
JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.1 (1-30)

Information and Computation ••• (••••) •••–•••
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

A semantic theory of the Internet of Things ✩

Ruggero Lanotte a, Massimo Merro b,∗
a Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
b Dipartimento di Informatica, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 March 2017
Received in revised form 2 December 2017
Available online xxxx

Keywords:
Internet of Things
Process calculus
Operational semantics
Behavioural semantics
Bisimulation

We propose a process calculus for modelling and reasoning on systems in the Internet
of Things paradigm. Our systems interact both with the physical environment, via sensors
and actuators, and with smart devices, via short-range and Internet channels. The calculus
is equipped with a standard notion of labelled bisimilarity which is proved to be a
coinductive characterisation of a well-known contextual equivalence. We use our semantic
proof-methods to prove run-time properties of a non-trivial case study as well as system
equalities.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the Internet of Things (IoT) paradigm, smart devices equipped with embedded technology automatically collect informa-
tion from shared resources (e.g. Internet accesses, physical devices, etc.) and aggregate them to provide new services to end
users [2]. The “things” commonly deployed in IoT systems are: RFID tags, for unique identification, sensors, to detect physical
changes in the environment, and actuators, to pass information to the environment. To provide proper communication capa-
bilities, smart devices are organised in networks which are based on the standard communication protocols of the Internet
framework.

The range of IoT applications is rapidly increasing and already covers several domains [3,2,4]: (i) environmental moni-
toring, (ii) healthcare, (iii) personal and social, (iv) security and surveillance, (v) smart environment (home, offices, cities),
(vi) transportation and logistics (automotive).

The research on IoT is currently focusing on practical applications such as the development of enabling technologies [5],
ad hoc architectures [6], semantic web technologies [7], and cloud computing [2]. However, as pointed out by Lanese et
al. [8], there is a lack of research in formal methodologies to model the interactions among system components, and to
verify the correctness of the network deployment before its implementation.

The main goal of the current paper is to propose a new process calculus for IoT systems which supports a clear se-
mantic theory for specifying and reasoning on IoT applications. Devising a calculus for modelling a new paradigm requires
understanding and distilling, in a clean algebraic setting, the basic features of the paradigm. In order to point out the main
ingredients of the IoT paradigm, we use a small example within the smart environment domain.

✩ An extended abstract appeared in the proceedings of the 8th International Conference on Coordination Models and Languages (COORDINATION 2016), volume
9686 of Lecture Notes in Computer Science, pp. 157–174, Springer, 2016 [1].

* Corresponding author.
E-mail address: massimo.merro@univr.it (M. Merro).
https://doi.org/10.1016/j.ic.2018.01.001
0890-5401/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2018.01.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:massimo.merro@univr.it
https://doi.org/10.1016/j.ic.2018.01.001

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.2 (1-30)

2 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
Fig. 1. A simple smart home.

Suppose a simple smart home (see Fig. 1) in which the user can (i) profit of her smartphone to remotely control the heat-
ing boiler of her house, and (ii) automatically turn on lights when entering a room. The house consists of an entrance and
a lounge, separated by a patio. Entrance and lounge have their own lights (actuators) which are governed by different light
manager processes, LightMng. The boiler is placed in the patio and it is governed by a boiler manager process, BoilerMng.
This process senses the local temperature (via a sensor) and decides whether the boiler should be turned on/off, setting a
proper actuator to signal the state of the boiler.

The smartphone executes two concurrent processes: BoilerCtrl and LightCtrl. The first one reads user’s commands, submit-
ted via the phone touchscreen (a sensor), and forwards them to the process BoilerMng of the house, via an Internet channel.
Whereas, the process LightCtrl interacts with the processes LightMng of the house, via short-range wireless channels (e.g.
Bluetooth, infrared, etc), to automatically turn on lights when the smartphone physically enters either the entrance or the
lounge. The whole system is given by the parallel composition of the smartphone (a mobile device) and the smart home
(a stationary entity).

On this kind of systems one may wish to prove interesting run-time properties. Think of a fairness property saying that
the boiler will be eventually turned on/off whenever specific conditions are satisfied. Or consistency properties, saying, for
instance, that the smartphone will never be in two rooms at the same time. Even more, one may be interested in un-
derstanding whether different implementations of our smart home have the same observable behaviour. Consider a variant
of our smart home, where lights functionality depends on the GPS coordinates of the smartphone (localisation is a com-
mon feature of today smartphones). Intuitively, the smartphone could send its GPS position to a centralised light manager,
CLightMng (possibly placed in the patio), via an Internet channel. The process CLightMng will then interact (via short-range
channels) with the local light manager processes to turn on/off lights, depending on the current position of the smart-
phone. Here comes an interesting question: can these two implementations of the smart home, based on different light
management mechanisms, be actually distinguished by an end user?

In the paper at hand we develop a fully abstract semantic theory for a process calculus of IoT systems, called CaIT.
We provide a formal notion of when two systems in CaIT are indistinguishable, in all possible contexts, from the point
of view of the end user. Formally, we adopt the approach of [9,10], often called reduction (closed) barbed congruence, which
relies on two crucial concepts: a reduction semantics to describe system computations, and basic observables to represent
what the environment can directly observe of a system. As IoT systems are essentially cyber-physical systems [11], they have
at least two possible observables: the ability to transmit along channels, logical observation, and the capability to modify
actuators, physical observation. In CaIT, we have adopted the second form of observable as our contextual equality remains
invariant when adding logical observation. However, the right definition of physical observation is far from obvious as it has
a non-trivial impact on the definition of the reduction semantics. Thus, observables and reduction semantics contain key
design choices for the formal definition of CaIT.

Our calculus is equipped with two labelled transition semantics (LTSs) in the SOS style of Plotkin [12]: an intensional
semantics and an extensional semantics. The adjective intensional is used to stress the fact that the actions here correspond
to activities which can be performed by a system in isolation, without any interaction with the external environment. On
the other hand, the extensional semantics focuses on those activities which require a contribution of the environment. Our
extensional LTS builds on the intensional one, by introducing specific transitions for modelling all interactions with the
environment. Here, we would like to point out that since our basic observation on systems does not involve the recording
of the passage of time, this has to be taken into account extensionally.

We prove that the reduction semantics coincides with the intensional semantics (Harmony theorem), and that is satisfies
some desirable time properties such as (a localised variant of) time determinism, patience, maximal progress and well-
timedness [13]. However, the main result of the paper is that weak bisimilarity in the extensional LTS provides a coinductive
characterisation of our contextual equivalence, reduction barbed congruence: two systems are related by some bisimulation
in the extensional LTS if and only if they are reduction barbed congruent. Full abstraction results of this kind are in general
hard to achieve. In our case, this result required a non-standard proof of the congruence theorem for the weak bisimilarity.

We finally show the effectiveness of our bisimulation proof-technique to deal with non-trivial systems. In particular, we
provide a formal proof that two different implementations of the smart home mentioned before are bisimilar. Formal proofs
of systems of such size are quite rare in the literature. Thus, in order to reduce the size of the bisimulation relation to be
exhibited, we make an intensive use of up-to expansion proof-techniques [10].

Outline. Section 2 contains the calculus together with the reduction semantics, the contextual equivalence, and a discussion
on design choices. Section 3 gives the details of our smart home example, and proves desirable run-time properties for it.
Section 4 defines both intensional and extensional LTSs. In Section 5 we define bisimilarity for (networks of) IoT-systems,

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.3 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 3
Table 1
Syntax.

Processes: Networks:
P , Q ::= nil termination M, N, O ::= 0 empty network∣∣ ρ.P intra-node activity

∣∣ n[I� P]μh node/device∣∣ P | Q parallel composition
∣∣ M|N network composition∣∣ �π.P�Q communication with timeout
∣∣ (νc)M channel restriction∣∣ [b]P ; Q conditional∣∣ X process variable∣∣ fix X .P recursion

and prove the full abstraction result together with a number of non-trivial system equalities. Section 6 discusses related
work, and concludes. Full details of the proofs can be found in the Appendix.

2. The calculus

In Table 1 we give the syntax of our Calculus of the Internet of Things, shortly CaIT, in a two-level structure: a lower one
for processes and an upper one for networks of smart devices. We use letters n, m to denote nodes/devices, c, g for channels,
h, k for (physical) locations, s, s′ for sensors, a, a′ for actuators and x, y, z for variables. Our values, ranged over by v and
w , are constituted by basic values, such as booleans and integers, sensor and actuator values, and coordinates of physical
locations.

A network is a pool of distinct nodes running in parallel. Nodes live in a physical world which can be divided in an
enumerable set of physical locations. We assume a discrete notion of distance between two locations h and k, i.e. d(h, k) ∈N.
We write 0 to denote the empty network, while M | N represents the parallel composition of two networks M and N . In
(νc)M channel c is private to the nodes of M . Each node is a term of the form n[I � P]μl , where n is the device ID; I
is the physical interface of n, represented as a partial mapping from sensor and actuator names to physical values; P is
the process modelling the logics of n; l is the physical location of the device; μ ∈ {s, m} is a tag to distinguish between
stationary and mobile nodes.

For security reasons, in a node n[I � P]μh , sensors belonging to the physical interface I can be read only by the corre-
sponding controller process P . Similarly, actuators in I can be modified only by P . No other devices can access the physical
interface of n. P is a timed concurrent process which manages both the interaction with the physical interface I and chan-
nel communication with other devices. The communication paradigm is point-to-point via channels that may have different
transmission ranges. We assume a global function rng() that given a channel c returns an element of N ∪ {−1, ∞}. Thus, a
channel c can be used for: (i) intra-node communications, if rng(c) = −1; (ii) short-range inter-node communications (such as
Bluetooth) if 0 ≤ rng(c) < ∞; (iii) Internet communications, if rng(c) = ∞.

Our processes build on Hennessy and Regan’s TPL [13] (basically, CCS with a discrete notion of time). We write ρ.P , with
ρ ∈ {σ , @(x), s?(x), a!v}, to denote intra-node actions. The process σ .P sleeps for one time unit. The process @(x).P gets the
current location of the enclosing node. Process s?(x).P reads a value v from sensor s. Process a!v.P writes the value v on
the actuator a. We write �π.P�Q , with π ∈ {c〈v〉, c(x)}, to denote channel communication with timeout. This process can
communicate along some channel c and, after that, it continues as P; otherwise, after one time unit, it evolves into Q . The
process [b]P ; Q is the standard conditional construct, where b is a decidable guard. As in CCS, we assume that [b]P ; Q = P
if �b� = true (i.e. b evaluates to true), and [b]P ; Q = Q if �b� = false. In processes of the form σ .Q and �π.P�Q the
occurrence of Q is said to be time-guarded. The process fix X .P denotes time-guarded recursion, as all occurrences of the
process variable X may only occur time-guarded in P . In processes �c(x).P�Q , s?(x).P and @(x).P the variable x is said
to be bound. Similarly, in process fix X .P the process variable X is bound. In the term (νc)M the channel c is bound. This
gives rise to the standard notions of free/bound (process) variables, free/bound channels, and α-conversion. A term is said to
be closed if it does not contain free (process) variables, although it may contain free channels. We always work with closed
networks: the absence of free variables is preserved at run-time. We write T {v/x} for the substitution of the variable x with
the value v in any expression T of our language. Similarly, T {P/X } is the substitution of the process variable X with the
process P in T .

The sensors embedded in a node can be of two kinds: location-dependent and node-dependent. The first ones sense data
at the current location of the node, whereas the second ones sense data within the node, independently on the node’s
location. Thus, node-dependent sensor names are metavariables for sensors like touchscreen@n or button@n; whereas a
sensor temp@h, for external temperature, is a typical example of location-dependent sensor. For simplicity, we use the same
metavariables for both kinds of sensors. When necessary we will specify the type of sensor in use.

Actuator names are metavariables for actuators like display@n or alarm@n, where n is a node. As node names are unique
so are actuator names: different nodes have different actuators. Thus, all actuators are basically node-dependent: location-
dependent actuators would make little sense. Both actuator names and node-dependent sensor names are unique. This is
not the case of location-dependent sensor names which may appear in different nodes.

The syntax given in Table 1 is a bit too permissive with respect to our intentions. We could rule out ill-formed networks
with a simple type system. For the sake of simplicity, we prefer to provide the following definition.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.4 (1-30)

4 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
Table 2
Structural congruence.

Processes: Networks:

P | nil ≡ P P ≡ Q implies n[I� P]μh ≡ n[I� Q]μh
P | Q ≡ Q | P M|0 ≡ M
(P | Q) | R ≡ P | (Q | R) M|N ≡ N|M
[b]P ; Q ≡ P if �b� = true (M|N)|O ≡ M|(N|O)

[b]P ; Q ≡ Q if �b� = false (νc)0 ≡ 0
fix X .P ≡ P {fix X .P/X } (νc)(νd)M ≡ (νd)(νc)M

(νc)(M|N) ≡ M|(νc)N if c not in M

Table 3
Reduction semantics.

(pos)
−

n[I�@(x).P]μh �τ n[I� P {h/x}]μh
(sensread)

I(s) = v

n[I� s?(x).P]μh �τ n[I� P {v/x}]μh

(actunchg)
I(a) = v

n[I�a!v.P]μh �τ n[I� P]μh
(actchg)

I(a)
= v I′ := I[a �→ v]
n[I�a!v.P]μh �a n[I′

� P]μh

(loccom)
rng(c) = −1

n[I� �c〈v〉.P�R | �c(x).Q �S]μh �τ n[I� P | Q {v/x}]μh

(timestat)
n[I�

∏
i�πi .Pi�Q i | ∏

j σ .R j]sh
�τ

n[I�

∏
i�πi .Pi�Q i | ∏

j σ .R j]sh �σ n[I�

∏
i Q i | ∏

j R j]sh

(timemob)
n[I�

∏
i�πi .Pi�Q i | ∏

j σ .R j]mh
�τ d(h,k) ≤ δ

n[I�

∏
i�πi .Pi�Q i | ∏

j σ .R j]mh �σ n[I�

∏
i Q i | ∏

j R j]mk

(glbcom)
d(h,k) ≤ rng(c)

n[I� �c〈v〉.P�R]μ1
h | m[J� �c(x).Q �S]μ2

k �τ n[I� P]μ1
h | m[J� Q {v/x}]μ2

k

(parp)

∏
i ni[Ii � Pi]μi

hi
�ω

∏
i ni[I′

i � P ′
i]μi

hi
ω ∈ {τ ,a}

∏
i ni[Ii � Pi |Q i]μi

hi
�ω

∏
i ni[I′

i � P ′
i |Q i]μi

hi

(parn)
M �ω M ′ ω ∈ {τ ,a}

M|N �ω M ′|N

(timepar)
M �σ M ′ N �σ N ′ M|N
�τ

M|N �σ M ′|N ′ (timezero)
−

0�σ 0

(res)
M �ω N ω ∈ {τ ,a, σ }

(νc)M �ω (νc)N
(struct)

M ≡ N N �ω N ′ ω ∈ {τ ,a, σ } N ′ ≡ M ′

M �ω M ′

Definition 2.1. A network M is said to be well-formed if (i) it does not contain two nodes with the same name; (ii) different
nodes have different actuators; (iii) different nodes have different node-dependent sensors; (iv) for each n[I � P]μh in M ,
with a prefix s?(x) (resp. a!v) in P , I(s) (resp. I(a)) is defined; (v) for each n[I � P]μh in M with I(s) defined for some
location-dependent sensor s, it holds that μ = s.

Condition (iv) requires that the physical devices (sensors and actuators) accessed by the controller processes must be
defined in the corresponding physical interface of the node. Last condition implies that location-dependent sensors may
be used only in stationary nodes. This restriction will be commented in Section 2.3. Hereafter, we will always work with
well-formed networks. It is easy to show that well-formedness is preserved at runtime.

Finally, we assume a number of notational conventions.
∏

i∈I Mi denotes the parallel composition of all Mi , for i ∈ I . We
identify

∏
i∈I Mi = 0 and

∏
i∈I P i = nil, if I = ∅. Sometimes we write

∏
i Mi when the index set I is not relevant. We write ρ

instead of the process ρ.nil. For k ≥ 0, we write σ k.P as a shorthand for σ .σ σ .P , where prefix σ appears k consecutive
times. Finally, we write (ν c̃)M as an abbreviation for (νc1) . . . (νck)M , for c̃ = c1, . . . , ck .

