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Abstract

Compressed Sensing based recovery algorithms are bounded by limitations such as recovery error and high computational require-
ments. This work presents a novel algorithm based on Orthogonal Matching Pursuit algorithm for efficient and fast data recovery
in wireless sensor networks. The proposed algorithm significantly reduces the number of iterations required to recover the original
data in a relatively small interval of time. Simulations show that the proposed algorithm converges in a short interval of time with
significantly better results as compared to the existing data recovery approaches in wireless sensor networks.
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1. Introduction

Compressed sensing (CS) framework is aimed at precisely obtaining a high dimensional signal x such that x ∈ Rm×n

from a relatively small sample set of linearly combined observations y such that y ∈ Rm, given the linear measurements
are the projections of the original signal which is sparse in some intitutively known domain. CS based compression is
driven by the idea of obtaining sparse signals at a rate notably lesser than the Nyquist rate. The CS principle utilizes
the sparse nature of the wireless sensor network (WSN) data for efficient compression and recovery, However, in
practical scenarios the signal in question is not sparse itself but in most of the cases has a sparse representation in
some a × b directory ‘D’ such that (a < b). Given the inherent energy and bandwidth constraints of WSNs, CS based
data gathering has gained the desired attention in recent years. The central idea is to compress the data at the deployed
nodes before it is transmitted to the sink where the original data is recovered with almost no loss. Thus, the major
energy consuming task is shifted from the nodes to the sink. However the data reconstruction problem is bounded by
mainly two issues:

• The required number of measurements for reconstructing the signal.
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• The choice of the best suited algorithm for effective and accurate data recovery.

Accurate and fast recovery of the original data at the sink is one of the major issues for most of the data recovery
algorithms1. Existing approaches tend to have almost full recovery but it is at the cost of added computational com-
plexity. Hence, an accptable tradeoff is seen between fast recovery of the original data and complexity of the recovery
algorithms2,3. The Orthogonal Matching Pursuit (OMP) 4 algorithm is one of the most promising work in this field.
The basic idea behind OMP is trivial and spontaneous; i.e. to choose a column of measurement matrix Φ in every
iteration whose correlation is maximum with the residual. The key for the selected column of the measurement matrix,
is appended to the list. Also, the remnant of the selected columns is removed from the Φ, updating a residual for the
further iterations. The steps are repeated until N columns are chosen from the measurement matrix (Φ). The approxi-
mation of ‘x’ is computed by the residual update by finding a solution of least squares (LS), which costs around 4Md
flops and 2Md cost for updating the residual matrix. Considering that the OMP algorithm needs total M iterations,
the total cost is around 2Mdn+ 3M2d where, M is the number of iterations, d is the number of measurements and n is
total number of nodes. Thus, the sparsity ‘S’ has a major role in optimizing the algorithm’s computational complexity.
Recently, the TOMP 5, modified the OMP algorithm by introducing the threshold of recovery error, calculated by re-
quirement i.e. how much fraction of original data needs to be recovered. Simultaneous Orthogonal Matching Pursuit
algorithm (SOMP) 6 was used for inter-signal compressed sensing for clustering techniques like LEACH 11, HEED
12, and DEEC 13 etc. Another recovery algorithm is the Compressive Sampling Matching Pursuit (CoSaMP) 7 which
is well matched for noisy measurements. The algorithm’s output spectrum is sparse unlike a standard linear program
solver techniques. A different approach of CS based schemes is the use of signal’s support in the compressed obser-
vations which effectively reduces the number of samples required for accurate recovery. With the aim of reducing the
samples required for reconstruction, recent works 8,9 proved that partially known supports can be used to accurately
recover sparse signals with significantly reduced number of samples.

The rest of the paper is organised as follows, the section 2 presents the problem definition. In section 3, the
preliminaries for the proposed scheme are discussed in detail followed by section 4 where the proposed scheme is
explained in detail. The section 5 presents the results along with a detailed explanation. Finally in section 6, the
conclusion and future work are presented.

