given set of data is not necessarily representa-
tive of the variance of a future observation.

A better way to forecast the variance of a future value of Y is through the predictive var-
iance of a future observation, Rp (Searle 1971, Drapper and Smith 1981, Rowe 2002):

Rp ¼ R̂þ Z COV âð ÞZT (9)

where R̂ and COV âð Þare defined in Equations 7 and 8, respectively, and Z is a np row vec-
tor comprised of parameters for which a certain value, w, is being forecasted.

Interestingly, the predictive variance of a forecasted value depends on the variability
contained in the database (given by R̂) and on the uncertainty in the regression coefficients
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(given by ZCOV âð ÞZT ). If the data are well sampled, then the variance of the regression
coefficients will be small and the variance of w, Rp, will tend to R̂. On the other hand, for a
poorly sampled dataset the variance of the regression coefficients will be large and the
variance of w will be larger than R̂.

DATA SET SELECTION

In order to illustrate the implications of the results discussed in the previous section in
the forecasting of ground-motion parameters, we present examples using a dataset which
includes 906 accelerograms recorded at rock sites during 44 earthquakes of the NGA data-
base. We considered 874 accelerograms recorded at sites with average shear-wave velocity
in the upper 30 meters of sediments (VS30) between 450 m/s and 900 m/s and 32 records
from sites with VS30 between 900 m/s and 1428 m/s. We included those 32 records in view
of the fact that they were recorded at sites with NEHRP B classification. We only used
records at free field stations and in first floor of buildings with no more than two stories.
This dataset is very similar to the one utilized by Idriss (2008) in the NGA project, although
ours is quite smaller since we have excluded events that yielded only one record.

We considered two different intensity measures for the regression analysis: PGA and
the spectral elastic ordinate at a period of 3 seconds (SA(T¼ 3)). For PGA we used 906
accelerograms while for SA(T¼ 3) we only used 458 accelerograms recorded during 28
events since we discarded some recordings based on the minimum useful frequency
reported in the NGA database.

FUNCTIONAL FORMS

We selected three functional forms of the NGA project. Firstly, we worked with the
functional form adopted by Boore and Atkinson (2008; hereafter referred to as FF1), which
is shown in Equation 10:

y ¼ FM ðMwÞ þ FDðRRUP;MwÞ (10)

where FM and FD are the magnitude scaling and the distance function, respectively, and y is
the natural logarithm of the GMRotI50 (Boore et al. 2006) of SA in g units. Functions FD

and FM are given by:

FD RJB;Mwð Þ ¼ c1 ln
R

Rref

� �
þ c2 Mw �Mref

� �
ln

R

Rref

� �
þ c3 R� Rref

� �
(11)

FM ðMwÞ ¼
e2SS þ e3NS þ e4RS þ e5ðMw �MhÞ þ e6 Mw �Mhð Þ2 if Mw � Mh

e2SS þ e3NS þ e4RS þ e7 Mw �Mhð Þ otherwise

(
(12)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

RUP þ h2

q
(13)

and c1, c2, c3, e2, e3, e4, e5, e6, e7, and h are free coefficients to be defined by regression
analysis. SS, NS, and RS are dummy variables used to denote strike-slip, normal-slip, and
reverse-slip fault type, and Mref, Rref, and Mh are coefficients to be set in the analysis
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Secondly, we considered the functional form adopted by Abrahamson and Silva (2008)
(hereafter referred to as FF2) which is defined in Equation 14:

y ¼ f1ðMw;RRUPÞ þ a12FRV þ a13FNM þ f8ðRRUP;MwÞ (14)

where f1(Mw, R) is a modeling term for the magnitude and distance dependence for strike-
slip events, defined in Equation 15, while FRV and FNM are dummy variables used to denote
reverse-slip and normal-slip fault type, respectively. f8(RRUP, Mw) is a large-distance attenu-
ation term given by Equations 16 and 17, and a12, a13, a1, a4, a8, a2, a3, c1, and a18 are free
coefficients to be determined by regression analysis.

f1ðMw;RRUPÞ ¼
a1þ a4ðMw� c1Þþ a8ð8:5�MwÞ2þ ½a2þ a3ðM � c1Þ� lnðRÞ If Mw � c1

a1þ a5ðMw� c1Þþ a8ð8:5�MwÞ2þ ½a2þ a3ðM � c1Þ� lnðRÞ otherwise

(

(15)

f8 RRUP;Mwð Þ ¼ 0 If RRUP < 100
a18 RRUP � 100ð ÞT6 Mwð Þ otherwise

�
(16)