2.1. Reduction semantics

The dynamics of the calculus is given in terms of reduction relations over networks, as described in Table 3. As usual
in process calculi, a reduction semantics relies on an auxiliary standard relation, ≡, called structural congruence, which
brings the participants of a potential interaction into contiguous positions. Formally, structural congruence is defined as the
congruence induced by the axioms of Table 2 up to α-conversion.

As CaIT is a timed calculus, with a discrete notion of time, we will distinguish between instantaneous reductions,
M �i N , and timed reductions, M �σ N . Relation �i denotes activities which take place within one time interval, whereas

�σ represents the passage of one time unit. Our instantaneous reductions are of two kinds: those which involve the

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.5 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 5
change of the values associated to some actuator a, written �a , and the others, written �τ . Intuitively, reductions of
the form M �a N denote watchpoints which cannot be ignored by the physical environment (in Example 2.15, and more
extensively at the end of Section 2.3, we explain why it is important to distinguish between �τ and �a). Thus, we define
the instantaneous reduction relation �i = �τ ∪ �a , for any actuator a. We also define � = �τ ∪�σ .

The first seven rules in Table 3 model intra-node activities. Rule (pos) serves to compute the current position of a node.
Rule (sensread) represents the reading of the current data detected at some sensor s. Rules (actunchg) and (actchg) implement
the writing of some data v on an actuator a, distinguishing whether the value of the actuator changes or not. Rule (loccom)
models intra-node communications on a local channel c (rng(c) = −1). Rule (timestat) models the passage of time within a
stationary node. Notice that all untimed intra-node actions are considered urgent actions as they must occur before the next
timed action. As an example, position detection is a time-dependent operation which cannot be delayed. Similar argument
applies to sensor reading, actuator writing and channel communication. Rule (timemob) models the passage of time within
a mobile node. This rule also serves to model node mobility. Mobile nodes can nondeterministically move from one physical
location h to a (possibly different) location k, at the end of a time interval. Node mobility respects the following time
discipline: in one time unit a node located at h can move to any location k such that d(h, k) ≤ δ, for some fixed δ ∈ N

(obviously, it is possible to have h = k and d(h, k) = 0). For the sake of simplicity, we fix the same constant δ for all nodes
of our systems. The premises of Rules (timestat) and (timemob) ensure that if a node can perform a timed reduction �σ then
the same node cannot perform an instantaneous reduction �τ . Actually, due to the syntactic restrictions in the premises
of both rules, that node cannot perform an instantaneous reduction �a either. This is formalised in Proposition 2.3.

Rule (glbcom) models inter-node communication along a global channel c (rng(c) ≥ 0). Intuitively, two different nodes
can communicate via a common channel c if and only if they are within the transmission range of c. Rules (parp) and (parn)
serve to propagate instantaneous reductions through parallel processes, and parallel networks, respectively. Rule (timepar) is
for inter-node time synchronisation; the passage of time is allowed only if all instantaneous reductions have already fired.
Well-timedness (Proposition 2.5) ensures the absence of infinite instantaneous traces which would prevent the passage of
time. The remaining rules are standard.

We write �k
i as a shorthand for k consecutive reductions �i; �∗

i is the reflexive and transitive closure of �i . Similar
conventions apply to the reduction relation �.

Below we report a few standard time properties which hold in our calculus: time determinism, maximal progress, patience
and well-timedness. In its standard formulation, time determinism says that a system reaches at most one new state by
executing a reduction �σ . However, by an application of Rule (timemob), our mobile nodes may change location when
executing a reduction �σ , thus we have a localised variant of time determinism.

Proposition 2.2 (Localised time determinism). If M �σ M ′ and M �σ M ′′ then M ′ ≡ ∏
i∈I ni[Ii � Pi]μi

hi
and M ′′ ≡∏

i∈I ni[Ii � Pi]μi
ki

, with d(hi, ki) ≤ 2δ, for all i ∈ I .

According to [13], the maximal progress property says that processes communicate as soon as a possibility of communi-
cation arises. In CaIT, we generalise this property saying that instantaneous reductions cannot be delayed.

Proposition 2.3 (Maximal progress). If M �i M ′ then there is no M ′′ such that M �σ M ′′ .

On the other hand, if no instantaneous reductions are possible then time is free to pass.

Proposition 2.4 (Patience). If there is no M ′ such that M �i M ′ then there is N such that M �σ N.

Finally, time passing cannot be prevented by infinite sequences of internal actions. Formally,

Proposition 2.5 (Well-timedness). For any M there is a z ∈N such that if M �u
i N then u ≤ z.

The proof of Proposition 2.5 relies on time-guardedness of recursive processes.

2.2. Contextual behavioural equivalence

In this section, we provide a standard notion of contextual equivalence for our systems. Our touchstone equivalence is re-
duction barbed congruence [9,14], a standard contextually defined process equivalence. Intuitively, two systems are reduction
barbed congruent if they have the same basic observables in all contexts and under all possible computations.

As already pointed out in the Introduction, the definition of reduction barbed congruence relies on two crucial concepts:
a reduction semantics to describe system computations, and the basic observable, or barbs, which denotes what the environ-
ment can directly observe of a system.1 So, the question now is: What are the “right” observables in our calculus? Due to

1 See [10] for a comparison between this definition and the original definition of barbed congruence [14].

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.6 (1-30)

6 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
the cyber-physical nature of our systems we could choose to observe either channel communications (logical observation)
as in standard process calculi, or the capability to diffuse messages via actuators (physical observation). Actually, it turns
out that logical observation in CaIT can be expressed in terms of physical one (see Section 2.3 for details) while the vice
versa does not hold. So, we adopt as basic observables the capability to publish messages on actuators.

Definition 2.6 (Barbs). We write M ↓a@h!v if M ≡ (ν g̃)
(
n[I� P]μh | M ′) with I(a) = v . We write M ⇓a@h!v if M �∗ M ′ with

M ′ ↓a@h!v .

The reader may wonder why our barb reports the location and not the node of the actuator. We recall that actuator
names are unique, so they somehow codify the name of their node. The location is then necessary because the environment
is potentially aware of its position when observing an actuator: if on Monday at 6.00AM your smartphone rings to wake
you up, then you may react differently depending whether you are at home or on holidays in the Bahamas!

Definition 2.7. A binary relation R over networks is barb preserving if M R N and M ↓a@h!v implies N ⇓a@h!v .

Definition 2.8. A binary relation R over networks is reduction closed if whenever M R N the following conditions are
satisfied:

• M � M ′ implies N �∗ N ′ and M ′ R N ′;
• M �a M ′ implies N �∗�a �∗ N ′ and M ′ R N ′ .

Here, we require reduction closure of both � and �a , for any a. This is a crucial design decision in CaIT (see Exam-
ple 2.15 and Section 2.3 for details).

In order to model sensor updates made by the physical environment on a sensor s in a given location h, we define an
operator [s@h �→ v] on networks.

Definition 2.9. Given a location h, a sensor s, and a value v in the domain of s, we define:

n[I� P]μh [s@h �→ v] def= n[I[s �→ v]� P]μh , if I(s) defined

n[I� P]μk [s@h �→ v] def= n[I� P]μk , if I(s) undefined or h
= k

(M|N)[s@h �→ v] def= M[s@h �→ v] | N[s@h �→ v](
(νc)M

)[s@h �→ v] def= (νc)
(
M[s@h �→ v])

0[s@h �→ v] def= 0.

As for barbs, the reader may wonder why when updating a sensor we use its location, also for node-dependent sensors.
This is because when changing a node-dependent sensor (e.g. touching a touchscreen of a smartphone) the environment is
in general aware of its position.

Definition 2.10. A binary relation R over networks is contextual if M R N implies that

• for all networks O , M|O R N|O ;
• for all channels c, (νc)M R (νc)N;
• for all sensors s, locations h, and values v in the domain of s, M[s@h �→ v] R N[s@h �→ v].

The first two clauses require closure under logical contexts (parallel systems), while the last clause involves physical
contexts, which can nondeterministically update sensor values.

Finally, everything is in place to define our touchstone contextual behavioural equality.

Definition 2.11. Reduction barbed congruence, written ∼=, is the largest symmetric relation over networks which is reduction
closed, barb preserving and contextual.

Remark 2.12. Obviously, if M ∼= N then M and N will be equivalent in any setting where sensor updates are governed by
specific physical laws. This is because physical contexts that can affect sensor values (according to some physical law) are
definitely fewer than those which can change sensors nondeterministically.

We recall that the reduction relation � ignores the passage of time, and therefore the reader might suspect that our
reduction barbed congruence is impervious to the precise timing of activities. We will show that this is not the case.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.7 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 7
Example 2.13. Let M and N be two networks such that M = n[∅ �σ .�c〈v〉.nil�nil]sh and N = n[∅ � �c〈v〉.nil�nil]sh , with
rng(c) = ∞. It is easy to see that M �σ N . As the reduction relation � does not distinguish instantaneous reductions
from timed ones, one may think that networks M and N are reduction barbed congruent, and that a prompt transmis-
sion along channel c is equivalent to the same transmission delayed of one time unit. However, let us consider the test
T = test[J �σ .a!1.�c(x).a!0�nil]sl , with J(a) = 0, for some (fresh) actuator a. Our claim is that test T can distinguish the two
networks, and thus M � N . In fact, if M|T � �a O = n[∅ � �c〈v〉.nil�nil]sh | test[J′ � �c(x).a!0�nil]sl , with J′(a) = 1, then there
is no O ′ such that N|T �∗�a �∗ O ′ with O ∼= O ′ . This is because O can perform a reduction sequence � �a that cannot
be matched by any O ′ .

Behind this example there is the general principle that reduction barbed congruence is sensitive to the passage of time.

Proposition 2.14. If M ∼= N and M �σ M ′ then there is N ′ such that N �∗
τ �σ �∗

τ N ′ and M ′ ∼= N ′ .

Proof. Suppose M �σ M ′ . Consider the test node T = test[J �σ .a!1.a!0]sk such that both networks M|T and N|T are well-
formed, and J(a) = 0. By construction, the presence of a barb ⇓a@k!1 in a derivative of one of those systems implies that
exactly one timed reduction �σ has been inferred in the derivation.

Since M �σ M ′ it follows that M|T �σ �a M ′|T ′ , with T ′ = test[J[a �→ 1]�a!0]sk and M ′|T ′ ↓a@k!1. As M ∼= N and
∼= is contextual, the reduction sequence above must be mimicked by N|T , that is N|T �∗�a �∗ N̂ , with M ′|T ′ ∼= N̂ .
As a consequence, N̂ ⇓a@k!1. This implies that exactly one timed reduction has been inferred in the reduction sequence
N|T �∗�a �∗ N̂ . As M|T and N|T are well-formed networks, the actuator a can appear neither in M nor in N . So, the
above reduction sequence can be decomposed as follows:

N|T �∗ N ′|T �a N ′|T ′ �∗ N ′′|T ′ = N̂

with N �∗
τ �σ �∗

τ N ′′ . From M ′|T ′ ∼= N ′′|T ′ it is easy to derive M ′ ∼= N ′′ (for details see Lemma 5.7 in Section 5). �
Now, we provide some insights into the design decision of having two different reduction relations �τ and �a .

Example 2.15. Let M = n[I �a!1|a!0.a!1]μh and N = n[I �a!1.a!0.a!1]μh , with I(a) = 0 and undefined otherwise. Then, within
one time unit, M may display on the actuator a either the sequence of values 01 or the sequence 0101, while N can only
display the sequence 0101. As a consequence, from the point of view of the physical environment, the observable behaviours
of M and N are clearly different. In the following we show how ∼= can observe that difference. We recall that the relation
∼= is reduction closed. Now, if M �τ �a M ′ = n[J �a!1]μh , with J(a) = 1, the only possible reply of N respecting reduction
closure is N �∗�a N ′ = n[J �a!0.a!1]μh . However, it is evident that M ′ � N ′ because N ′ can turn the actuator a to 0 while
M ′ cannot. Thus, M � N .

Had we merged the relation �a with �τ then we would have M ∼= N because the capability to observe messages on
actuators, given by the barb, would not be enough to observe changes on actuators within one time interval.

2.3. Design choices

In this section we provide some insights into the design choices that have been followed in the definition of CaIT.
CaIT is a value-passing rather than a name-passing calculus, à la π -calculus [10]; the theory of CaIT can be easily

adapted to deal with the transmission of channel names at the price of adding the standard burden of scope extrusion of
names. Furthermore, as both actuators and sensors can only be managed inside their nodes, it would make little sense to
transmit their names along channels. For simplicity, in CaIT we adopt a point-to-point communication via communication
channels. Broadcast communications could be easily introduced along the lines of Cerone, Hennessy and Merro’s timed
calculus CCCP [15], without affecting the main theoretical results.

CaIT is a timed process calculus with a discrete notion of time. The time model we adopt in CaIT is known as
the fictitious clock approach (see e.g. [13]): a global clock is supposed to be updated whenever all nodes agree on this,
by globally synchronising on a special timing action σ . Thus, time synchronisation relies on some clock synchronisation
protocol for mobile wireless systems [16]. However, our notion of time interval is different from that adopted in synchronous
languages [17–19] where the environment injects events at the beginning of a time interval and collects them at the end.
In the synchronous approach, events happening during a time interval are not ordered while in our calculus we want to
maintain the causality among actions, typical of process calculi.

We already said that IoT systems are essentially cyber-physical systems [11]. In cyber-physical systems, sensor changes
are usually modelled either using continuous models, such as differential equations, or through discrete models, such as
difference equations.2 However, in this paper we aim at providing a behavioural semantics for IoT applications from the

2 Difference equations relate to differential equations as discrete math relate to continuous math.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.8 (1-30)

8 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
point of the view of the end user. And the end user cannot directly observe changes on the sensors of an IoT application:
she can only observe the effects of those changes via actuators and communication channels. Thus, in CaIT we do not
represent sensor changes via specific models, but we rather abstract on them by supporting nondeterministic sensor updates
(see Definition 2.9 and Definition 2.10). Actually, as pointed out in Remark 2.12, behavioural equalities derived in our setting
remain valid when adopting any specific model for sensor updates.

Another design decision in our language regards the possibility to change the value associated to sensors and actuators
more than once within the same time interval. At first sight this choice may appear weird as certain actuators are physical
devices that may require some time to turn on. On the other hand, other actuators, such as lights or displays, may have
very quick reactions. A similar argument applies to sensors. In this respect our calculus does not enforce a synchronisation
of physical events as for logical signals in synchronous languages. In fact, actuator changes are under nodes’ control: the
process running within a node decides when changing the value exposed on an actuator of that node. Thus, if the actuator
of a node models a slow device then it is under the responsibility of the process running at that node to change the
actuator with a proper delay. Similarly, sensors should be read only when this makes sense. For instance, a temperature
sensor should be read only when the temperature is known to be stable.

Let us now discuss on node mobility. The reader may wonder why CaIT does not provide a process for node mobility,
as in Mobile Ambients [20]. Notice that, unlike Mobile Ambients, our nodes do not represent mobile computations within
an Internet domain. Instead, they represent smart devices which do not decide where to move to: an external agent moves
them. We also decided to allow node mobility only at the end of time intervals. This is because both intra-node and inter-
node logical operations, such as channel communications, can be considered significantly faster than physical movements
of devices. For instance, consider a transmitter that moves at 20 m/s and that transmits a 2000-byte frame over a channel
having a 2 megabit/s bandwidth. The actual transmission would take about 0.008 s; during that time, the transmitter moves
only about 16 cm away. In other words, we can assume that the nodes are stationary when transmitting and receiving,
and may change their location only while they are idle. However, to avoid uncontrolled movements of nodes we decided
to fix for all of them the same bound δ, representing the maximum distance a node can travel within one time unit. There
would not be problems in allowing different δ for different nodes. Finally, for the sake of simplicity, in the last constraint of
Definition 2.1 we impose that location-dependent sensors can only occur in stationary nodes. This allows us to have a local,
rather than a global, representation of those sensors. Notice that mobile location-dependent sensors would have the same
technical challenges of mobile wireless sensor networks [21].

Another issue is about a proper representation of network topology. A tree-structure topology, as in Mobile Ambients,
would be desirable to impose that a device cannot be in two mutually exclusive places at the same time. This desirable
property cannot be expressed in [8], where links between nodes can be added and removed nondeterministically. However,
a tree-structured topology would imply an higher-order bisimulation (for details see [22]); while in the current paper we
look for a simple (first-order) bisimulation proof-technique which could be easily mechanised.