2. Problem Definition

Accurate and fast recovery of the original data at the sink is one of the major issues for most of the data recovery
algorithms in WSNs. Existing approaches tend to have almost full recovery but is at the cost of added computational
complexity. In one iteration, a typical recovery algorithm selects a column from the received data matrix and compares
it with the sparse representation of the original data. Therefore, minimizing the number of iterations for data recovery,
can enhance the performance of algorithms significantly. However, efficient recovery of the compressed data, in
WSNs, is bounded by three prominent issues, specifically:

• Computational complexity
• Recovery time and
• Accuracy.

An acceptable trade-off is seen between the recovery time and complexity of the recovery algorithms. This work
aims at the fast and accurate recovery of sparse data without imposing any extra computational overhead.

3. Preliminaries for the Proposed Algorithm

The preliminaries for the proposed algorithm are:

• Recovery Condition
The recovery condition is the number of non-zero coefficient of original signal (x) i.e. sparsity level (M). In
order to identify the N correlated columns of the dictionary, N number of keys are chosen by finding the largest
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correlation between residual of y and measurement matrix Φ. Such that, y = Φx is the data received at the sink
for reconstruction.
• Column Appending

Selected columns are appended to the list to form a new dictionary. ‘N’ columns are added to the directory until
the halting criteria is met.
• Signal Estimation

The signal is estimated with the help of the appended dictionary and by solving the least square (LS) problem.
LS is used find a unique solution as shown in equation given below:

xk = argminx‖y − Φ∧k x‖2 (1)

• Residual Update After each iteration the residual is updated to get the next maximum correlated ‘N’ columns
as shown in equation given below:

rk = y − Φ∧k xk (2)

• Halting Criteria
Compare the reconstruction error with threshold, if reconstruction error is less than threshold or number of
selected columns are equal to ‘M’, then no further iterations are required and we jump to the output. The
halting criteria is given by:

I f ‖rk‖2 < δ else N × k ≥ M (3)

4. Proposed Approach

Based on the well known OMP algorithm, we propose a relatively fast and accurate version of the OMP and is
termed as Optimized OMP (OOMP) here onwards. Multiple indices are chosen in each iteration for reducing the
complexity and the execution time of the algorithm. The comparison of the reconstructed result with the original data
is necessary for every iteration in the process of reconstruction of data. If ‖rk‖2 , then the reconstruction can be stopped
and we can jump to output. That means, if the demand is met, the iteration can be halted earlier, rather than after M
iterations. To reduce the complexity and speeding up the execution time, multiple indices are chosen in each iteration.
The selection of multiple indices results in multiple keys to be added to list. Thus, the requirement of selection
of M indices, is achieved with small number of iteration as compared to OMP. A reconstruction error threshold is
incorporated, which is the necessary and sufficient condition for the convergence of algorithm. Reconstruction error
is determined on the basis of the support of the similarity degree of original and recovered signal, i.e.

Reconstructed Error(γ) =
‖X − X∗‖2
‖X‖2

(4)

Where the original signal is denoted by ‘X’ and the recovered signal by X∗. Thus, the reconstruction error is
inversely proportional to the accuracy of the recovered data. The steps of the algorithm are as follows:

• Multiple columns ‘N’ of the measurement matrix ‘Φ′ are chosen which is maximally correlated to residual
(identification).
• The key of the selected columns of the measurement matrix is appended to the list (augmentation).
• The remnant of selected columns is removed from the Φ as shown in 1.
• Updating a residual for the next iteration (residual update) as shown in 2.
• We check stopping criteria i.e. if reconstruction error is less than threshold or number of selected column is

equal to M then jump to the output otherwise jump to step 1 as shown in 3.