T6 Mwð Þ ¼
1 If Mw < 5:5

0:5ð6:5�MwÞ þ 0:5 If 5:5 � Mw � 6:5

0:5 otherwise

8><
>: (17)

Finally, we used the functional form adopted by Campbell and Bozorgnia (2008) (here-
after referred to as FF3) for the NGA project, which is defined in Equation 18:

y ¼ fmag þ fdis þ fflt (18)

where fmag, fdis, and fflt are the magnitude, the distance and the fault type terms, respectively,
defined in Equations 19 to 21:

fmag ¼
c0 þ c1Mw if Mw � 5:5

c0 þ c1Mw þ c2 Mw � 5:5ð Þ if 5:5 < Mw � 6:5

c0 þ c1Mw þ c2 Mw � 5:5ð Þ þ c3 Mw � 6:5ð Þ otherwise

8><
>: (19)

fdis ¼ ðc4 þ c5MwÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

RUP þ c2
6

q� �
(20)

fflt ¼ c7FRV þ c8FNM (21)

In Equations 19 to 21 FRV and FNM are dummy variables used to denote reverse-slip events
and normal-slip events, respectively, while c0 to c8 are free coefficients to be defined by
regression analysis.

In order to facilitate the comparisons, we performed the analysis only for rock sites.
Therefore, we removed from the original functional forms the terms related to site amplifi-
cation, hanging-wall effect, aftershock events and basin response effect. In addition, in the
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case of the Boore and Atkinson (2008) model we used as distance parameter RRUP instead
of RJB. As a result of the modifications, the predictor variables are the same for the three
functional forms.

REGRESSION ANALYSIS

For each functional form we performed the regression analysis using the one-stage maxi-
mum-likelihood method (Joyner and Boore 1993 and 1994). In principle, FF1 has 11 free
coefficients to be determined by regression analysis. However, the information contained in
the dataset was not enough to properly constrain all coefficients (Boore and Atkinson 2008).
Hence, in all the analysis presented, coefficients c3 and h were fixed to the values of the
Boore and Atkinson (2008) model. In this model those values were fixed using data recorded
during three small California events included in the NGA database and additional data from
broadband accelerometers (further details can be found in Boore and Atkinson 2008). There-
fore, we set Mref¼ 4.5, Rref¼ 1, and Mh¼ 6.75 for FF1. Also, in the case of PGA we set
c3¼�0.01151, e7¼ 0, h¼ 1.35 while for SA(T¼ 3) we set c3¼�0.00191, and h¼ 2.83.
Hence, there are seven and eight free coefficients for PGA and SA(T¼ 3), respectively.

In order to stabilize the regression analysis, several regression coefficients were also
fixed in Abrahamson and Silva’s (2008) model. Accordingly, for FF2 we set c1¼ 6.75,
c4¼ 4.5, and a5¼�0.398. Also, for PGA we set a18¼�0.0067 while for SA(T¼ 3) we set
a18¼ 0, and the values of a3 and a4 were constrained to those values obtained during the
regression analysis for PGA. Thus, for FF2 there are seven and five free coefficients for
PGA and SA(T¼ 3), respectively.

The functional form adopted by Campbell and Bozorgnia (2008) has nine regression
coefficients. In this case, we fixed the value of c6 to 5.60 and 4 for PGA and SA(T¼ 3), in
order to use a magnitude term similar to the one used in the Campbell and Bozorgnia
(2008) model. Hence, for FF3 there are eight free coefficients.

Results of the regression analyses are presented in Table 1. In general, the level of accu-
racy of the three GMPMs is similar, judging from the computed r values, which are in the
range from 0.659 to 0.728. In Figure 1 we compare the predicted median values related to
each functional form for strike-slip events. The larger differences between GMPMs are
observed for large values of Mw and for short and large RRup values, which is not surprising
since the datasets tend to become sparse in these magnitude-distance regions. Although not
shown, similar trends were observed for other fault types.

However, according to Equation 9, the uncertainty in the regression coefficients
increases the overall uncertainty in a GMPM. This increase can be estimated using Equation
9 and the covariance matrix of the regression coefficients, reported in Tables 2 to 4. As has
already been stated, this extra uncertainty is of epistemic nature. Its size can be assessed
comparing Rp and R̂ through parameter s, defined as follows:

s ¼
ffiffiffiffiffiffi
Rp

R̂

r
(22)

In Figures 2 and 3 we present comparisons of s contours for each functional form, for
strike-slip events, and PGA and SA(T¼ 3), respectively. For reference, in these figures we
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Table 1. Results of the regression analyses