Finally, we would like to explain our choice about barbs. As already said in the previous section there are other possible
definitions of barb. For instance, one could choose to observe the capability to transmit along a channel c, by defining
M ↓c@h if M ≡ (ν g̃)

(
n[I� �c〈v〉.P�P ′ | Q]μk | M ′), with c /∈ g̃ and d(h, k) ≤ rng(c). However, if you consider the system S =

(νc)(M|m[J � �c(x).a!1�nil]μh), with J(a) = 0, for some appropriate m, then it is easy to show that M ↓c@h if and only if
S � �a S ′ with S ′ ↓a@h!1. Thus, the barb on channels can always be reformulated in terms of our barb. The vice versa is
not possible. The reader may also wonder whether it is possible to turn the reduction �a into �τ by introducing, at the
same time, some special barb which would be capable to observe actuators changes. For instance, something like M ↓a@h!v.w
if M ≡ (ν g̃)

(
n[I�a!w.P |Q]μh | M ′), with I(a) = v and v
= w . It should be easy to see that this extra barb would not help in

distinguishing the terms proposed in Example 2.15. Actually, here there is something deeper that needs to be spelled out.
In process calculi, the term β of a barb ↓β is a concise encoding of a context Cβ expressible in the calculus and capable
to observe the barb ↓β . However, our barb ↓a@h!v does not have such a corresponding physical context in our language. For
instance, in CaIT we do not represent the “eyes of a person” looking at the values appearing to some display. Technically
speaking, we do not have terms of the form a?(x).P that could be used by the physical environment to read values on the
actuator a. This is because such terms would not be part of an IoT system. The lack of this physical context, together with
the persistent nature of actuators’ state, explains why our barb ↓a@h!v must work together with the reduction relation �a
to provide the desired distinguishing power of ∼=. On the other hand, the decision of not including �a as part of � gives
to ∼= enough distinguishing power to observe strong preservation of barbs.

Proposition 2.16. If M ∼= N and M ↓a@h!v then N ↓a@h!v .

Proof. We recall that �
def= �τ ∪�σ . Suppose M ↓a@h!v . As ∼= is barb preserving it follows that N ⇓a@h!v , namely, there

is N ′ such that N �∗ N ′ with N ′ ↓a@h!v . However, both reduction relations �τ and �σ do not modify actuator values. As
a consequence, this holds also for �. Thus, it follows that N ↓a@h!v . �
3. Case study: a smart home

In this section, we model the simple smart home discussed in the Introduction, and represented in Fig. 1. The house
consists of an entrance and a lounge, separated by a patio. It spans over 4 contiguous physical locations loci, for i ∈

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.9 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 9
Table 4
A smart home in CaIT.

Sys
def= Phone

∣∣ Home

Phone
def= nP [IP �BoilerCtrl | LightCtrl]mout

Home
def= LM1

∣∣ LM2
∣∣ BM

LM1
def= n1[I1 � LightMng1]sloc1

LM2
def= n2[I2 � LightMng2]sloc4

BM
def= nB [IB �BoilerMng]sloc2

BoilerCtrl
def= fix X .mode?(z).�b〈z〉.σ .X�X

LightCtrl
def= ∏2

j=1 fix X .�c j〈on〉.σ .X�X

LightMngj
def= fix X .�c j(x).lightj!on.σ .X�lightj!off.X for j ∈ {1,2}

BoilerMng
def= fix X .�b(x).[x = man]boiler!on.σ .BoilerManual;TempCtrl�TempCtrl

BoilerManual
def= fix Y .b(y).[y = auto]X;σ .Y

TempCtrl
def= temp?(t).[t < �]boiler!on.σ .X;boiler!off.σ .X

{1, 2, 3, 4}, such that d(loci, locj) = |i − j|. The entrance is in loc1, the patio spans from loc2 to loc3, and the lounge is
in loc4. The house can only be accessed via its entrance. Entrance and lounge have their own lights (actuators) which are
governed by different light manager processes, LightMng. The boiler is in the patio and is governed by a boiler manager
process, BoilerMng. This process senses the local temperature (via a sensor) and decides whether the boiler should be
turned on/off, setting a proper actuator to signal the state of the boiler. The smartphone executes two concurrent processes:
BoilerCtrl and LightCtr. The first one reads user’s commands for the boiler, submitted via the phone touchscreen (a sensor),
and forwards them to the process BoilerMng, via an Internet channel. Whereas, the process LightCtrl interacts with the
processes LightMng, via short-range wireless channels (e.g. Bluetooth, infrared, etc), to automatically turn on lights when
the smartphone physically enters either the entrance or the lounge.

Table 4 provides a detailed formalisation of our smart home in CaIT. The whole system, Sys, is given by the parallel
composition of the smartphone Phone (a mobile device) and the smart home Home (a stationary entity). The smart-
phone is represented as a mobile node, with δ = 1, initially placed outside the house: out
= locj, for j ∈ {1, 2, 3, 4}. As
the phone can only access the house from its entrance, and δ = 1, we have d(out, loc1) = 1 and d(l, loci) ≥ i, for any
l /∈ {loc1, loc2, loc3, loc4} and i ∈ {1, 2, 3, 4}. Its interface IP contains only one sensor, called mode, representing the touch-
screen to control the boiler. This is a node-dependent sensor. The process BoilerCtrl reads sensor mode and forwards its value
to the boiler manager in the patio, BoilerMng, via the Internet channel b (rng(b) = ∞). The domain of the sensor mode is
the set {man, auto}, where man stands for manual and auto for automatic; initially, IP (mode) = auto. In Phone there is a
second process, called LightCtrl, which allows the smartphone to switch on lights only when getting in touch with the light
managers installed in the rooms. Here channels c1 and c2 serve to control the lights of entrance and lounge, respectively;
these are short-range channels: rng(c1) = rng(c2) = 0.

The smart home Home consists of three stationary nodes: LM1, LM2 and BM .
The light managers processes LightMng1 and LightMng2 , are placed in LM1 and LM2, respectively. They manage the

corresponding lights via the actuators lightj , for j ∈ {1, 2}. The domain of these actuators is {on, off}; initially, I j(lightj) = off,
for j ∈ {1, 2}.

The boiler manager process BoilerMng is placed in BM (node nB). Here, the physical interface IB contains a sensor
named temp and an actuator called boiler; temp is a location-dependent temperature sensor, whose domain is N, and boiler
is an actuator to display boiler functionality, whose domain is {on, off}. The boiler manager can work either in automatic or
in manual mode. In automatic mode, sensor temp is periodically checked: if the temperature is under a threshold � then
the boiler will be switched on, otherwise it will be switched off. Conversely, in manual mode, the boiler is always switched
on. Initially, the boiler is in automatic mode, IB (temp) = �, and IB(boiler) = off.

Our system Sys enjoys a number of desirable run-time properties. For instance, if the boiler is in manual mode or its
temperature is under the threshold � then the boiler will get switched on, within one time unit. Conversely, if the boiler
is in automatic mode and its temperature is higher than or equal to the threshold �, then the boiler will get switched off
within one time unit. In general, similar properties cannot be expressed in untimed calculi. Finally, our last property states
the phone cannot act on the lights of the two rooms at the same time, manifesting a kind of “ubiquity”.

For the sake of simplicity, in the following proposition we omit location names both in barbs and in sensor updates,
writing ↓a!v instead of ↓a@h!v , and [s �→ v] instead of [s@h �→ v]. Furthermore, the system Sys′ will denote an arbitrary
(stable) derivative of Sys.

Proposition 3.1. Let Sys (�∗
i �σ)∗ Sys′ , for some Sys′ .

• If Sys′[mode �→ man] �∗
i Sys′′�σ then Sys′′ ↓boiler!on .

• If Sys′[temp �→ t] �∗
i Sys′′�σ , with t < �, then Sys′′ ↓boiler!on .

• If Sys′[temp �→ t]�∗
i Sys′′�σ , with t ≥ �, then Sys′′ ↓boiler!off .

• If Sys′ �∗ Sys′′ ↓light !on then Sys′′ ↓light !off , and vice versa.
i 1 2

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.10 (1-30)

10 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
Table 5
Smart home in CaIT with a position-based light management.

Sys
def= Phone

∣∣ Home

Phone
def= nP [IP �BoilerCtrl | LightCtrl]mout

Home
def= Home

∣∣ C LM

CLM
def= nC [∅�CLightMng]sloc3

LightCtrl
def= fix X .@(x).�g〈x〉.σ .X�X

CLightMng
def= fix X .�g(y).[y = loc1]�c1〈on〉.σ .X�X;[y = loc4]�c2〈on〉.σ .X�X;σ .X�X

The proof of Proposition 3.1 can be found in the Appendix.
Finally, we propose a variant of our system, where lights functionality depends on the position of the smartphone. In-

tuitively, the smartphone detects its current GPS position, via the process @(x).P , and then sends it to a centralised light
manager process of the house, via an Internet channel g . We implement that by adding a module C LM inside the patio, at
location loc3, running a process CLightMng. This process will interact with the local light managers LightMng1 and LightMng2

to switch on/off lights, depending on the GPS position received from the smartphone. The communication between cen-
tralised and local light managers will use the two short-range channels c1 and c2, with slightly different transmission
ranges: rng(c1) = 2 and rng(c2) = 1. In Table 5, we provide the formalisation of this new variant where new components
(with respect to those of Table 4) have been overlined.

Proposition 3.1 holds for system Sys as well. Actually, the two systems are closely related.

Proposition 3.2. For δ = 1, (ν c̃)Sys ∼= (ν c̃)(νg)Sys.

The bisimulation proof-technique developed in the remainder of the paper will be very useful to prove such kind of
non-trivial system equalities (see Proposition 5.13 and Theorem 5.8).

We end this section with a comment. While reading this case study the reader should have realised that our reduction
semantics does not model sensor updates. This is because sensor changes depend on the physical environment, while a
reduction semantics models the evolution of a system in isolation. Interactions with the environment will be treated in the
extensional semantics defined in the next section.

4. Labelled transition semantics

In this section, we provide two labelled semantic models, in the SOS style of Plotkin [12]: the intensional semantics and
the extensional semantics. The adjective intensional is used to stress the fact that the actions of that semantics correspond
to those activities which can be performed by a system in isolation, without any interaction with the external environment.
Whereas, the extensional semantics focuses on those activities which require a contribution of the environment.

4.1. Intensional semantics

Since our syntax distinguishes between networks and processes, we have two different kinds of transitions:

• P
λ−→ Q , with λ ∈ {σ , τ , cv, cv, @h, s?v, a!v}, for process transitions;

• M
ν−→ N , with ν ∈ {σ , τ , a, cv@h, cv@h}, for network transitions.

In Table 6 we report standard transition rules for processes, very much in the style of [13]. Rules (SndP), (RcvP) and (Com)
model communications along channel c. Rule (PosP) is for extracting the physical position of the embedding node. Rules
(Sensor) and (Actuator) serve to read sensors, and to write on actuators, respectively. Rules (ParP) and (Fix) are straightforward.
The remaining rules allow us the derive the timed action σ . In Rule (Delay) a timed prefix is consumed. Rule (Timeout)
models timeouts when channel communication is not possible in the current time interval. Rule (TimeParP) is for time
synchronisation of parallel processes. The symmetric counterparts of Rules (ParP) and (Com) are omitted. We recall that we
assume [b]P ; Q = P if �b� = true, and [b]P ; Q = Q if �b� = false.

In Table 7 we report the transition rules for networks. Rule (Pos) extracts the position of a node. Rule (SensRead) models
the reading of a value from a sensor of the enclosing node. Rules (ActUnChg) and (ActChg) describe the writing of a value
v on an actuator a of the node, distinguishing whether the value of the actuator is changed or not. Rule (LocCom) models
intra-node communications. Rule (TimeStat) models the passage of time for a stationary node. Rule (TimeMob) models both
time passing and node mobility at the end of a time interval. Rules (Snd) and (Rcv) represent transmission and reception
along a global channel. Rule (GlbCom) models inter-node communications. The remaining rules are straightforward. The
symmetric counterparts of Rules (ParN) and (GlobCom) are omitted.

As expected, the reduction semantics and the labelled intensional semantics coincide.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.11 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 11
Table 6
Intensional semantics for processes.

(SndP)
−

�c〈v〉.P�Q
cv−→ P

(RcvP)
−

�c(x).P�Q
cv−→ P {v/x}

(PosP)
−

@(x).P
@h−−→ P {h/x}

(Com)
P

cv−→ P ′ Q
cv−→ Q ′ rng(c) = −1

P | Q
τ−→ P ′ | Q ′

(Sensor)
−

s?(x).P
s?v−−→ P {v/x}

(Actuator)
−

a!v.P
a!v−−→ P

(ParP)
P

λ−→ P ′ λ
= σ

P | Q
λ−→ P ′ | Q

(Fix)
P {fix X .P/X } λ−→ Q

fix X .P
λ−→ Q

(TimeNil)
−

nil
σ−→ nil

(Delay)
−

σ .P
σ−→ P

(Timeout)
−

�π.P�Q
σ−→ Q

(TimeParP)
P

σ−→ P ′ Q
σ−→ Q ′ P |Q

τ−→

P | Q

σ−→ P ′ | Q ′

Table 7
Intensional semantics for networks.

(Pos)
P

@h−−→ P ′

n[I� P]μh
τ−→ n[I� P ′]μh

(SensRead)
I(s) = v P

s?v−−→ P ′

n[I� P]μh
τ−→ n[I� P ′]μh

(ActUnChg)
I(a) = v P

a!v−−→ P ′

n[I� P]μh
τ−→ n[I� P ′]μh

(LocCom)
P

τ−→ P ′

n[I� P]μh
τ−→ n[I� P ′]μh

(ActChg)
I(a)
= v P

a!v−−→ P ′ I′ := I[a �→ v]
n[I� P]μh

a−→ n[I′
� P ′]μh

(TimeStat)
P

σ−→ P ′ n[I� P]sh
τ−→

n[I� P]sh
σ−→ n[I� P ′]sh

(TimeMob)
P

σ−→ P ′ n[I� P]mh
τ−→
 d(h,k) ≤ δ

n[I� P]mh
σ−→ n[I� P ′]mk

(Snd)
P

cv−→ P ′ rng(c) ≥ 0

n[I� P]μh
cv@h−−−→ n[I� P ′]μh

(Rcv)
P

cv−→ P ′ rng(c) ≥ 0

n[I� P]μh
cv@h−−−→ n[I� P ′]μh

(GlbCom)
M

cv@k−−−→ M ′ N
cv@h−−−→ N ′ d(h,k) ≤ rng(c)

M|N τ−→ M ′|N ′

(ParN)
M

ν−→ M ′ ν
= σ

M|N ν−→ M ′|N
(TimePar)

M
σ−→ M ′ N

σ−→ N ′ M|N τ−→

M|N σ−→ M ′|N ′

(TimeZero)
−

0
σ−→ 0

(Res)
M

ν−→ N ν /∈ {cv@h, cv@h}
(νc)M

ν−→ (νc)N

Theorem 4.1 (Harmony theorem). Let ω ∈ {τ , a, σ }:

• M
ω−→ M ′ implies M �ω M ′;

• M �ω M ′ implies M ω−→ M ′′ for some M ′′ such that M ′ ≡ M ′′ .

4.2. Extensional semantics

Here we redesign our LTS to focus on the interactions of our (networks of) systems with the external environment. As
the environment has a logical part (the parallel nodes) and a physical part (the physical world) our extensional semantics
distinguishes two different kinds of transitions:

• M
α−→ N , logical transitions, for α ∈ {τ , σ , a, cv � k, cv � k}, to denote the interaction with the logical environment; here,

actuator changes, τ - and σ -actions are inherited from the intensional semantics, so we don’t provide inference rules
for them;

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.12 (1-30)

12 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
Table 8
Extensional semantics: additional rules.

(SndObs)
M

cv@h−−−→ M ′ d(h,k) ≤ rng(c)

M
cv�k−−−→ M ′

(RcvObs)
M

cv@h−−−→ M ′ d(k,h) ≤ rng(c)

M
cv�k−−−→ M ′

(SensEnv)
v in the domain of s

M
s@h?v−−−−→ M[s@h �→ v]

(ActEnv)
M ↓a@h!v

M
a@h!v−−−→ M

• M
α−→ N , physical transitions, for α ∈ {s@h?v, a@h!v}, to denote the interaction with the physical world, via sensors and

actuators.