The fig. 1 shows the uncompressed signal representation of the temperature data. The fig. 2 and fig. 3 shows the
recovered signal using the proposed OOMP algorithm in noise and noise free environment respectively with sparsity
value 10.
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Fig. 1. Original Signal Representation of Temperature Data

Fig. 2. Recovered Signal with Noise

Fig. 3. Recovered Signal without Noise

5. Simulation and Results

5.1. Simulation Environment

Python was used for simulating the WSN environment with 1024 nodes randomly deployed in an area of 200 ×
200 m2, The measurement matrix Φ is drawn by generating n × d Gaussian random variables. The simulations were
performed for assessing the performance of the proposed OOMP with maximum number of selected columns in one
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Fig. 4. Running Time as a Function of Sparsity

Fig. 5. Number of Iteration as a Function of Sparsity

iteration, N = 3 and 4. A comparative analysis of the proposed OOMP with the existing OMP4 and TOMP5 is
presented in this section. The details of simulation parameters are presented in Table 1.

Table 1. Simulation Parameters

Parameter Values

Area 200 × 200 m2

Number of Nodes (n) 1024
Number of Measurement (d) 512
Number of Selected Columns (N) 3 and 4
Sparsity 10 − 70

5.2. Result and Analysis

Time Analysis: As shown in fig. 4 the recovery time of the proposed algorithm is minimum as compared to OMP4

and TOMP5. This is due to fewer number of iterations for recovering the compressed data. The proposed algorithm
outperforms the existing algorithm, with a fair margin, proving its efficiency in terms of recovery time.

Computational Complexity Analysis:Computational complexity for OOMP algorithm is around 2pdn + (2N2 +

N)p2d) where ‘p’ denotes the number of total iterations required until the algorithm meets the halting criteria. As
shown in fig. 5, the number of iterations of the proposed algorithm is minimum as compared to OMP and TOMP
proving its efficiency over the two approaches.
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Fig. 6. Fraction of Recovered Data as a Function of Sparsity

Fig. 7. Recovery Error as a Function of Sparsity

Reconstruction Analysis: The fig. 6 shows percentage recovery of the proposed algorithm as a function of sparsity.
A comparative analysis of the percentage recovery of the proposed algorithm with existing approaches OMP and
TOMP shows that critical sparsity for optimized OMP N=3 and N=4 is 40 and 60 respectively which is far better than
OMP and TOMP. So higher critical sparsity inferred that, recovery performance of proposed OOMP is more efficient
than existing OMP algorithms.

Error Analysis: Recovery error is determined by similarity degree of recovered and original signal i.e.

Recoveryerror =‖ X − X∗ ‖2 (5)

Where X is original signal and X is recovered signal. As shown in fig. 7, the proposed algorithm outperforms existing
recovery approaches based on CS with the error percentage as low as 0.01 for sparsity value of 40. Even in the
worst case, the proposed algorithm has minimum error percentage of 0.02 for sparsity value of 70 as compared to the
existing OMP which has the error percentage of 0.06 for the same value of sparsity. The proposed OOMP is able to
give accurate results with large scale WSNs. Interestingly, the the error value decreases marginally with increase in the
data correlation. Since, the data correlation is very weak in small sized WSN, the recovery accuracy is compromised
as the size of the network is reduced (for detailed analysis of the effect of network size on the recovery accuracy, see
our previous work on CS 10).

6. Conclusion

This work presents an Optimized OMP algorithm for efficient and fast data recovery in WSNs. Selecting correlated
columns helps to reduce the number of iterations required to recover the original data in a relatively small interval
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of time. Simulation results show that the proposed algorithm has better accuracy, computational complexity and
fast recovery as compared to the existing recovery algorithm, specifically OMP and TOMP. The proposed OOMP
converges quickly without affecting the quality of the recovered signal.

Future Work: We continue to extend our work in the direction of exploring recovery algorithms for small sized
WSNs where the traditional recovery algorithms fail to give accurate results. Targeting the matrix completion problem,
we aim to devise a reconstruction algorithm for such small scale WSNs where algorithms such as the proposed OOMP
fail to achieve accurate results.
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