FF1 FF2 FF3

PGA SA(T¼ 3) PGA SA(T¼ 3) PGA SA(T¼ 3)

c1 �9.748E-01 �1.085Eþ 00 a1 1.095Eþ 00 �4.303E-01 c0 2.472Eþ 00 �1.179Eþ 01

c2 1.859E-01 1.596E-01 a4 2.127E-01 – c1 �4.780E-02 1.692Eþ 00

e2 �3.387E-02 �1.126Eþ 00 a8 1.023E-01 �1.424E-01 c2 �5.039E-01 4.453E-03

e3 �2.159E-01 �1.235Eþ 00 a2 �1.100Eþ 00 �8.713E-01 c3 �4.726E-02 �1.930Eþ 00

e4 1.074E-01 �1.029Eþ 00 a3 2.428E-01 – c4 �2.856Eþ 00 �1.931Eþ 00

e5 �2.528E-01 4.690E-01 a12 2.523E-01 3.070E-01 c5 2.502E-01 1.631E-01

e6 �8.017E-02 �5.256E-01 a13 �1.478E-01 5.929E-02 c7 2.468E-01 1.551E-01

e7 – �9.664E-02 re 0.384 0.426 c8 �1.343E-01 �2.748E-02

re 0.428 0.436 rr 0.536 0.503 re 0.384 0.424

rr 0.547 0.595 r 0.659 0.659 rr 0.535 0.591

r 0.695 0.737 r 0.659 0.728
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have plotted with black circles the data used in the regression analysis. We observe similar
s contours for the three GMPMs. An increment of s is observed for Mw values that are out-
side the range covered by the dataset, especially in the small magnitude range. On the other
hand, the value of s remains constant for RRUP values that are outside the range covered by
the database. Therefore, for the presented examples, the extra uncertainty associated to dis-
tance coefficients is smaller than the extra uncertainty related to the magnitude coefficients.

For PGA, the smallest s values are observed for FF2, while FF1 and FF3 lead to similar
s contours. Values of s larger than 1.1 are observed for Mw< 4.5 and Mw> 8. The peak

Figure 1. Comparison of different GMPMs.
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Table 2. Covariance matrixes associated to FF1

PGA c1 c2 e2 e3 e4 e5 e6

c1 6.216E-03 �2.403E-03 3.456E-04 1.504E-05 �1.439E-04 1.460E-02 2.430E-03

c2 �2.403E-03 1.059E-03 �1.440E-03 �1.168E-03 �1.097E-03 �6.315E-03 �9.939E-04

e2 3.456E-04 �1.440E-03 3.990E-02 2.652E-02 2.155E-02 3.279E-02 8.583E-03

e3 1.504E-05 �1.168E-03 2.652E-02 6.437E-02 2.450E-02 4.337E-02 1.303E-02

e4 �1.439E-04 �1.097E-03 2.155E-02 2.450E-02 3.474E-02 4.572E-02 1.838E-02

e5 1.460E-02 �6.315E-03 3.279E-02 4.337E-02 4.572E-02 1.872E-01 8.173E-02

e6 2.430E-03 �9.939E-04 8.583E-03 1.303E-02 1.838E-02 8.173E-02 4.305E-02

SA(T¼ 3) c1 c2 e2 e3 e4 e5 e6 e7

c1 2.634E-02 �9.430E-03 �1.968E-02 �1.703E-02 �1.858E-02 3.755E-02 1.839E-04 3.730E-02

c2 �9.430E-03 3.575E-03 5.346E-03 4.699E-03 5.226E-03 �1.370E-02 1.683E-04 �1.433E-02

e2 �1.968E-02 5.346E-03 9.416E-02 6.320E-02 5.658E-02 5.104E-02 2.254E-02 �9.049E-02

e3 �1.703E-02 4.699E-03 6.320E-02 1.287E-01 5.470E-02 7.788E-02 3.628E-02 �7.276E-02

e4 �1.858E-02 5.226E-03 5.658E-02 5.470E-02 7.154E-02 6.661E-02 3.727E-02 �7.472E-02

e5 3.755E-02 �1.370E-02 5.104E-02 7.788E-02 6.661E-02 3.887E-01 1.568E-01 �6.683E-02

e6 1.839E-04 1.683E-04 2.254E-02 3.628E-02 3.727E-02 1.568E-01 8.071E-02 �4.626E-02

e7 3.730E-02 �1.433E-02 �9.049E-02 �7.276E-02 �7.472E-02 �6.683E-02 �4.626E-02 2.297E-01
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Table 3. Covariance matrixes associated to FF2