In Table 8 the extensional actions deriving from rules (SndObs) and (RcvObs) mention the location k of the logical envi-
ronment which can observe the communication occurring at channel c. Rules (SensEnv) and (ActEnv) model the interaction of
a network M with the physical environment. In particular, the environment can nondeterministically update the current value
of a (location-dependent or node-dependent) sensor s with a value v , and can read the value v appearing on an actuator a
at h. As already discussed in Section 2.2 the environment is potentially aware of its position when performing these actions.

Note that our LTSs are image finite. They are also finitely branching, and hence potentially mechanisable, under the obvious
assumption of finiteness of all domains of admissible values, and the set of physical locations.

5. Coinductive characterisation

Based on our extensional semantics, we are ready to define a notion of weak bisimilarity which will be showed to be
both sound and complete with respect to our contextual equivalence.

We adopt a standard notation for weak transitions. We denote with =⇒ the reflexive and transitive closure of τ -actions,
namely (τ−→)∗ , whereas α=⇒ means =⇒ α−→=⇒, and finally α̂=⇒ denotes =⇒ if α = τ and α=⇒ otherwise.

Definition 5.1 (Bisimulation). A binary symmetric relation R over networks is a bisimulation if M R N and M
α−→ M ′ imply

there exists N ′ such that N
α̂==⇒ N ′ and M ′ R N ′ . We say that M and N are bisimilar, written M ≈ N , if M R N for some

bisimulation R .

A crucial result is that our bisimilarity is a congruence. In order to prove that, we need a technical lemma saying that
the operator for sensor updates does not affect the number of consecutive instantaneous reductions of a network.

Definition 5.2. Let redi() be a function that given a network M returns an upper bound to the number of consecutive
instantaneous reductions that M may perform:

redi(0) = 0 redi(n[I� P]μh) = pfxi(P)

redi((νc)M) = redi(M) redi(M|N) = redi(M) + redi(N)

where pfxi() is a function that given a process P returns an upper bound to the number of untimed prefixes in P that give
rise to an instantaneous reduction when P is plugged into a node (for details, see Definition A.4 in the Appendix).

Lemma 5.3. For any network M, sensor s, location h and value v in the domain of s, it follows that redi(M) = redi(M[s@h �→ v]).

Theorem 5.4. The relation ≈ is contextual.

Proof. We have to show that ≈ is preserved by parallel composition, channel restriction, and sensor updates. The most
difficult part is to prove that M ≈ N entails M[s@h �→ v] ≈ N[s@h �→ v], for all sensors s, locations h, and values v in
the domain of s. In fact, a standard approach to this proof, consisting in trying to show that the relation {(M[s@h �→
v] , N[s@h �→ v]) : M ≈ N} is a bisimulation, is not affordable. In fact, in general, if M

τ−→ M ′ then we do not necessarily
have M[s@h �→ v] τ−→ M ′[s@h �→ v]. This is because sensor updates may have an influence on the evolution of M .

Let � be the well-founded relation over pairs of networks such that (M, N) � (M ′, N ′) if and only if (i) M ≈ N; (ii) M ′ ≈
N ′; (iii) redi(M) + redi(N) > redi(M ′) + redi(N ′). Note that � is trivially irreflexive. Moreover, redi(M) always returns a finite
and positive integer, for any M (see Lemma A.6 in the Appendix). Thus, the relation � does not have infinite descending
chains and it is a well-founded relation.

The proof is by well-founded induction on the definition of �.
Base case. Let M and N be such that M ≈ N and redi(M) + redi(N) = 0. By Definition 5.2 and by inspection of the

reduction semantics in Table 3, redi(N) = 0 entails N
�i . In particular, we have N
�τ . By Theorem 4.1 it follows that

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.13 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 13
N
τ−→
 . By an application of rule (SensEnv) we derive M

s@h?v−−−−→ M[s@h �→ v]. As M ≈ N there are N1, N2 and N ′ such that
N =⇒ N1

s@h?v−−−−→ N1[s@h �→ v] = N2 =⇒ N ′ with M[s@h �→ v] ≈ N ′ . However, as N
τ−→
 it follows that N = N1. By Lemma 5.3,

N1
τ−→
 entails N1[s@h �→ v] τ−→
 . This is enough to derive that N ′ = N[s@h �→ v]. And hence M[s@h �→ v] ≈ N[s@h �→ v].
Inductive Case. Let M ≈ N . Without loss of generality we can assume redi(M) ≥ redi(N). Let M

s@h?v−−−−→ M[s@h �→ v]. As
M ≈ N there is N ′ such that N

s@h?v=====⇒ N ′ and M[s@h �→ v] ≈ N ′ .
Now, if the number of τ -actions contained in the weak transition N

s@h?v=====⇒ N ′ is 0, then N
s@h?v−−−−→ N[s@h �→ v], with

M[s@h �→ v] ≈ N[s@h �→ v], and there is nothing else to prove. Otherwise, we have redi(N ′) < redi(N). By Lemma 5.3
it follows that redi(M) = redi(M[s@h �→ v]). Thus, redi(M[s@h �→ v]) + redi(N ′) < redi(M) + redi(N). Hence (M[s@h �→
v], N ′) ≺ (M, N). By inductive hypothesis we know that M[s@h �→ v][r@k �→ w] ≈ N ′[r@k �→ w] for any sensor r, location
k and value w in the domain of r. Thus, if we choose r = s, k = h and w the value such that M[s@h �→ v][s@h �→ w] =
M[s@h �→ w] = M , then we get M ≈ N ′[s@h �→ w].3

Finally, we need two small sub-results to conclude the proof.

• By Lemma 5.3 we have redi(N ′[s@h �→ w]) = redi(N ′). Since redi(N ′) < redi(N) it follows that (M, N ′[s@h �→ w]) ≺
(M, N). By inductive hypothesis we can close under the operator [s@h �→ v], getting M[s@h �→ v] ≈ N ′[s@h �→
w][s@h �→ v].

• Since ≈ is a transitive relation, M ≈ N ′[s@h �→ w] and M ≈ N , we derive that N ≈ N ′[s@h �→ w]. Since, redi(N) ≤
redi(M) (this was an initial assumption) and redi(N ′[s@h �→ w]) = redi(N ′) < redi(N) it follows that (N, N ′[s@h �→
w]) ≺ (M, N). By inductive hypothesis we can derive N[s@h �→ v] ≈ N ′[s@h �→ w][s@h �→ v].

From these two facts, and by transitivity of ≈ we finally get M[s@h �→ v] ≈ N[s@h �→ v].
The proof that ≈ is preserved by parallel composition and channel restriction can be found in the Appendix. �
In order to prove that our labelled bisimilarity is sound with respect to reduction barbed congruence, we need the

following technical result relating barbs and extensional actions.

Proposition 5.5. M ↓a@h!v if and only if M a@h!v−−−→ M.

Proof. It follows from the definition of rule (ActEnv). �
Theorem 5.6 (Soundness). Let M and N be two networks such that M ≈ N, then M ∼= N.

Proof. We recall that ∼= is defined as the largest symmetric reduction which is reduction closed, barb preserving and
contextual.

Let us prove that the labelled bisimilarity is reduction closed. Suppose that M � M ′ . Then we have two cases: either
M �τ M ′ or M �σ M ′ . In the first case Theorem 4.1 implies M

τ−→≡ M ′ . As M ≈ N there exists N ′ such that N =⇒ N ′ and
M ′ ≈ N ′ . Now, by Theorem 4.1 we have that each of the τ -actions in the sequence N =⇒ N ′ can be rewritten in terms
of �τ . Thus the entire sequence N =⇒ N ′ can be rewritten as a sequence of instantaneous reductions N �∗

τ N ′ , which is
a particular case of N �∗ N ′ , with N ′ ≈ M ′ . Let us consider now the second case: M �σ M ′ . By Theorem 4.1 it follows
that M

σ−→≡ M ′ . As M ≈ N there exists N ′ such that N
σ=⇒N ′ and N ′ ≈ M ′ . By several applications of Theorem 4.1 we get

N �∗
τ �σ �∗

τ N ′ . Thus, N �∗ N ′ , with M ′ ≈ N ′ .
The proof that ≈ is closed with respect to M �a N is similar.
From reduction closure and Proposition 5.5 it follows immediately that ≈ is barb preserving.
Theorem 5.4 says that our labelled bisimilarity is contextual.
As ∼= is the largest relation which is reduction closed, barb-preserving and contextual, it follows that ≈ ⊆ ∼=. �
Next, we prove now that our bisimilarity is also complete. The proof relies on showing that for each extensional action

α it is possible to exhibit a test Tα which determines whether or not a system M can perform the action α. We need a
technical lemma to cut down observing contexts.

Lemma 5.7. Let M and N be two networks. Let O = n[I �a!v.nil]sk , for an arbitrary node name n, an arbitrary actuator a, and arbitrary
values v and w, in the domain of a, such that I is only defined for a and I(a) = w
= v. If both M|O and N|O are well-formed and
M|O ∼= N|O then M ∼= N.

Theorem 5.8 (Completeness). Let M and N such that M ∼= N, then M ≈ N.

3 By Definition 2.9 the value on M of the sensor s located at h must be w , if defined. Otherwise it can be any admissible value for s.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.14 (1-30)

14 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
Proof. We show that relation R = {(M, N) | M ∼= N} is a bisimulation up to ≡.4 Let us consider two networks M and N
such that (M, N) ∈ R. We proceed by case analysis on the possible extensional actions of M (the case when N moves first
is similar).

First, we consider logical transitions.

• Let us suppose that M
a−→ M ′ . By Theorem 4.1 we derive M �a M ′ . Let us define the test Ta:

Ta
def= n[J�b!1]sk

where n is a fresh node name and b is a fresh actuator such that J(b) = 0. By Proposition 2.3, no σ -move can fire
if a reduction �b is possible. Thus, the presence of a barb ⇓b@k!0 means that no σ -actions have occurred yet. Since
M �a M ′ , we can apply rule (parn) to infer M|Ta �a M ′|Ta , with M ′|Ta ↓b@k!0. As M ∼= N and the relation ∼= is both
contextual and reduction closed, it follows that N|Ta �∗�a �∗ N̂ , for some N̂ , with M ′|Ta ∼= N̂ . As a consequence,
N̂ ⇓b@k!0. This implies that N̂ ≡ N ′|Ta for some N ′ , such that N|Ta �∗�a �∗ N ′|Ta , with N �∗�a �∗ N ′ , and M ′|Ta ∼=
N ′|Ta . As the presence of a barb ⇓b@k!0 ensures that no σ -actions have occurred, it follows that N �∗

τ �a �∗
τ N ′ . By

several applications of Theorem 4.1 it follows that N
a==⇒≡ N ′ (this relies on the straightforward result that ≡ is a strong

bisimulation). By M ′|Ta ∼= N ′|Ta and Lemma 5.7 we derive M ′ ∼= N ′ . This implies that M ′ ≡R ≡ N ′ .
• Let us suppose that M

τ−→ M ′ . This case is similar to the previous one with Tτ = Ta .

• Let us suppose that M
σ−→ M ′ . By Theorem 4.1 we derive M �σ M ′ . As M ∼= N , by Proposition 2.14 there exists N ′ such

that N �∗
τ �σ �∗

τ N ′ and M ′ ∼= N ′ . By several applications of Theorem 4.1 we obtain N σ=⇒ ≡ N ′ . As M ′ ∼= N ′ , it follows
that M ′ ≡R ≡ N ′ .

• Let us suppose that M
cv�k−−−→ M ′ . This transition can only be derived by an application of rule (SndObs) if M

cv@h−−−→ M ′ ,
for some h, such that d(h, k) ≤ rng(c). Let us build up a context that is capable to observe the action cv � k. We define
testing term Tcv�k . For simplicity, in the following we abbreviate it with T :

T
def= m[J� �c(x).[x = v]b!1.b!0;nil�nil]sk

where m is a fresh node name and b is a fresh actuator name such that J(b) = 0. The intuition behind this testing
process is the following: T has barb ⇓b@k!1 only if the communication along c has already occurred and no time actions
have been fired (Proposition 2.3).

Since ∼= is contextual, M ∼= N implies M|T ∼= N|T . From M
cv@h−−−→ M ′ we can easily infer M|T τ−→ b−→ M ′|T ′ , with T ′ =

m[J[b �→ 1] �b!0.nil]sk . Notice that M ′|T ′ ↓b@k!1. By Theorem 4.1, we derive M|T �τ �b M ′|T ′ . As M|T ∼= N|T it follows
that N|T �∗�b �∗ N̂ , with N̂ ⇓b@k!1. This implies that N̂ ≡ N ′|T ′ , for some N ′ . Furthermore, no timed actions have
occurred in the reduction sequence, and hence: N|T �∗

τ �b �∗
τ N ′|T ′ . By several applications of Theorem 4.1 we obtain

N|T =⇒ b−→ =⇒≡ N ′|T ′ . This implies that N
cv@h′=====⇒≡ N ′ , for some h′ such that d(h′, k) ≤ rng(c). By an application of rule

(SndObs) we get N
cv�k====⇒≡ N ′ . From M ′|T ∼= N ′|T and Lemma 5.7 we derive M ′ ∼= N ′ . This allows us to derive that

M ′ ≡R ≡ N ′ .
• The case M

cv�k−−−→ M ′ is similar to the previous one. The observing term is

Tcv�k
def= m[J� �c〈v〉.b!1.b!0.nil�nil]sk

where m is a fresh node name and b is a fresh actuator name such that J(b) = 0.

Let us consider now physical transitions. Here, as already explained in Section 2.3, we will not provide an observing
context as our language for IoT systems does not allow us to write physical observers.

• Let M
a@h!v−−−→ M ′ . Since this transition can be only derived by an application of rule (ActEnv), it follows that M ′ = M and

M ↓a@h!v . By Proposition 2.16 we obtain N ↓a@h!v . By applying again rule (ActRead) to N , we obtain N
a@h!v−−−→ N ′ = N

with (M ′, N ′) ∈R.

• Let M
s@h?v−−−−→ M ′ . Since this transition can be only derived by an application of rule (SenEnv), it follows that M ′ =

M[s@h �→ v]. By an application of the same rule (SensEnv) we obtain N
s@h?v−−−−→ N ′ = N[s@h �→ v]. As ∼= is contextual we

have M[s@h �→ v] ∼= N[s@h �→ v]. This implies that (M ′, N ′) ∈R. �
By Theorem 5.6 and Theorem 5.8 we derive the full abstraction result: reduction barbed congruence coincides with our

labelled bisimilarity.

4 We recall that two structural congruent networks have exactly the same labelled transitions [10].

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.15 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 15
Theorem 5.9 (Full abstraction). M ≈ N if and only if M ∼= N.

Remark 5.10. A consequence of Theorem 5.9 and Remark 2.12 is that our bisimulation proof-technique remains sound in a
setting where nondeterministic sensor updates are replaced by some specific model for sensors.

5.1. Algebraic laws and examples

As testbed for our bisimulation proof-technique we prove a number of algebraic laws on well-formed networks. Some
of these laws are valid with respect to a stronger form of bisimilarity which takes into account the number of τ -actions
performed by a process. The expansion relation [23], written �, is an asymmetric variant of ≈ such that P � Q holds if
P ≈ Q and Q has at least as many τ -moves as P .

Theorem 5.11 (Some algebraic laws).

1. n[I �a!v.P |R]μh � n[I � P |R]μh , if I(a) = v and a does not occur in R;

2. n[I � @(x).P |R]μh � n[I � {h/x}P |R]μh ;

3. n[I � �c〈v〉.P�S|�c(x).Q �T |R]μh � n[I � P |Q {v/x}|R]μh , if c is not in R and rng(c) = −1;

4. (νc)(n[I� �c〈v〉.P�S|R]μh |m[J� �c(x).Q �T |U]μ′
k) � (νc)(n[I� P |R]μh |m[J� Q {v/x}|U]μ′

k), if rng(c) = ∞ and c does not oc-
cur in R and U ;

5. n[I � P]μh ≈ n[I � nil]μh , if subterms �π.P1�P2 or a!v.P1 do not occur in P ;

6. n[I � nil]μh ≈ 0, if I(a) is undefined for any actuator a;
7. n[∅ � P]mh ≈ m[∅ � P]sk , if P does not contain terms of the form @(x).Q and for any channel c in P either rng(c) = ∞ or

rng(c) = −1.

Laws 1–4 are a sort of tau-laws. Laws 5 and 6 model garbage collection of processes and nodes, respectively. Law 7 gives
a sufficient condition for node anonymity as well as for non-observable node mobility.

Next, we show that our labelled bisimilarity can be used to deal with more complicated systems. In the following,
we apply non-trivial up to expansion proof-techniques5 to formally prove that the two systems Sys and Sys mentioned in
Proposition 3.2 are bisimilar (up to an obvious channel restriction). In this respect, the first four laws of Theorem 5.11 are
fundamentals.

The following lemma basically says that, under specific conditions, our bisimilarity is preserved by parallel composition
on processes within nodes.

Lemma 5.12. If (ν c̃)
(
n[I� P1]μh |O 1

) ≈ (νd̃)
(
n[I� P2]μk |O 2

)
then (νc̃)

(
n[I� P1|R]μh |O 1

) ≈ (νd̃)
(
n[I� P2|R]μk |O 2

)
, for any pro-

cess R that can only read sensors, transmit along some fresh Internet channel, and let time pass.

We can now rely on Theorem 5.9 to rephrase Proposition 3.2 by replacing reduction barbed congruence with our labelled
bisimilarity.

Proposition 5.13. If δ = 1 then (νc̃)Sys ≈ (ν c̃)(νg)Sys.

Proof. First of all, notice that we can focus on smaller systems. This is because:

• (ν c̃)Sys = (ν c̃)
(
Phone|LM1|BM|LM2

) ≡ (ν c̃)
(
Phone|LM1|LM2

) ∣∣ BM

• (ν c̃, g)Sys = (ν c̃, g)
(
Phone|LM1|BM|LM2|C LM

) ≡ (ν c̃, g)
(
Phone|LM1|LM2|C LM

) ∣∣ BM .

By Theorem 5.4 the relation ≈ is preserved by parallel composition. Thus, in order to prove our result it is enough to show
that:

(ν c̃)
(
Phone|LM1|LM2

) ≈ (ν c̃)(νg)
(
Phone|LM1|LM2|C LM

)
.

Actually, we can consider even smaller systems. As channels c1, c2 and g do not occur in BoilerCtrl, and Phone =
nP [IP � BoilerCtrl | LightCtrl]mout , and Phone = nP [IP � BoilerCtrl | LightCtrl]mout , by Lemma 5.12 it is enough to show that:

(ν c̃)
(
nP [IP � LightCtrl]mout |LM1|LM2

) ≈ (ν c̃)(νg)
(
nP [IP � LightCtrl]mout |LM1|LM2|C LM

)
.

Let us call SL the system on the left side, and SR the system on the right side. We define the relation:

5 The up-to-expansion proof-technique for the standard notion of weak bisimilarity is notoriously sound [10].

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.16 (1-30)

16 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
R def=
17⋃

i=1

(
(ν c̃)Mi , (ν c̃)(νg)Ni

)

where the details of the pairs (Mi, Ni) are given in the Appendix. We will prove that the symmetric closure of R is
a bisimulation up to expansion [10]. Then, we will show that SL = (ν c̃)M1 R (ν c̃)(νg)N1 � SR. As the up to expansion
technique is sound, and the expansion relation � is a transitive relation, it follows that SL ≈ SR. The details of the proof can
be found in the Appendix. �
6. Conclusions and related work

We have proposed a process calculus, called CaIT, to investigate the semantic theory of networked systems in the
Internet of Things paradigm. The dynamics of CaIT is formalised by means of an intuitive reduction semantics and (a more
operational) labelled intensional semantics that model the evolution of systems in isolation. An Harmony theorem shows
that these two different operational semantics coincide. An extensional semantics has then been defined to emphasise the
interaction of IoT systems with the environment. The extensional semantics has been used to define a labelled bisimilarity
which has been proved to be a coinductive characterisation of a natural notion of contextual equivalence. Our bisimilarity
has been used to prove non-trivial system equalities.

To our knowledge, Lanese et al.’s IoT-calculus [8] is the first process calculus for IoT systems capturing the interaction
between sensors, actuators and computing processes. Smart objects are represented as point-to-point communicating nodes
of heterogeneous networks. The network topology is represented as a graph whose links can be nondeterministically es-
tablished or destroyed. The paper contains a labelled transition system with two different kinds of transitions. The first
one takes into account interactions with the physical environment, similarly to our physical transitions, but includes also
topology changes. The second kind of transition models nodes activities, mainly communications, similarly to our logical
transitions. The paper proposes two notions of bisimilarity: one using only the first kind of transitions and equating systems
from the point of view of the end user, and a second one using all transitions and equating systems from the point of view
of the other devices.

We report here the main differences between CaIT and the IoT-calculus. In CaIT, we support timed behaviours, with
desirable time, consistency and fairness properties (see, for instance, Proposition 3.1). Both sensors and actuators in CaIT
are under the control of a single entity, i.e. the controller process of the node where they are deployed. This was a security
issue. The nondeterministic link entailment of the IoT-calculus makes the semantics of communication simpler than ours as
it does not rely on the distance between nodes; on the other hand it does not allow to enforce that a smart device should be
either in a place or in another, but never in both. This can be easily represented in CaIT (again, see Proposition 3.1). CaIT
has a finer control of inter-node communications as they depend on nodes’ distance and transmission range of channels.
Node mobility in CaIT is time constrained: in one time unit at most a fixed distance δ may be covered. Finally, Lanese
et al.’s end-user bisimilarity shares most of the motivations of our bisimilarity. In the IoT-calculus, end users provide values
to sensors and check actuators. They can also move nodes thus creating or removing connections, but they cannot observe
channel communication. Thus, two systems with different connections between nodes are not end-user bisimilar. Unlike
end-user bisimilarity, our notion of bisimilarity observes node mobility in a milder manner: the movements of a mobile
node can be observed if the node either uses an actuator or transmits along a short-range channel or communicates its
physical position. Finally, end-user bisimilarity is not preserved by parallel composition. Compositionality is recovered by
observing also channel communication. The resulting bisimilarity models observation from the point of view of the other
devices. Its distinguishing power is definitely stronger than that of our bisimilarity.

More recently, Bodei et al. [24,25] have proposed an untimed process calculus, IOT-LYSA, supporting a control flow
analysis that safely approximates the abstract behaviour of IoT systems. Essentially, they track how data spread from sensors
to the logics of the network, and how physical data are manipulated. Intra-node generative communications in IoT-LYSA are
implemented through a shared store à la Linda [26]. In this manner, physical data are made available to software entities
that analyse them and trigger the relevant actuators to perform the desired behaviour. The calculus adopts asynchronous
multi-party communication among nodes taking care of node proximity (the topology is static). The dynamics of the calculus
is given in terms of a reduction relation. No behavioural equivalences are defined.

Both the IoT-calculus, CaIT and IOT-LYSA do not represent the physical processes which are part of a IoT system. Re-
cently, we have proposed a calculus for cyber-physical processes, called CCPS [27,28], where the details of a physical process
can be expressed in terms of difference equations. The calculus is equipped with a LTS semantics and a bisimulation-based
behavioural semantics which supports compositional reasonings. The representation of the physical processes in CCPS is
suitable for a formal study of cyber-physical attacks, i.e. attacks targeting physical devices (sensors and actuators) [29].

Our calculus takes inspiration from algebraic models for wireless systems [30–39,15,40]. All these models adopt broad-
cast communication on partial topologies, while we consider point-to-point communication, as in [8]. Our way of modelling
network topology is taken from [30,32]. Paper [41] provides formal models for node mobility depending on the passage of
time. Proposition 2.14 was inspired by [15]. A fully abstract observational theory for untimed ad hoc networks with broad-
cast communication can be found in [32,33]. Paper [15] contains a fully abstract observational theory for timed wireless
systems with broadcast communication. Paper [38] provides a symbolic semantics for ad hoc networks.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.17 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 17
Vigo et al. [42] proposed a calculus for wireless-based cyber-physical (CPS) systems endowed with a theory that al-
lows modelling and reasoning about cryptographic primitives, together with explicit notions of communication failure and
unwanted communication. One of the main goal of the paper is a faithful representation of denial-of-service. However, as
pointed out in [43], the calculus does not provide a notion of network topology, local broadcast and behavioural equivalence.
It also lacks a clear distinction between physical components (sensors and actuators) and logical ones (processes). Compared
to [42], paper [43] introduces a static network topology and enriches the theory with an harmony theorem.

As already said, CaIT has some similarities with the synchronous languages of the Esterel family [17,19,44]. In this
setting, computations proceed in phases called “instants”, which are quite similar to our time intervals. For instance, our
timed reduction semantics has many points in common with Attar and Castellani’s C RL synchronous reactive language [44],
although C RL does not support mobility. The authors define two bisimulation equivalences. The first bisimulation formalises
a fine-grained observation of programs: the observer is viewed as a program, which is able to interact with the observed
program at any point of its execution. The second reflects a coarse-grained observation of programs: here the observer is
viewed as part of the environment, which interacts with the observed program only at the start and the end of instants.
The fine-grained bisimilarity is more in the style of a bisimulation for a process calculus.

CaIT is somehow reminiscent of De Nicola et al.’s SCEL language [45], a framework to model behaviour, knowledge, and
data aggregation of Autonomic Systems.

Finally, the paper at hand extends the conference paper [1] in the following aspects: (i) full details of all proofs are
spelled out, in particular we provide a non-standard proof of Theorem 5.4; (ii) the proof of Proposition 5.13 is a rare
example of how compositional reasonings and up-to techniques can be used together to prove the bisimilarity of non-trivial
systems; (iii) the design choices behind the primitives of the languages are explained in much more detail.

Acknowledgments

We thank Ilaria Castellani and Matthew Hennessy for their precious comments on an early draft. We thank Valentina
Castiglioni for an early writing of the proof of the Harmony theorem. We thank the anonymous reviewers for their valuable
comments and careful reviews.

Appendix A. Proofs

A.1. Proofs of Section 2

In order to prove Proposition 2.2 we need a technical lemma on time determinism of nodes.

Lemma A.1. If n[P]μh �σ n′[P ′]μ′
h′ and n[P]μh �σ n′′[P ′′]μ′′

h′′ then n = n′ = n′′ , P ′ ≡ P ′′ , μ = μ′ = μ′′ and d(h′, h′′) ≤ 2δ.

Proof. By structural induction on P . �
Proof of Proposition 2.2. The proof is by rule induction on why M �σ M ′ . The most significant case is when M �σ M ′ is
derived by an application of rule (timemob):

n[I�∏
i∈I�πi .Pi�Q i |∏ j∈ J σ .P j]mk
�τ d(k,k′) ≤ δ

n[I�∏
i∈I�πi .Pi�Q i |∏ j∈ J σ .P j]mk �σ n[I� ∏

i∈I Q i|∏ j∈ J P j]mk′

with M = n[I�∏
i∈I�πi .Pi�Q i |∏ j∈ J σ .P j]mk and M ′ = n[I � ∏

i∈I Q i | ∏ j∈ J P j]mk′ . Suppose there exists M ′′ such that
M �σ M ′′ . Notice that, due to its structure, network M may perform a timed reduction only by an application of rule
(timemob). Thus, by rule (timemob) we would have:

n[I�∏
i∈I�πi .Pi�Q i|∏ j∈ J σ .P j]mk
�τ d(k,k′′) ≤ δ

n[I�∏
i∈I�πi .Pi�Q i |∏ j∈ J σ .P j]mk �σ n[I� ∏

i∈I Q ′′
i |∏ j∈ J P ′′

j]mk′′

with M ′′ = n[I � ∏
i∈I Q ′′

i | ∏ j∈ J P ′′
j]mk′′ . By Lemma A.1 it follows that

∏
i∈I Q i | ∏ j∈ J P j ≡ ∏

i∈I Q ′′
i | ∏ j∈ J P ′′

j . Moreover, by
triangular inequality it holds that d(k′, k′′) ≤ d(k, k′) + d(k, k′′) ≤ 2δ.

The other cases are similar. �
In order to prove maximal progress we need two simple lemmas whose proofs are omitted.

Lemma A.2. If
∏

i∈I ni[Ii � Pi]μi
hi

�τ M then
∏

i∈I ni[Ii � Pi |Q i]μi
hi

�τ N, for some N.

Lemma A.3. If n[P]μ
�σ then for any process Q we have n[P |Q]μ
�σ .
h h

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.18 (1-30)

18 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
Proof of Proposition 2.3. The proof is by rule induction on why M �i M ′ . The most involved case is when M �i M ′ is
derived by an application of rule (parp). This means that

M =
∏
i∈I

ni[Ii � Pi|Q i]μi
hi

�i

∏
i∈I

ni[I′
i � P ′

i |Q i]μi
h′

i
= M ′

because
∏

i∈I ni[Ii � Pi]μi
hi

�i
∏

i∈I ni[I′
i � P ′

i]μi
h′

i
. By inductive hypothesis

∏
i∈I ni[Ii � Pi]μi

hi

�σ . We recall that rule (timepar)

is the only one yielding timed reductions on parallel networks. Thus, if
∏

i∈I ni[Ii � Pi]μi
hi

�σ it means that rule (timepar)

could not be applied. Then, there are only two possibilities.

• Either
∏

i∈I ni[Ii � Pi]μi
hi

�τ N , for some N . Then by Lemma A.2 we obtain M �τ N ′ , for some N ′ . As rule (timepar) is
the only rule yielding timed reductions from parallel networks, it follows that M
�σ .

• Or n j[I j � P j]μ j

h j

�σ , for some j ∈ I . Then by Lemma A.3 we have n j[I j � P j|Q j]μ j

h j

�σ . As rule (timepar) is the only

rule yielding timed reductions from parallel networks, it follows that M
�σ .

The remaining cases work smoothly. �
Proof of Proposition 2.4. The proof is by contradiction. We suppose there is no N such that M �σ N and we prove that
there is M ′ such that M �i M ′ . We proceed by induction on the structure of M .

• Let M = 0. This case is not admissible because by an application or rule (timezero) we derive M �σ M .
• Let M = n[P]μh . As M
�σ and (timestat) and (timemob) are the only rules that could be used to derive a timed reduction

from M , it follows that there are two possibilities.
– Either M �τ M ′ , for some M ′ , and we are done.
– Or P has not the proper structure for applying rule (timestat) or rule (timemob). This means that P ≡ P1|P2, with

P1 = ρ.P ′
1 and ρ ∈ {@(x), s?(x), a!v}. In this case, by an application of one among the rules (pos), (sensread), (actunchg),

and (actchg), followed by an application of rule (parp), we can infer M �i M ′ , for some M ′ .
• Let M = M1|M2, for some M1 and M2. As M
�σ and (timepar) is the only rule which could be used to derive a timed

reduction from M , it follows that there are two possibilities.
– Either M �τ M ′ , for some M ′; hence M �i M ′ and we are done.
– Or at least one among M1 and M2 cannot perform a timed reduction. Suppose M1
�σ ; by inductive hypothesis there

is M ′
1 such that M1 �i M ′

1. By an application of rule (parn) we derive M �i M ′
1|M2.

• Let M = (νc)M1. This case requires an easy application of the inductive hypothesis. �
In order to prove Proposition 2.5, we need a couple of technical definitions and lemmas.

Definition A.4. Let use define pfxi() as the function that given a process P returns an upper bound to the number of the
untimed prefixes that can give rise to an instantaneous reduction when P is plugged in a node.

pfxi(nil) = 0 pfxi(σ .P) = 0 pfxi(ρ.P) = 1 + pfxi(P) (if ρ
= σ)
pfxi(X) = ∞ pfxi(fix X .P) = pfxi(P) pfxi(�π.P�Q) = 1 + pfxi(P)

pfxi([b]P ; Q) = max(pfxi(P),pfxi(Q)) pfxi(P | Q) = pfxi(P) + pfxi(Q).

Lemma A.5. For any closed process P , pfxi(P) is finite.

Proof. The proof is by structural induction on P . The only interesting case is when P = fix X .P1, as P1 may contain the
process variable X and pfxi(X) = ∞. However, in our calculus we only admit time-guarded recursion. Thus, X may occur in
P1 only if guarded by at least one σ prefix, and pfxi(σ .Q) = 0, for any Q . It follows that pfxi(fix X .P1) ∈N, for any P1. �

Thus, the function redi() of Definition 5.2 provides an upper bound to the number of consecutive instantaneous reduc-
tions performed by a system. From Lemma A.5 it can be easily proved that redi(M) is always finite.

Lemma A.6. For any network M, redi(M) is finite.