PGA a1 a4 a8 a2 a3 a12 a13

a1 1.284E-01 �2.255E-01 �4.395E-02 �3.529E-03 �4.912E-03 �1.731E-02 �9.076E-03

a4 �2.255E-01 6.577E-01 1.143E-01 5.637E-04 4.459E-03 �5.642E-03 �7.456E-03

a8 �4.395E-02 1.143E-01 2.083E-02 1.377E-04 1.640E-03 �8.591E-05 �1.616E-03

a2 �3.529E-03 5.637E-04 1.377E-04 8.127E-04 4.169E-05 2.778E-04 2.907E-04

a3 �4.912E-03 4.459E-03 1.640E-03 4.169E-05 1.180E-03 5.685E-04 2.782E-04

a12 �1.731E-02 �5.642E-03 �8.591E-05 2.778E-04 5.685E-04 2.459E-02 1.299E-02

a13 �9.076E-03 �7.456E-03 �1.616E-03 2.907E-04 2.782E-04 1.299E-02 4.315E-02

SA(T¼ 3) a1 a8 a2 a12 a13

a1 8.385E-02 �4.590E-03 �6.320E-03 �4.236E-02 �2.900E-02

a8 �4.590E-03 7.344E-04 �1.860E-05 1.594E-03 �5.917E-04

a2 �6.320E-03 �1.860E-05 1.588E-03 7.789E-04 9.079E-04

a12 �4.236E-02 1.594E-03 7.789E-04 5.689E-02 2.825E-02

a13 �2.900E-02 �5.917E-04 9.079E-04 2.825E-02 1.116E-01
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Table 4. Covariance matrixes associated to FF3

PGA c0 c1 c2 c3 c4 c5 c7 c8

c0 6.009Eþ 00 �1.133Eþ 00 1.438Eþ 00 �5.492E-01 �2.293E-01 3.380E-02 9.328E-02 1.153E-02

c1 �1.133Eþ 00 2.163E-01 �2.840E-01 1.095E-01 3.425E-02 �5.125E-03 �2.063E-02 �5.624E-03

c2 1.438Eþ 00 �2.840E-01 4.486E-01 �2.306E-01 �4.495E-03 6.692E-04 2.218E-02 1.080E-02

c3 �5.492E-01 1.095E-01 �2.306E-01 2.379E-01 7.269E-03 �1.057E-03 3.119E-03 �5.061E-04

c4 �2.293E-01 3.425E-02 �4.495E-03 7.269E-03 6.106E-02 �8.980E-03 �8.314E-04 �2.066E-04

c5 3.380E-02 �5.125E-03 6.692E-04 �1.057E-03 �8.980E-03 1.339E-03 1.669E-04 7.568E-05

c7 9.328E-02 �2.063E-02 2.218E-02 3.119E-03 �8.314E-04 1.669E-04 2.674E-02 1.412E-02

c8 1.153E-02 �5.624E-03 1.080E-02 �5.061E-04 �2.066E-04 7.568E-05 1.412E-02 4.371E-02

SA(T¼ 3) c0 c1 c2 c3 c4 c5 c7 c8

c0 1.509Eþ 01 �2.847Eþ 00 3.756Eþ 00 �1.570Eþ 00 �7.335E-01 1.028E-01 2.116E-01 2.244E-01

c1 �2.847Eþ 00 5.480E-01 �7.641E-01 3.255E-01 1.022E-01 �1.448E-02 �4.624E-02 �5.249E-02

c2 3.756Eþ 00 �7.641E-01 1.293Eþ 00 �6.739E-01 5.819E-04 1.815E-04 4.905E-02 8.546E-02

c3 �1.570Eþ 00 3.255E-01 �6.739E-01 5.453E-01 �1.072E-04 �1.110E-04 1.116E-02 �2.199E-02

c4 �7.335E-01 1.022E-01 5.819E-04 �1.072E-04 1.868E-01 �2.600E-02 1.543E-03 5.538E-03

c5 1.028E-01 �1.448E-02 1.815E-04 �1.110E-04 �2.600E-02 3.648E-03 �1.011E-04 �6.312E-04

c7 2.116E-01 �4.624E-02 4.905E-02 1.116E-02 1.543E-03 �1.011E-04 5.151E-02 2.946E-02

c8 2.244E-01 �5.249E-02 8.546E-02 �2.199E-02 5.538E-03 �6.312E-04 2.946E-02 9.697E-02
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s values are roughly 1.3 for Mw close to 4. Hence, we conclude that data were able to prop-
erly constrain the regression analysis with FF2 for the magnitude-distance regions shown in
Figure 2, and, in the case of FF1 and FF3, for the range between 4.5<Mw< 8. In the NGA
database, data become sparse as period increases, since the processing of recordings affects
their usable bandwidth. Therefore, the number of data points decreases for SA(T¼ 3) and
larger s values are observed than those related to PGA for FF1 and FF3. For FF2, s values
are nearly the same for both intensity measures since for SA(T¼ 3) the number of free coef-
ficients was reduced. Values of s larger than 1.1 are observed for Mw< 5 and Mw> 7.5. The
peak s values are roughly 1.5 for Mw close to 4. Hence, we conclude that data were enough
to properly constrain the regression analysis with FF2 for the ranges of Mw and RRUP shown
in Figure 3 and, in the case of FF1 and FF3, for the range 5<Mw< 7.5 and RRUP> 25 km.
The increase in the uncertainty when the GMPMs are extrapolated is evident, particularly

Figure 2. Comparison of s contours for PGA.
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for FF1 and FF3. Interestingly, this increment is observed even in magnitude-distance
ranges covered relatively well by the dataset (see Figure 3c).

PSHA COMPUTATIONS

So far, we have followed the standard procedure in regression analysis, and normally
the results presented in Table 1 would be used in PSHA computations. However, judging
from the s contours, it is clear that there are magnitude-distance regions for which the mod-
els are not as reliable as they are for other regions, since the predictive variance Rp is greater
than the common variance R̂. For these regions, the effect of the extra epistemic uncertainty
should be introduced, especially since, in general, an increment in the variance of a GMPM
leads to an increment in the seismic hazard (i.e., a larger rate of exceedance for a given

Figure 3. Comparison of s contours for SA(T¼ 3).
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intensity value). This increment in the hazard level may be viewed as a consequence of the
extrapolation of the ground-motion model and of the quality of the data used in the regres-
sion analysis.

In the past, this extra uncertainty has been included in PSHA using various approaches.
An example is the procedure used in the development of the 2008 United States National
Seismic Hazard Maps (Petersen et al. 2008), which is sketched in Figure 4. In this proce-
dure, the additional epistemic uncertainty was included in PSHA in order to take into
account the data limitations for large earthquakes. The additional epistemic uncertainty was
modeled with the inclusion of extra branches for a given GMPM in the logic tree used for
PSHA, as shown in Figure 4. For a given GMPM, three branches were added to the logic
tree. The first branch, to which a weight w1¼ 0.633 was assigned, used as median value the
one predicted by the GMPM. The second and third branches were assigned weights
w2¼w3¼ 0.185, and they used as logarithm of the median value the one predicted by the
GMPM plus/minus a factor (dgnd). The value of dgnd was set depending on the magnitude-
distance bin, and it was assumed to be equal to 0.4 (based on a 90 percent confidence limits)
for the Mw� 7, RRUP< 10 km- bin (Petersen et al. 2008). For other bins, dgnd was com-
puted according to the square root of the ratio between the number of records in the consid-
ered bin and the number of records in the Mw� 7, RRUP< 10 km- bin (Petersen et al. 2008).
Note that the structure of the logic tree in Figure 4 is very simple since the present study
deals only with the uncertainty in the GMPMs.

However, it can be shown that constructing an N-branch logic tree for a given GMPM,
as was done by Petersen et al. (2008), amounts to using a final probability density function
for the intensities equal to the weighted sum of N lognormal probability density functions:

p SAð Þ ¼
XN

i¼1

wiffiffiffiffiffiffi
2p
p

rSA
e�

1
2
ðlnðSAÞ�lnðmiÞÞ2

r2 (23)

where wi and mi are the weighting factor and the median related to the ith branch, respec-
tively. We note that, as done by Petersen et al. (2008), we have used in Equation 23 the
same r value in all branches. Interestingly, it can be demonstrated that, provided that the
weights wi assigned to the different values of mi are roughly proportional to a lognormal
density function, and N is large, then p(SA) in Equation 23 would itself be also a lognormal
probability density function.

Figure 4. Logic tree for the PSHA procedure used by Petersen et al. (2008).
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In other words, the inclusion of the extra epistemic uncertainty has transformed the
probability density function of a given intensity from a simple lognormal function to the
density given in Equation 23. This means that, regarding only this particular source of
uncertainty, hazard could have been computed either with a three-branch logic tree, as done
by Petersen et al. (2008), or with a single branch in which the probability density function
is given by Equation 23 with the appropriate values for wi and mi. Even if the later proce-
dure is unusual and most PSHA computer codes are not prepared to handle it, results would
have been exactly the same.