Proof. By induction on the structure of M . �
Proof of Proposition 2.5. By induction on the structure of M; it follows from Lemma A.6. �

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.19 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 19
A.2. Proofs of Section 3

Let us prove Proposition 3.1. For that we need a technical lemma.

Lemma A.7. If Sys (�∗
i �σ)∗ Sys′ then Sys′ ≡ Phone′|Home′ where:

• Phone′ = nP [IP � BoilerCtrl | LightCtrl]ml′ , for some l′ , with IP (mode) = auto
• Home′ = LR1|LR2|BoilerMng, for some LR1 and LR2 ,
• BoilerMng = nB [IB � BoilerMng]sloc2 , with IB(temp) = �.

Proof. The proof is by mathematical induction on the integer j such that Sys (�∗
i �σ) j Sys′ .

The case j = 0 is trivial.
Let us move on the inductive case. Let Sys (�∗

i �σ) j Sys1 , for j > 0. By inductive hypothesis we have: Sys1 ≡
Phone1|Home1 where:

• Phone1 = nP [IP � BoilerCtrl | LightCtrl]ml1 , for some l1, with IP (mode) = auto
• Home1 = LR1|LR2|BoilerMng, for some LR1 and LR2,
• BoilerMng = nB [IB � BoilerMng]sloc2, with IB(temp) = �.

We recall that sensor changes are not modelled in the reduction semantics as they require the intervention of the physical
environment. Thus, the value of all sensors will remain unchanged during the reduction sequence. We show that whenever
S ys1 �∗

i �σ Sys′ , then Sys′ has still the same structure as S ys1. Let us consider a portion of S ys1 composed by the phone
and the boiler manager. Then, we have the following sequence of instantaneous reductions. We recall that IP (mode) = auto
and IB(temp) = �.

Phone1
∣∣ BoilerMng = nP [IP � BoilerCtrl | LightCtrl]ml1

∣∣ nB[IB � BoilerMng]sloc2

�i nP [IP � �b〈auto〉.σ .BoilerCtrl� . . . | LightCtrl]ml1
∣∣ nB [IB � BoilerMng]sloc2

�i nP [IP �σ .BoilerCtrl | LightCtrl]ml1
∣∣ nB[IB � T empCtrl]sloc2

�i nP [IP �σ .BoilerCtrl | LightCtrl]ml1
∣∣ nB [IB �boiler!off.σ .BoilerMng]sloc2

�i nP [IP �σ .BoilerCtrl | LightCtrl]ml1
∣∣ nB [IB [boiler �→ off]�σ .BoilerMng]sloc2

= nP [IP �σ .BoilerCtrl | LightCtrl]ml1
∣∣ nB [IB �σ .BoilerMng]sloc2 .

Now, both the phone and the boiler manager can only perform a timed reduction. However, the whole system may have
further instantaneous reductions depending whether the phone is in position to interact with the light managers of the
house. In any case, thanks to (i) well-timedness (Proposition 2.5), (ii) patience (Proposition 2.4), (iii) rule (parn), (iv) rule
(struct) we will eventually have a reduction sequence of the form:

Phone1
∣∣ LR1

∣∣ LR2
∣∣ BoilerMng �∗

i �σ Phone′ ∣∣ LR ′
1

∣∣ LR ′
2

∣∣ BoilerMng

in which IP (mode) = auto and IB(temp) = � (the reduction semantics cannot change sensor values) and Phone′ is exactly
as Phone1 except for the fact that is located at a possibly new location l′ , with d(l1, l′) ≤ 1. �
Proof of Proposition 3.1. By Lemma A.7 we deduce that Sys′ preserves the structure of S ys and also the value of its sensors.
Let us prove the four cases of the proposition, one by one.

1. Let us consider the evolution of Sys′[mode �→ man]. By inspection on the definitions in Table 4 it is easy to derive that

Sys′[mode �→ man] ≡ Phone′[mode �→ man]|LR1|LR2|nB [IB � BoilerMng]sloc2
�∗

i �σ Phone′[mode �→ man]|LR ′
1|LR ′

2|nB [I′
B � BoilerManual]sloc2

with I′
B(boiler) = on.

2. Let us consider the evolution of Sys′[temp �→ t], with t < �. We spell out this case in more detail. We recall that the
sensor mode of the phone is set to auto. We also recall that, by an application of rules (parn) and (struct), if a parallel
component can execute an instantaneous reduction then the whole network can execute the same reduction. Thus, in
the following we concentrate on the reductions deriving from the phone and the boiler manager when t < �.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.20 (1-30)

20 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
(Phone′ ∣∣ BoilerMng)[temp �→t]
= nP [IP � BoilerCtrl | LightCtrl]ml′

∣∣ nB[IB [temp �→ t]� BoilerMng]sloc2

�i nP [IP � �b〈auto〉.σ .BoilerCtrl� . . . | LightCtrl]ml′
∣∣ nB[I′

B � BoilerMng]sloc2

�i nP [IP �σ .BoilerCtrl | LightCtrl]ml′
∣∣ nB[I′

B � TempCtrl]sloc2

�i nP [IP �σ .BoilerCtrl | LightCtrl]ml′
∣∣ nB[I′

B � boiler!on.σ .BoilerMng]sloc2

�i nP [IP �σ .BoilerCtrl | LightCtrl]ml′
∣∣ nB[I′

B [boiler �→ on]�σ .BoilerMng]sloc2

= nP [IP �σ .BoilerCtrl | LightCtrl]ml′
∣∣ nB[I′′

B �σ .BoilerMng]sloc2

where I′′
B(temp) = t < � and I′′

B(boiler) = on. Now, both the phone and the boiler manager can only perform a timed
reduction. However, the whole system may have further instantaneous reductions depending whether the phone is in
position to interact with the light managers of the house. In any case, thanks to well-timedness (Proposition 2.5) and
patience (Proposition 2.4) we will eventually have a reduction sequence of the form:

Sys′[temp �→ t] �∗
i �σ Phone′′|LR ′

1|LR ′
2|nB [I′′

B � BoilerMng]sloc2

where I′′
B(temp) = t , I′′

B(boiler) = on, and the mobile phone may have moved to a new location l′′ , with d(l′, l′′) = 1.
3. Let us consider the evolution of Sys′[temp �→ t], with t ≥ �. Here, similarly to the previous case, we can derive:

Sys′[temp �→ t] ≡ Phone′|LR1|LR2|nB [IB [temp �→ t]� BoilerMng]sloc2

�∗
i �σ Phone′′|LR ′

1|LR ′
2|nB [I′

B � BoilerMng]sloc2

with I′
B(temp) = t and I′

B(boiler) = off.
4. We prove only the implication from left to right. The other is similar. We know that Sys′ �∗

i Sys′′ ↓light1!on . By Lemma A.7
we know the structure of Sys′ . We recall that in S ys the actuator light1 is set to off. Notice also that this actuator is
exclusively managed via the process LightMng1 , running at the stationary node n1, located al loc1. More precisely, the
actuator light1 can be modified by LightMng1 only after a synchronisation at the short-range channel c1. We recall that
rng(c1) = 0. We also recall that mobile nodes can change their location only by executing a timed reduction via rule
(timemob). We fixed δ = 1, which is the maximum distance that a mobile node can afford within a time unit. Thus, if
Sys′ �∗

i Sys′′ ↓light1!on there are two possibilities:
• either the mobile phone in current time interval is located at loc1;
• or the mobile phone was located at loc1 in the previous time interval, and in the current time interval it is at a

location l′ , with d(l′, loc1) = 1, as δ = 1.
In the first case, the light manager LightMng2 , located at loc4, has necessarily set the actuator light2 to off. This is
because rng(c2) = 0, d(loc1, loc4) = 3, and the only manner to switch on light2 is to place the mobile phone at loc4.
However, as the mobile phone is currently at loc1, and δ = 1, this could have happened only 3 time instants ago. By
that time, the timeout in LightMng2 has already switched off the light.
The second case, when the mobile phone is currently located at some location l′ , with d(l′, loc1) = 1, is similar. This
is because d(loc1, loc4) = 3, and by triangular inequality d(l′, loc4) ≥ 2. Thus, the phone is far enough to ensure that
timeout of LightMng2 already fired to switch off light2 . �

A.3. Proofs of Section 4

This section is devoted to the proof of the Harmony Theorem (Theorem 4.1). We start with a technical lemma that provides
the structure of a process depending on its possible actions.

Lemma A.8. Let P be a process.

1. If P
σ−→ P ′ then P ≡ ∏

i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j and P ′ ≡ ∏
i∈I Q i | ∏ j∈ J P j , for appropriate index sets, prefixes and pro-

cesses.

2. If P s?v−−→ P ′ then there are P1 and Q such that P ≡ s?(x).P1 | Q and P ′ ≡ P1{v/x} | Q .

3. If P a!v−−→ P ′ then there are P1 and Q such that P ≡ a!v.P1 | Q and P ′ ≡ P1 | Q .

4. If P @h−−→ P ′ then there are P1 and Q such that P ≡ @(x).P1 | Q and P ′ ≡ P1{h/x} | Q .

5. If P cv−→ P ′ then there are P1, Q 1 and Q such that P≡�c〈v〉.P1�Q 1 | Q and P ′≡P1 | Q .

6. If P cv−→ P ′ , then there exist P1, Q 1, Q s.t. P ≡ �c(x).P1�Q 1 | Q and P ′ ≡ P1{v/x} | Q .

7. If P τ−→ P ′ then there are P1, P2 , Q 1 , Q 2 , R, and c with rng(c) = −1, such that P ≡ �c(x).P1�Q 1 | �c〈v〉.P2�Q 2 | R and P ′ ≡
P1{v/x} | P2 | R.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.21 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 21
Proof. Let us start with item (1). We proceed by rule induction on why P
σ−→ P ′ .

• Let P
σ−→ P ′ by an application of rule (TimeNil); then the result is immediate for I = J = ∅.

• Let P
σ−→ P ′ by an application of rule (Delay) with P = σ .P1 and P ′ = P1. Thus, for I = ∅ and J = {1} we have P =

σ .P1 ≡ nil | σ .P1 and P ′ = P1 ≡ nil|P1.

• Let P
σ−→ P ′ by an application of rule (Timeout)

with P = �π1.P1�Q 1 and P ′ = Q 1. Thus, for I = {1} and J = ∅ we have P = �π1.P1�Q 1 ≡ �π1.P1�Q 1|nil and P ′ = Q 1 ≡
Q 1|nil.

• Let P
σ−→ P ′ by an application of rule (TimeParP)

with P = R1 | R2 and P ′ = R ′
1 | R ′

2, because R1
σ−→ R ′

1 and R2
σ−→ R ′

2. By inductive hypothesis, there exist I, J , I ′ and
J ′ such that R1 ≡ ∏

i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j , R ′
1 ≡ ∏

i∈I Q i | ∏ j∈ J P j , R2 ≡ ∏
i′∈I ′ �πi′ .Pi′ �Q i′ | ∏ j′∈ J ′ σ .P j′ and R ′

2 ≡∏
i′∈I ′ Q i′ | ∏ j′∈ J ′ P j′ . To conclude this case we choose as index sets Ī = I ∪ I ′ and J̄ = J ∪ J ′ .

• Let P
σ−→ P ′ by an application of rule (Fix)

with P = fix X .P1 and P ′ = P2, because P1{fix X .P1/X } σ−→ P2. By inductive hypothesis, there exist I and J such that
P1{fix X .P1/X } ≡ ∏

i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j and P2 ≡ ∏
i∈I Q i | ∏ j∈ J P j . By structural congruence we have fix X .P1 ≡

P1{fix X .P1/X } and therefore P = fix X .P1 ≡ ∏
i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j .

Let us prove the item (2) of the lemma. We proceed by rule induction on why P
s?v−−→ P ′ .

• Let P
s?v−−→ P ′ by an application of rule (Sensor)

with P = s?(x).P1 and P ′ = P1{v/x}. This case is easy.

• Let P
s?v−−→ P ′ by an application of rule (Fix)

with P = fix X .P1 and P ′ = P2, because P1{fix X .P1/X } s?v−−→ P2. By inductive hypothesis there exist P3 and Q 1 such
that P1{fix X .P1/X } ≡ s?(x).P3 | Q 1 and P2 ≡ P3{v/x} | Q 1. By structural congruence P = fix X .P1 ≡ P1{fix X .P1/X } ≡
s?(x).P3 | Q 1.

• Let P
s?v−−→ P ′ by an application of rule (ParP) with P = P1 | R and P ′ = P ′

1 | R , because P1
s?v−−→ P ′

1. By inductive hypoth-
esis there exist P2 and Q 1 such that P1 ≡ s?(x).P2 | Q 1 and P ′

1 ≡ P2{v/x} | Q 1, thus, the thesis holds for Q = Q 1 | R .

The cases (3), (4), (5) and (6) are analogous to previous items. We prove (7). We proceed by rule induction on why P
τ−→ P ′ .

• Let P
τ−→ P ′ by an application of rule (Com). Then our result follows by application of the items (5) and (6) of the

proposition. We need to work up to structural congruence.

• Let P
τ−→ P ′ by an application of rule (ParP) or (Fix). This case is analogous to the corresponding ones in (2). �

The following lemma is similar to the previous one but it deals with networks rather than processes.

Lemma A.9.

1. If M cv@h−−−→ M ′ then M ≡ (ν g̃)
(
n[I � �c〈v〉.P�P ′ | Q]μh |N)

and M ′≡(ν g̃)
(
n[I � P | Q]μh |N)

, for some n, P , P ′, Q , μ, N, g̃, with
c /∈ g̃.

2. If M cv@h−−−→ M ′ then M ≡ (ν g̃)
(
n[I � �c(x).P�P ′ | Q]μh |N)

and M ′ ≡ (ν g̃)
(
n[I � P {v/x} | Q]μh |N)

, for some n, P , P ′, Q , μ, N, ̃g,
with c /∈ g̃.

Proof. We start with the proof of item (1). We proceed by rule induction.

• Let M
cv@k−−−→ M ′ by an application of rule (SndN) because P

cv−→ P ′ and rng(c) ≥ 0, with M = n[I � P]μk and M ′ =
n[I � P ′]μk . Lemma A.8(5) ensures that since P

cv−→ P ′ then there exist P1, Q 1, Q such that P ≡ �c〈v〉.P1�Q 1 | Q and
P ′ ≡ P1 | Q . This implies M ≡ n[I � �c〈v〉.P1�Q 1 | Q]μk and M ′ ≡ n[I � P1 | Q]μk .

• Let M
cv@k−−−→ M ′ by an application of rule (ParN) because M1

cv@k−−−→ M ′
1, with M = M1|M2 and M ′ = M ′

1|M2. By inductive

hypothesis, since M1
cv@k−−−→ M ′

1, there exist n, P1, P ′
1, Q 1, μ, k, N1, ̃g such that c /∈ g̃ and

M1 ≡ (ν g̃)n[I� �c〈v〉P1�P ′
1 | Q 1]μk |N1 and M ′

1 ≡ (ν g̃)n[I� P1 | Q 1]μk |N1.

Hence M ≡ (ν g̃)n[I � �c〈v〉P1�P ′
1 | Q 1]μk |N1|M2 and the system M ′ is such that M ′ ≡ (ν g̃)n[I � P1 | Q 1]μk |N1|M2. This

concludes the case, for N = N1|M2.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.22 (1-30)

22 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
• Let M
cv@k−−−→ M ′ by an application of rule (Res) because M1

cv@k−−−→ M ′
1, with c
= c′ , M = (νc′)M1 and M ′ = (νc′)M ′

1. By
inductive hypothesis, there exist n, P1, P ′

1, Q 1, μ, k, N1, ̃g such that c /∈ g̃ and M1 ≡ (ν g̃)n[I � �c〈v〉P1�P ′
1 | Q 1]μk |N1 and

M ′
1 ≡ (ν g̃)n[I � P1 | Q 1]μk |N1. Hence M ≡ (νc′)(ν g̃)n[I � �c〈v〉P1�P ′

1 | Q 1]μk |N1 and M ′ ≡ (νc′)(ν g̃)n[I � P1 | Q 1]μk |N1.
Thus, since c /∈ (νc′)(ν g̃) this concludes the case.

The remaining item (2) is analogous by applying Lemma A.8(6). �
The following lemma says that structural congruence is a (strong) bisimulation.

Lemma A.10. If M α−→ M ′ and M ≡ N then there is N ′ such that N α−→ N ′ and M ′ ≡ N ′ .