So we have shown that the effect of epistemic uncertainty, as treated by Petersen et al.
(2008), is to change the original probability distribution of a given intensity to a new one
that, in general, has larger uncertainties associated that are quantified through parameters wi

and mi. It can be demonstrated that the first and the second moments of the final probability
density function given in Equation 23 are:

M1 ¼
ð1

0
SA pðSAÞdSA ¼ e

1
2r

2
XN

i¼1

wimi (24)

M2 ¼
ð1

0
SA2 pðSAÞdSA ¼ e2r2

XN

i¼1

wim
2
i (25)

It is possible to find a lognormal probability density function that is equivalent–in the
second-moment sense- to the one given in Equation 23, by way of making its first two
moments equal to the moments defined in Equations 24 and 25. The moments of an equiva-
lent lognormal density function with median me and logarithmic standard deviation re,
would be given by:

M̂1 ¼ mee
1
2r

2
e (26)

M̂2 ¼ m2
ee2r2

e (27)

Making M1¼M̂1and M2 ¼ M̂2 and solving for re and me, we find that:

r2
e ¼ r2 þ ln

XN

i¼1

wim
2
i

XN

i¼1

wimi

 !2

2
666664

3
777775 (28)

me ¼

XN

i¼1

wimi

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

wimi

vuut
(29)
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Note that Equation 28 links the final uncertainty resulting from the procedure used by
Petersen et al. (2008), that is, re, with Rp. Using Equation 28, we inferred the s values
implicitly used by Petersen et al. (2008) for PGA. Results go from 1.02 to 1.06, depending
on the magnitude-distance region. As shown in Table 5, these values are similar to s values
shown in Figure 2.

Note also the similarity between Equations 28 and 9. In Equation 9, the uncertainty in
r2 values is accounted for using the covariance matrix of the regression parameters, while
in Equation 28, the weights and median values assigned to the branches produce an aug-
mented r value. In practice, thus, construction of an N-branch logic tree to account for the
extra uncertainty we have discussed in this paper is, at least at the second-moment level,
equivalent to using a single probability density function for the intensities that has a larger
r which can be computed from Equation 9.

Based on these observations, we propose another method to include the epistemic
uncertainty derived from uncertainty in the estimation of the regression coefficients. This
method consists, simply, in using Rp instead of the common variance R̂ in PSHA computa-
tions. As we have seen, the use of a single probability distribution for the intensity instead
of constructing branches of a logic tree is justified by the fact that it is always possible to
find a single distribution that, in the second-moment sense, is equivalent to the one implic-
itly used in the logic tree.

In order to illustrate the effect of the use of Rp in PSHA, we computed seismic hazard
curves considering a point-source model for fixed values of RRUP. For the computations we
assumed that the distribution of Mw can be described by a modified Gutenberg-Richter
curve with parameters b¼ 2, Mwmin¼ 4, Mwmax¼ 8, and k0¼ 1. We considered the three
GMPMs together with the logic tree shown in Figure 5. In Figures 6 and 7, we plotted with
continuous line the mean hazard curves computed with the value of Rp for each Mw and
RRUP combination (i.e., considering the uncertainty in the regression coefficients) and with
dashed line the mean hazard curves computed with R̂ (i.e., disregarding the uncertainty in
the regression coefficients).

As expected, the hazard level related to Rp is larger than that computed using R̂. How-
ever, the increment in the hazard level is small except for PGA and RRUP¼ 10 km where

Table 5. Inferred s values in Petersen et al. (2008)

Mw and RRUP range dgnd S

5�Mw< 6, RRUP< 10 0.375 1.06

5�Mw< 6, 10�RRUP< 30 0.21 1.02

5�Mw< 6, RRUP � 30 0.245 1.02

6�Mw< 7, RRUP< 10 0.23 1.02

6�Mw< 7, 10�RRUP< 30 0.225 1.02

6�Mw< 7, RRUP� 30 0.23 1.02

Mw>¼ 7, RRUP< 10 0.4 1.06

Mw>¼ 7, 10�RRUP< 30 0.36 1.05

Mw>¼ 7, RRUP� 30 0.31 1.04
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increments of 18%, 21%, 23%, 25%, and 30% in PGA for rates of exceedance of 0.01,
0.005, 0.002, 0.001, and 0.0001, respectively, are observed. The increment in the hazard
curve observed in Figure 6a is produced by the additional epistemic uncertainty for small
magnitude events at short distances. Conversely, at large distances this increment is not
observed since the hazard level is mainly controlled by large events, so the extra uncertainty
for small magnitudes has no significant effect in the hazard level. In spite of the fact that
larger values of s were observed for SA(T¼ 3) than for PGA, the effect of the use of RP is
more pronounced in PGA. For a given rate of exceedance, peak increments of roughly 10%
were observed in the case of SA(T¼ 3) while peak increments of 30% were observed in
PGA. The reason of this trend can be explained as follows: large s values for SA(T¼ 3)
were observed for small magnitude events, which have a relatively small contribution to the
hazard level for low frequency oscillators. On the other hand, the small magnitude events
contribute more to the hazard level in the high frequency range.

The examples presented show that it is difficult to define a priori the effect on the haz-
ard curves of the additional uncertainty we have discussed here. Hence, the trends observed
are valid only for these examples. In practice, similar analysis can be performed in order to
assess the extra uncertainty related to the estimation of regression coefficients.

Figure 5. Logic tree used in the PSHA computations for hazard curves shown in Figures 6 and 7.

Figure 6. Comparison of mean hazard curves for PGA. The continuous line is the mean hazard
curve computed considering the uncertainty in the regression coefficients while the dashed line
is the mean hazard curve computed disregarding this uncertainty.
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CONCLUSIONS

We have shown that the use of the predictive variance associated to a GMPM allows for
the quantitative assessment, in the framework of PSHA, of the possible consequences of
uncertainties in the estimation of the coefficients that constitute the GMPM.

These consequences are normally more important when extrapolating the GMPM or
when using it for magnitude-distance ranges poorly sampled by the databases used to con-
struct the model. In these cases, there is an additional epistemic uncertainty that must be
accounted for, and that yields, frequently, to an increment in the hazard level for a given in-
tensity value.

This additional uncertainty can be evaluated using the predictive variance, Rp (see
Equation 9), which depends on the sample, on the regression technique, and on the adopted
functional form. In the current practice of PSHA, the second term in Equation 9 has fre-
quently been ignored because its size is assumed to be small, although it is rarely, if ever,
measured. However, in this paper we have presented a real example (Petersen et al. 2008)
in which this uncertainty has been accounted for, as well as numerical examples that show
the consequences of ignoring it in PSHA.

We have proposed a method to account for the extra epistemic uncertainty derived from
poor coefficient estimation. The method consists, simply, in using Rp instead of the com-
mon variance R̂ (see Equation 9) in PSHA computations. As we have shown, the use of a
single probability distribution for the intensity instead of constructing branches of a logic
tree is justified by the fact that it is always possible to find a single distribution that, in the
second-moment sense, is equivalent to the one implicitly used in the logic tree.

Although the evaluation of current GMPM has been mostly based on the variance of the
residuals and on the predicted median values, we believe, based on the results presented,
that the evaluation should also take into account the covariance matrix of the regression
coefficients. Unfortunately, this information is not available for most existing GMPMs.

Figure 7. Comparison of mean hazard curves for SA(T¼ 3). The continuous line is the mean
hazard curve computed considering the uncertainty in the regression coefficients while the
dashed line is the mean hazard curve computed disregarding this uncertainty.

FORECASTING OF GROUND-MOTION PARAMETERS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS 19



Also, plots of s contours, whose construction presents no particular numerical problems,
could become a standard practice when deriving GMPMs, in order to give users quantitative
indications as to the range of applicability of the model and the consequences of its
extrapolation.

ACKNOWLEDGMENTS

Thorough and clever reviews by Professor Julian Bommer and two anonymous
reviewers were very helpful to greatly improve the original version of this manuscript.

REFERENCES

Abrahamson, N. A.,Somerville, P. G., and Cornell, A. C., 1991. Uncertainty in numerical strong
motion predictions, Proc. of the 4th US National Conference on Earthquake Engineering 1,
407–416.

Abrahamson, N. A., and Youngs, R. R., 1992. A stable algorithm for regression analysis using
the random effects model, Bull. Seism. Soc. Am. 82, 505–510.

Abrahamson, N. A., and Silva, W., 2008. Summary of the Abrahamson & Silva NGA ground-
motion relations, Earthquake Spectra 24, 67–97.

Atkinson, G. A., 2006. Single-station sigma, Bull. Seism. Soc. Am. 96, 446–455.

Arroyo, D., Ordaz, M., Garcı́a, D., Mora, M., and Singh, S. K., 2010. Strong ground-motion
relations for Mexican interplate earthquakes, J. Seismol. 14, 769–785.

Bommer, J., and Abrahamson, N. A., 2006. Why do modern probabilistic seismic-hazard analy-
ses often lead to increased hazard estimates? Bull. Seism. Soc. Am. 96, 1967–1977.