Proof of Theorem 4.1. We have to prove the following sub-results:

1. If M
τ−→ M ′ then M �τ M ′ .

2. If M �τ M ′ then M
τ−→≡ M ′ .

3. If M
a−→ M ′ then M �a M ′ .

4. If M �a M ′ then M
a−→ ≡M ′ .

5. If M
σ−→ M ′ then M �σ M ′ .

6. If M �σ M ′ then M
σ−→ ≡M ′ .

Let us start with the sub-result (1). The proof is by rule induction on why M
τ−→ M ′ .

• Let M
τ−→ M ′ by an application of rule (SensRead), with M = n[I � P]μh and M ′ = n[I � P ′]μh , because I(s) = v and

P
s?v−−→ P ′ . By Lemma A.8(2) there exist P1, Q such that P ≡ s?(x).P1 | Q and P ′ ≡ P1{v/x} | Q . Then we can apply the

reduction rules (sensread) and (parp) to infer M �τ M ′ , as required.

• Let M τ−→ M ′ by an application of rule (Pos). This case follows by an application of Lemma A.8(4) together with reduction
rules (pos) and (parp).

• Let M
τ−→ M ′ by an application of rule (LocCom), with M = n[I � P]μk and M ′ = n[I � P ′]μk , because P

τ−→ P ′ . By
Lemma A.8(7), P

τ−→ P ′ ensures that there exist P1, P2, Q 1, Q 2, R, c with rng(c) = −1 such that
P ≡ �c(x).P1�Q 1 | �c〈v〉.P2�Q 2 | R and P ′ ≡ P1{v/x} | P2 | R . By structural congruence we have

M ≡ n[I� �c(x).P1�Q 1 | �c〈v〉.P2�Q 2 | R]μk
and analogously M ′ ≡ n[I � P1{v/x} | P2 | R]μk . Hence, by an application of rules (struct) and (loccom) we can infer M �τ

M ′ .
• Let M

τ−→ M ′ by an application of rule (ActUnChg). This case follows by an application of Lemma A.8(3) together with an
application of reduction rules (actunchg) and (parp).

• Let M
τ−→ M ′ by an application of rule (ParN), with M = M1|M2 and M ′ = M ′

1|M2, because M1
τ−→ M ′

1. By inductive
hypothesis M1 �τ M ′

1. Therefore, by an application of rule (parn) we can infer M �τ M ′ .
• Let M

τ−→ M ′ by an application of rule (Res), with M = (ν g̃)M1 and M ′ = (ν g̃)M ′
1, because M1

τ−→ M ′
1. By inductive

hypothesis M1 �τ M ′
1. Therefore, by an application of the reduction rule (res) we derive M �τ M ′ .

• Let M
τ−→ M ′ by an application of rule (GlbCom), with M = M1|M2 and M ′ = M ′

1|M ′
2, because M1

cv@h−−−→ M ′
1 and

M2
cv@k−−−→ M ′

2 and d(h, k) ≤ rng(c). Since M1
cv@h−−−→ M ′

1, Lemma A.9(1) guarantees that M1 ≡ (ν g̃)n[I � �c〈v〉P�P ′ | R]μh |N
and M ′

1 ≡ (ν g̃)n[I � P | R]μh |N , for some n, P , P ′, R, μ, h, N, ̃g. Furthermore, by Lemma A.9(2) there exist m, Q , Q ′ ,
R ′, μ, k, N ′, ̃g′ such that M2 ≡ (ν g̃′)m[I � �c(x)Q �Q ′ | R ′]μk |N ′ and M ′

2 ≡ (ν g̃′)m[I � Q {v/x} | R ′]μk |N ′ . Therefore, by ap-
plying the reduction rules (struct), (res), (glbcom), (parp) and (parn) we can infer M �τ M ′ .

Let us prove the sub-result (2) by rule induction on why M �τ M ′ .

• Let M �τ M ′ by rule (sensread), with M = n[I � s?(x).P | Q]μh and M ′ = n[I � P {v/x} | Q]μh , because I(s) = v . Hence,

by rule (Sensor) we have s?(x).P
s?v−−→ P {v/x}, by rule (ParP) we have s?(x).P | Q

s?v−−→ P {v/x} | Q and finally by rule
(SensRead) we have n[I � s?(x).P | Q]μh

τ−→ n[I � P {v/x} | Q]μh .

• Let M �τ M ′ by applying rule (pos), with M = n[I � @(x).P | Q]μh and M ′ = n[I � P {x/h} | Q]μh . We get M
τ−→≡ M ′ by

applying rules (PosP), (ParP) and (Pos).
• Let M �τ M ′ by an application of rule (actunchg). This case is similar to the previous one, by an application of the

transition rule (ActUnChg).

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.23 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 23
• Let M �τ M ′ by an application of rule (parp):
∏

i ni[Ii � Pi]μi
hi

�τ
∏

i ni[I′
i � P ′

i]μi
h′

i∏
i ni[Ii � Pi|Q i]μi

hi
�τ

∏
i ni[I′

i � P ′
i|Q i]μi

h′
i

By inductive hypothesis we have:
∏

i ni[Ii � Pi]μi
hi

τ−→≡ ∏
i ni[I′

i � P ′
i]μi

h′
i

. The τ -transition can be derived using different

transition rules. Suppose that
∏

i ni[Ii � Pi]μi
hi

τ−→≡ ∏
i ni[I′

i � P ′
i]μi

h′
i

by an application of rule (SensRead) to node n j , for

some j ∈ I . Then, by using rule (ParP) to derive P j | Q j
s?v−−→ P ′

j | Q j , rule (SensRead) to derive n j[I j � P j|Q j]μ j

h j

τ−→≡
n j[I′

j � P ′
j |Q j]μ j

h′
j

, and rule (ParN) to derive
∏

i ni[Ii � Pi |Q i]μi
hi

τ−→≡ ∏
i ni[I′

i � P ′
i |Q i]μi

h′
i

, we get M
τ−→≡ M ′ .

The cases when the τ -transition is derived by an application of the rules (ActUnChg), (Com) and (Pos) are similar.
• Let M �τ M ′ by an application of (loccom), with M = n[I � �c〈v〉.P�R | �c(x).Q �S]μh and M ′ = n[I � P | Q {v/x}]μh , be-

cause rng(c) = −1. Hence, for rng(c) = −1 we can derive:

�c〈v〉.P�R
cv−→ P �c(v).Q �S

cv−→ Q

�c〈v〉.P�R | �c(x).Q �S
τ−→ P | Q {v/x}

n[I� �c〈v〉.P�R | �c(x).Q �S]μh
τ−→ n[I� P | Q {v/x}]μh

and M
τ−→≡ M ′ is derived as required.

• Let M �τ M ′ by an application of (glbcom), with

M = n[I� �c〈v〉.P�R]μh |m[I� �c(x).Q �S]μ′
k and M ′ = n[I� P]μh |m[I� Q {v/x}]μ

′
k ,

because d(h, k) ≤ rng(c). Therefore the following derivation can be built up for d(h, k) ≤ rng(c):

�c〈v〉.P�R
cv−→ P

n[I� �c〈v〉.P�R]μh
cv@h−−−→ n[I� P]μh

�c(v).Q �S
cv−→ Q

m[I� �c(v).Q �S]μ′
k

cv@k−−−→ m[I� Q {v/x}]μ
′

k

n[I� �c〈v〉.P�R]μh |m[I� �c(x).Q �S]μ′
k

τ−→ n[I� P]μh |m[I� Q {v/x}]μ
′

k

and we get M
τ−→≡ M ′ .

• Let M �τ M ′ by an application of rule (res), with M = (ν g̃)M1 and M ′ = (ν g̃)M ′
1, because M1 �τ M ′

1. By inductive
hypothesis we have M1

τ−→≡ M ′
1. Hence, by applying transition rules (Res), we can derive M

τ−→≡ M ′ .
• Let M �τ M ′ by an application of rule (struct) because M ≡ N , N �τ N ′ and N ′ ≡ M ′ . By inductive hypothesis we have

N
τ−→≡ N ′ . Since M ≡ N and M ′ ≡ N ′ , by an application of Lemma A.10 we obtain M

τ−→≡ M ′ .
• Let M �τ M ′ by an application of rule (parn), with M = M1|N and M ′ = M ′

1|N , because M1 �τ M ′
1. By inductive

hypothesis M1 �τ M ′
1 implies that M1

τ−→≡ M ′
1. Hence, an application of the transition rule (ParN) concludes this case.

Let us prove the sub-result (3). The proof is by rule induction on why M
a−→ M ′ .

• Let M
a−→ M ′ by an application of rule (ActChg), with M = n[I � P]μh and M ′ = n[I′ � P ′]μh , because I(a) = w
= v , P

a!v−−→
P ′ and I′ := I[a �→ v]. By Lemma A.8(3) there exist P1, Q such that P ≡ a!v.P1 | Q and P ′ ≡ P1 | Q . Then we can
apply reduction rules (actchg) and (parp) to infer M �a M ′ .

• The cases when M
a−→ M ′ is derived by an application of either rule (ParN) or rule (Res) are analogous to the correspond-

ing cases when M
τ−→ M ′ .

Let us prove the sub-result (4). The proof is by rule induction on why M �a M ′ .

• Let M �a M ′ by an application of rule (actchg), with M = n[I �a!v.P]μh and M ′ = n[I′ � P]μh , because I(a) = w
= v and

I′ = I[a �→ v]. By an application of rule (Actuator) we derive a!v.P
a!v−−→ P . The thesis follows by an application of rule

(ActChg).
• The cases when M �a M ′ is derived by an application of one of the rules among (parp), (parn), (res) or (struct) are

analogous to the corresponding cases written for M �τ M ′ .

Let us prove the sub-result (5). The proof is by rule induction on why M
σ−→ M ′ .

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.24 (1-30)

24 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
• Let M
σ−→ M ′ by an application of rule (TimeZero). This case is immediate.

• Let M
σ−→ M ′ by an application of rule (TimeStat), with M = n[I � P]sh and M ′ = n[I � P ′]sh , because P

σ−→ P ′ and
n[I � P]sh

τ−→
 . Since P
σ−→ P ′ , by Lemma A.8(1) we derive P ≡ ∏

i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j and P ′ ≡ ∏
i∈I Q i | ∏ j∈ J P j

for some I, J , πi, Pi, Q i, P j . By an application of the sub-result (2) above, from n[I � P]sh
τ−→
 we derive n[I � P]sh
�τ .

Then the thesis follows by applying the reduction rule (timestat).

• Let M
σ−→ M ′ by an application of rule (TimeMob). This case is similar to the previous one by applying the reduction rule

(timemob) in place of (timestat).

• Let M
σ−→ M ′ by an application of rule (TimePar), with M = M1|M2 and M ′ = M ′

1|M ′
2, because M1

σ−→ M ′
1, M2

σ−→ M ′
2 and

M1|M2
τ−→
 . By inductive hypothesis we have M1 �σ M ′

1 and M2
σ−→ M ′

2. Moreover, by an application of the sub-result
(2) above M1|M2

τ−→
 implies M1|M2
�τ . Therefore we can apply the reduction rule (timepar) to get M �σ M ′ .
• Let M

σ−→ M ′ by an application of rule (Res). This case is similar to the corresponding one for M
τ−→ M ′ .

Let us prove the sub-result (6). The proof is by rule induction on why M �σ M ′ .

• Let M �σ M ′ by an application of the reduction rule (timezero). This case is immediate.
• Let M �σ M ′ by an application of rule (timestat):

n[I� ∏
i∈I�πi .Pi�Q i | ∏

j∈ J σ .P j]sh
�τ

n[I� ∏
i∈I�πi .Pi�Q i | ∏

j∈ J σ .P j]sh �σ n[I� ∏
i∈I Q i | ∏

j∈ J P j]sh
with M = n[I � ∏

i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j]sh and M ′ = n[I � ∏
i∈I Q i | ∏ j∈ J P j]sh .

By rule (Timeout) we derive �π.Pi�Q i
σ−→ Pi and by rule (Delay) we derive σ .P j

σ−→ P j . Now, we can repeatedly ap-

ply rule (TimeParP) to derive
∏

i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j
σ−→ ∏

i∈I Q i | ∏ j∈ J P j . Indeed, by contradiction, if (TimeParP)
would not be enabled, then rule (Com) would be enabled, and by applying rule (ParP), there would exist R such that ∏

i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j
τ−→ R . Then, by applying rule (LocCom) and the sub-result (1) above, we would contradict

the hypothesis n[I � ∏
i∈I�πi .Pi�Q i | ∏ j∈ J σ .P j]sh
�τ . Therefore, the thesis follows by applying the transition rule

(TimeStat).
• Let M �σ M ′ by an application of rule (timemob). This case is analogous to the previous one by applying the transition

rule (TimeMob) in place of rule (TimeStat).
• Let M �σ M ′ by an application of rule (timepar), with M = M1|M2 and M ′ = M ′

1|M ′
2, because M1 �σ M ′

1, M2 �σ M ′
2,

and M1|M2
�τ . By inductive hypothesis, M1 �σ M ′
1 implies M1

σ−→≡ M ′
1 and M2 �σ M ′

2 implies M2
σ−→≡ M ′

2. Finally,
by an application of the sub-result (1) above M1|M2
�τ implies M1|M2

τ−→
 . Therefore we can derive M
σ−→≡ M ′ by an

application of the transition rule (TimePar).
• The cases when M �σ M ′ is derived by an application of one of the rules (res) or (struct) are analogous to the corre-

sponding cases written for M �τ M ′ . �
A.4. Proofs of Section 5

Proof of Theorem 5.4. It remains to prove that the bisimilarity relation, ≈, is preserved by parallel composition and channel
restriction.

Let us prove that ≈ is preserved by parallel composition. We show that the relation

R = {(M|O , N|O) : both M|O and N|O are well-formed and M ≈ N}
is a bisimulation. We proceed by case analysis on why M|O α−→ M̂ .

• Let M|O τ−→ M̂ . We can distinguish two cases.

◦ The transition is derived by applying rule (GlbCom), with M̂ = M ′|O ′ , because M
cv@h−−−→ M ′ , O cv@k−−−→ O ′ , and d(h, k) ≤

rng(c). Since M
cv@h−−−→ M ′ and d(h, k) ≤ rng(c), by an application of rule (SndObs) we derive M

cv�k−−−→ M ′ . As M ≈ N ,
there are N1, N2 and N ′ such that N=⇒N1

cv�k−−−→ N2=⇒N ′ with M ′ ≈ N ′ . Thus, there exists a location h′ such
that d(h′, k) ≤ rng(c) and N1

cv@h′−−−→ N2. Therefore, by several applications of rule (ParN) and one application of rule
(GlbCom) we can derive N|O =⇒ N̂ = N ′|O ′ , with (M̂, N̂) ∈R. The symmetric case is analogous.

◦ The transition is derived by applying rule (ParN) because M
τ−→ M ′ . As M ≈ N it follows that N=⇒N ′ with M ′ ≈ N ′ .

By several applications of rule (ParN) it follows that N|O =⇒ N̂ = N ′|O ′ , with (M̂, N̂) ∈R. The symmetric case is easier.

• Let M|O σ−→ M̂ = M ′|O ′ . This is only possible by an application of rule (TimePar) because M
σ−→ M ′ , O σ−→ O ′ and

M|O τ−→
 . Since M ≈ N and M
σ−→ M ′ there are N1, N2 and N ′ such that N =⇒ N1

σ−→ N2 =⇒ N ′ , with M ′ ≈ N ′ . By an

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.25 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 25
appropriate number of applications of rule (ParN) we have that N|O =⇒ N1|O . Next step is to show that we can use rule
(TimePar) to derive N1|O σ−→ N2|O ′ . For that we only need to prove that N1|O τ−→
 . In fact, if N1|O τ−→ then we would
reach a contradiction. This because, M ≈ N and N =⇒ N1 implies there is M1 such that M =⇒ M1 with M1 ≈ N1. As M τ−→

it follows that M = M1 ≈ N1. By Proposition 2.3, N1

σ−→ N2 and O σ−→ O ′ imply N1
τ−→
 and O

τ−→
 . Thus N1|O τ−→ could
be derived only by an application of rule (GlobCom) where N1 interact with O via some channel c, with rng(c) ≥ 0.
However, as N1 ≈ M the network M could mimic the same interaction with O giving rise to a reduction of the form
M|O =⇒ τ−→. This is in contradiction with the initial hypothesis that M|O τ−→
 . Thus, N1|O τ−→
 and by an application of
rule (TimePar) we derive N1|O σ−→ N2|O ′ . By an appropriate number of applications of rule (ParN) we get N2|O ′ =⇒ N ′|O ′ .
Thus, N|O σ==⇒ N̂ = N ′|O ′ , with (M̂, N̂) ∈R.