Bommer, J., Stafford, P. J., Alarcón J. E., and Akkar, S., 2007. The influence of magnitude
range on empirical ground-motion prediction, Bull. Seism. Soc. Am. 97, 2152–2170.

Boore, D. M., and Atkinson, G. M., 2008. Ground-motion prediction equations for the average
horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01
s and 10 s, Earthquake Spectra 24, 99–138.

Boore, D. M., Watson-Lamprey, J., and Abrahamson, N. A., 2006. Orientation-independent
measures of ground motion, Bull. Seism. Soc. Am. 96, 1502–1511.

Brillinger, D. R., and Preisler, H. K., 1984. An exploratory analysis of the Joyner-Boore attenu-
ation data, Bull. Seism. Soc. Am. 74, 1441–1450.

Broemeling, L. D., 1984. Bayesian Analysis of Linear Models, Marcel Dekker, Inc., New York,
454 pp.

Campbell, K. W., and Bozorgnia, Y., 2008. NGA ground-motion model for the geometric mean
horizontal component of PGA, PGV, PGD, and 5% damped linear elastic response spectra
for periods ranging from 0.01 s and 10 s, Earthquake Spectra 24, 139–171.

Chiou, B., Darragh, R., Gregor, N., and Silva, W., 2008. NGA Project strong-motion database,
Earthquake Spectra 24, 23–44.

Drapper, N.R., and Smith, H., 1981. Applied Regression Analysis, 2nd Edition, Wiley,
New York, 709 pp.

Idriss, I. M., 2008. An NGA empirical model for estimating the horizontal spectral values gener-
ated by shallow crustal earthquakes, Earthquake Spectra 24, 217–242.

Joyner, W. B., and Boore, D. M., 1993. Methods for regression analysis of strong-motion data,
Bull. Seism. Soc. Am. 83, 469–487.

D. ARROYO AND M. ORDAZ20

http://dx.doi.org/10.1193/1.2924360
http://dx.doi.org/10.1785/0120050137
http://dx.doi.org/10.1007/s10950-010-9200-0
http://dx.doi.org/10.1785/0120060043
http://dx.doi.org/10.1785/0120070081
http://dx.doi.org/10.1193/1.2830434
http://dx.doi.org/10.1785/0120050209
http://dx.doi.org/10.1193/1.2857546
http://dx.doi.org/10.1193/1.2894831
http://dx.doi.org/10.1193/1.2924362


Joyner, W. B., and Boore, D. M., 1994. Errata: Methods for regression analysis of strong-
motion data, Bull. Seism. Soc. Am. 84, 955–956.

Petersen, M. D., Frankel, A. D., Harmsen, S. C., Mueller, C. S., Haller, K. M., Wheeler, R. L.,
Wesson, R. L., Zeng, Y., Boyd, O. S., Perkins, D. M., Luco, N., Field, E. H., Wills, C. J.,
and Rukstales, K. S., 2008. Documentation for the 2008 Update of the United States
National Seismic Hazard Maps, Open-File Report 2008-1128, U.S. Geological Survey.

Power, M., Chiou, B., Abrahamson, N., Bozorgnia, Y., Shantz, T., and Roblee, C., 2008. An
overview of the NGA project, Earthquake Spectra 24, 3–21.

Purvance, M. D., Brune J. N., Abrahamson, N. A., and Anderson G. A., 2008. Consitency of
precariously balanced rocks with probabilistic seismic hazard estimates in Southern Califor-
nia, Bull. Seism. Soc. Am. 98, 2629–2640.

Rowe, D. B., 2002. Multivariate Bayesian Statistics: Models for Source Separation and Signal
Unmixing, Chapman & Hall/CRC, New York, 329 pp.

Searle, S. R., 1971. Linear Models, Wiley, New York, 532 pp.

Strasser, F. O., Abrahamson, N. A., and Bommer, J., 2009. Sigma: Issues, insights, and chal-
lenges, Seismological Research Letters 80, 40–56.

(Received 12 March 2009; accepted 7 June 2010)

FORECASTING OF GROUND-MOTION PARAMETERS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS 21

http://dx.doi.org/10.1193/1.2894833
http://dx.doi.org/10.1785/0120080169
http://dx.doi.org/10.1785/gssrl.80.1.40

	aff1
	aff2
	E1
	E2
	E3
	E4
	E5
	E6
	E7
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	E21
	E22
	T1
	F1
	T2
	T3
	T4
	F2
	F3
	E23
	F4
	E24
	E25
	E26
	E27
	E28
	E29
	UE1
	T5
	F5
	F6
	F7
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23