• Let M|O a−→ M̂ . Then, we distinguish two cases.

– Either O a−→ O ′ and by an application of rule (ParN) we derive M|O a−→ M|O ′ . This case is easy.

– Or M
a−→ M ′ and by an application of rule (ParN) we derive M|O a−→ M ′|O . As M ≈ N there is N ′ such that N

a==⇒ N ′
and M ′ ≈ N ′ . Thus, by several applications of rule (ParN) we derive N|O a==⇒ N̂ = N ′|O , with (M̂, N̂) ∈R.

• Let M|O cv�k−−−→ M̂ . By definition of rule (SndObs) this is only possible if M|O cv@h−−−→ M̂ , with d(h, k) ≤ rng(c). Then, we
distinguish two cases.

– Either O cv@h−−−→ O ′ and M̂ = M|O ′ by an application of rule (ParN). Then, by an application of the same rule we derive
N|O cv@h−−−→ N|O ′ . By an application of rule (SndObs) we get N|O cv�k−−−→ N̂ = N|O ′ , with (M̂, N̂) ∈R.

– Or M cv@h−−−→ M ′ and M̂ = M ′|O by an application of rule (ParN). By an application of rule (SndObs) we have M cv�k−−−→ M ′ .
As M ≈ N there is N ′ such that N

cv�k====⇒ N ′ , with M ′ ≈ N ′ . As the transition cv�k−−−→ can only be derived by an
application of rule (SndObs), it follows that N cv@h′=====⇒ N ′ , for some h′ such that d(h′, k) ≤ rng(c). By several applications
of rule (ParN) it follows that N|O cv@h′=====⇒ N ′|O . By an application of rule (SndObs) we finally obtain N|O cv�k====⇒ N̂ =
N ′|O , with (M̂, N̂) ∈R.

• Let M|O cv�k−−−→ M̂ . This case is similar to the previous one.

Let us prove that ≈ is preserved by channel restriction. We show that the relation R, defined as {((νc)M, (νc)N
) : M ≈ N} is

a bisimulation. We proceed by case analysis on why (νc)M
α−→ M̂ .

• Let (νc)M
α−→ M̂ , for α ∈ {τ , σ , a}. In this case, this transition has been derived by an application of rule (Res) because

M
α−→ M ′ , with M̂ = (νc)M ′ . As M ≈ N there is N ′ such that N

α==⇒ N ′ and M ′ ≈ N ′ . By several applications of rule (Res)

we can derive (νc)N
α==⇒ N̂ = (νc)N ′ , with (M̂, N̂) ∈R.

• Let (νc)M
α−→ M̂ , for α ∈ {dv � k, dv � k}, with d
= c. This case is similar to the previous one except for the fact that

we need to pass through the definitions of rules (SndObs) and (RcvObs) as the rule (Res) is only defined for intensional
actions.

• Let (νc)M
α−→ M̂ , for α ∈ {cv � k, cv � k}. This case is not admissible as rule (Res) blocks intensional actions of the form

cv@h and cv@h. �
Next, we prove Lemma 5.7. For that we need a technical lemma.

Lemma A.11. Let O = n[I � nil]sk for an arbitrary node name n, an arbitrary actuator a, and an arbitrary value v in the domain of a,
such that I is only defined for a and I(a) = v. If M|O ∼= N|O then M ∼= N.

Proof. We recall that we always work with well-formed systems. The proofs consists in showing that the relation

R = {(M, N) : M|O ∼= N|O , for some O defined as above}
is barb preserving, reduction closed and contextual. Since ∼= is the largest relation satisfying these properties, then R ⊆∼=
and therefore M ∼= N . The scheme of the proof is very similar to that of the following proof. �
Proof of Lemma 5.7. Let O = n[I �a!v.nil]sk , for an arbitrary node name n, an arbitrary actuator a, and arbitrary values v
and w , in the domain of a, such that I is only defined for a and I(a) = w
= v . Let use define the relation

R = {(M, N) : M|O ∼= N|O , for some O defined as above} .

We show that the relation R ∪ ∼= is barb preserving, reduction closed and contextual. Since ∼= is the largest relation satis-
fying these properties, then R ⊆∼= and therefore M ∼= N .

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.26 (1-30)

26 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
We recall that in this paper we only consider well-formed networks. So, in the definition of R we assume that all
networks of the form M|O and N|O are well-formed. In particular, in order to decide whether (M, N) ∈ R it is enough to
find an O of the indicated shape, which respects the requirements of R, and which preserves well-formedness.

Let us prove that R ∪ ∼= is barb-preserving. We concentrate on the relation R. As O has neither channels or sensors it is
basically isolated from the rest of the world, except for signals emitted on the actuator a. So, it is very easy to see that R
is barb preserving from M|O ∼= N|O .

Let us prove that R ∪ ∼= is reduction closed. We focus on R. Recall that �
def= �τ ∪�σ . Let (M, N) ∈ R and M �τ M ′ ,

for some M ′ . We have to show that N �∗ N ′ , for some N ′ such that (M ′, N ′) ∈ R ∪ ∼=. Let us fix an O which respects the
requirements of R. By an application of rule (parn) we infer M|O �τ M ′|O . As M|O ∼= N|O there is N such that N|O �∗ N
and M ′|O ∼= N . Since O cannot communicate and since the only enabled reduction for O is �a , none of the reductions in
the reduction sequence N|O �∗ N involves O and none of these reductions is a timed one. Therefore, N = N ′|O , N �∗

τ N ′ ,
and M ′|O ∼= N ′|O . This implies (M ′, N ′) ∈R.

Let (M, N) ∈ R and M �b M ′ , for some M ′ . As both networks M|O and N|O are well-formed, the actuator a cannot
appear neither in M or in N . Thus, a
= b. Starting from M|O ∼= N|O we reason as in the previous case.

Let (M, N) ∈R and M �σ M ′ , for some M ′ . We have to show that N �∗ N ′′ , for some N ′′ such that (M ′, N ′′) ∈R ∪ ∼=. By
definition of R we have M|O ∼= N|O . Let M|O �a M|n[I[a �→ v] � nil]sk , by an application of rules (actchg) and (parn). As ∼= is
reduction closed it follows that there is N such that N|O �∗�a �∗ N , with M|n[I[a �→ v] � nil]sk ∼= N . Due to the structure
of O the last reduction sequence can be decomposed as follows: N|O �∗ �a �∗ N = N ′|n[I[a �→ v] � nil]sk , for some N ′
such that N �∗ N ′ . Thus, for O ′ = n[I[a �→ v] � nil]sk , we have M|O ′ ∼= N ′|O ′ . Since M �σ M ′ , by Proposition 2.3, there is
no M ′′ such that M �τ M ′′ . More generally, by looking at the definition of O ′ it is easy to see that there is no U such
that M|O ′ �τ U . Thus, by an application of rules (timestat) and (timepar) we can infer M|O ′�σ M ′|O ′ . As M|O ′ ∼= N ′|O ′ ,
by Proposition 2.14 there is N̂ such that N ′|O ′ �∗

τ �σ �∗
τ N̂ and M ′|O ′ ∼= N̂ . By looking at the definition of O ′ the

only possibility is that N̂ = N ′′|O ′ , with N ′ �∗
τ �σ �∗

τ N ′′ and M ′|O ′ ∼= N ′′|O ′ . By Lemma A.11 this implies M ′ ∼= N ′′ .
Recapitulating we have that for M �σ M ′ there is N ′′ such that N �∗ N ′′ , with (M ′, N ′′) ∈R ∪ ∼=.

Let us prove that R ∪ ∼= is contextual. Again, it is enough to focus on R. Let us consider the three different network
contexts:

• Let (M, N) ∈R. Let O ′ be an arbitrary network such that both M|O ′ and N|O ′ are well formed. We want to show that
(M|O ′ , N|O ′) ∈R. As (M, N) ∈R, we can always find an O = n[I �a!v.nil]sk which respects the requirements of R such
that M|O ∼= N|O and both networks M|O |O ′ and N|O |O ′ are well-formed. As ∼= is contextual and structural congruence
is a monoid with respect to parallel composition, it follows that (M|O ′)|O ≡ (M|O)|O ′ ∼= (N|O)|O ′ ≡ (N|O ′)|O . As
≡⊂∼= and ∼= is trivially transitive, this is enough to derive that (M|O ′ , N|O ′) ∈R.

• Let (M, N) ∈ R. Let c be an arbitrary channel name. Let O = n[I �a!v.nil]sk which respects the requirements of
R. As ∼= is contextual if follows that (νc)(M|O) ∼= (νc)(N|O). Since O does not contain channels it holds that
((νc)M)|O ≡ (νc)(M|O) ∼= (νc)(N|O) ≡ ((νc)N)|O . As ≡⊂∼= and ∼= is trivially transitive, this is enough to derive that
((νc)M, (νc)N) ∈R.

• Let (M, N) ∈ R. Let O = n[I �a!v.nil]sk which respects the requirements of R. Since O does not contain sensors, by
Definition 2.9 we have: M[s@h �→ v]|O = (M|O)[s@h �→ v] ∼= (N|O)[s@h �→ v] = N[s@h �→ v]|O . This is enough to
derive that (M[s@h �→ v], N[s@h �→ v]) ∈R. �

Proof of Theorem 5.11. For each law we exhibit the proper bisimulation. It is easy to see that for the first four laws the
left-hand-side system evolves into the right-hand-side by performing a τ -actions. So, in order to prove these laws it is
enough to show that the two terms under considerations are bisimilar. Let us proceed case by case.

1. Let use define the relation

R = {(
n[I�a!v.P |R]μh ,n[I� P |R]μh

) |I(a) = v and a does not occur in R
} ∪ Id

where Id is the identity relation. It suffices to prove the symmetric closure of R is a bisimulation.
2. Let us define the relation R = {(n[I � @(x).P |R]μh , n[I � P {h/x}|R]μh

)} ∪ Id, where Id is the identity relation. We show
that the symmetric closure of R is a bisimulation. The proof is similar to that of Law 1 where n[I � @(x).P |R]μh

τ−→
n[I � P {h/x}|R]μh .

3. Let us define the relation R = {(
n[I� �c〈v〉.P�S|�c(x).Q �T |R]μh , n[I� P |Q {v/x}|R]μh

)} ∪ Id, such that c is not in R and
rng(c) = −1. It suffices to show that the symmetric closure of R is a bisimulation.

4. The proof of Law 4 is similar to that of Law 3.
5. Let us define the relation R = {(n[I � P]μh , n[I � nil]μh

)}, where P does not contains terms of the form �π.P1�P2 or
a!v.P1, for any a. It suffices to prove that the symmetric closure of R is a bisimulation.

6. Let us consider the relation R = {(
n[I� nil]μh ,0

) | I(a) is undefined for any actuator a
}

. It suffices to prove that the
symmetric closure of R is a bisimulation.

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.27 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 27
7. Let us define the relation R = {(
n[∅� P]mh ,m[∅� P]sk

)}
, such that P does not contain terms @(x).Q and for any channel

c in P either rng(c) = ∞ or rng(c) = −1. It suffices to prove that the symmetric closure of R is a bisimulation. �
Proof of Lemma 5.12. Let use define the relation R as follows:

{(
(ν c̃)(n[I� P1|R]μh |O 1), (νd̃)(n[I� P2|R]μk |O 2)

) : (ν c̃)(n[I� P1]μh |O 1) ≈ (νd̃)(n[I� P2]μk |O 2)
}

where process R can only (i) read the sensors of I; (ii) transmit along some fresh Internet channel; (iii) let time passes. We
prove that the symmetric closure of the relation R is a bisimulation. Let (M, N) ∈ R, we proceed by case analysis on why
M

α−→ M ′ .

• Let M = (ν c̃)(n[I � P1|R]μh |O 1)
α−→ (ν c̃)(n[I′ � P ′

1|R]μh′ |O ′
1) = M ′ , with α
= σ , be a transitions which does not involve

(and affect) R at all. This means that (ν c̃)(n[I � P1]μh |O 1)
α−→ (ν c̃)(n[I′ � P ′

1]μh′ |O ′
1). By hypothesis there are I′′ , P ′

2,
O ′

2 and k′ such that (ν c̃)(n[I � P2]μk |O 2)
α==⇒ (ν c̃)(n[I′′ � P ′

2]μk′ |O ′
2) and (ν c̃)(n[I′ � P ′

1]μh′ |O ′
1) ≈ (νd̃)(n[I′′ � P ′

2]μk′ |O ′
2).

By Theorem 5.6 and Proposition 2.16 it follows that I′ = I′′ . Furthermore as α
= σ we have h = h′ and k = k′ . Thus,
N = (ν c̃)(n[I � P2|R]μk |O 2)

α̂==⇒ (ν c̃)(n[I′ � P ′
2|R]μk′ |O ′

2) = N ′ , with (M ′, N ′) ∈R.

• Let M = (ν c̃)(n[I � P1|R]μh |O 1)
σ−→ (ν c̃)(n[I � P ′

1|R ′]μh′ |O ′
1) = M ′ . We know that timed actions do not change the

physical interface I. This implies that: (i) R σ−→ R ′; (ii) (ν c̃)(n[I � P1|R]μh |O 1)
τ−→
 ; (iii) (ν c̃)(n[I � P1]μh |O 1)

σ−→
(ν c̃)(n[I � P ′

1]μh′ |O ′
1). In particular, the second item means that R does not have any interaction with the network.

It even does not read some sensor of I. By hypothesis we have that (ν c̃)(n[I � P2]μk |O 2) =⇒ σ−→ =⇒ (ν c̃)(n[I′ � P ′
2]μk′ |O ′

2)

with (ν c̃)(n[I � P ′
1]μh′ |O ′

1) ≈ (νd̃)(n[I′ � P ′
2]μk′ |O ′

2). By Theorem 5.6 and Proposition 2.16 we know that it must be
I = I′ . As R cannot have any interaction with the rest of the network, apart from time synchronisation, it follows
that N = (ν c̃)(n[I � P2|R]μk |O 2) =⇒ σ−→ =⇒ (ν c̃)(n[I � P ′

2|R ′]μk′ |O ′
2) = N ′ , with (M ′, N ′) ∈R.

• Let M = (ν c̃)(n[I � P1|R]μh |O 1)
α−→ (ν c̃)(n[I � P1|R ′]μh |O ′

1) = M ′ , with α
= σ , be a transitions which is due to R . This
can be a sensor reading or a transmission along some channel b, with rng(b) = ∞. In that case, it is easy to see that,
as rng(b) = ∞, then N = (ν c̃)(n[I � P2|R]μk |O 2)

α−→ (ν c̃)(n[I � P2|R ′]μk |O 2) = N ′ , with (M ′, N ′) ∈R. �
Proof of Proposition 5.13. Let us introduce shorthands: L

def= LightCtrl, L
def= LightCtrl, L1

def= LightMng1, L2
def= LightMng2 ,

and C
def= CLightMng. Let us define the relation

R def=
17⋃

i=1

(
(ν c̃)Mi , (ν c̃)(νg)Ni

)

where the pairs (Mi, Ni), for 1 ≤ i ≤ 17, are listed below:

• M1 = nP [IP � L]mk
∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4
N1 = nP [IP �σ .L]mk

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3, with k /∈ {loc1, loc2, loc3, loc4}, I1(light1) = off and
I2(light2) = off

• M2 = nP [IP �σ .L]mloc1

∣∣ n1[I1 � light1!on.σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4
N2 = nP [IP �σ .L]mloc1

∣∣ n1[I1 � light1!on.σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M3 = nP [IP �σ .L]mloc1

∣∣ n1[I′
1 �σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4
N3 = nP [IP �σ .L]mloc1

∣∣ n1[I′
1 �σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3, with I′
1(light1) = on.

• M4 = nP [IP � L]mk
∣∣ n1[I′

1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4
N4 = nP [IP �σ .L]mk

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3, with k /∈ {loc1, loc2, loc3, loc4}
• M5 = nP [IP � L]mk

∣∣ n1[I′
1 � light1!off.L1]sloc1

∣∣ n2[I2 � L2]sloc4
N5 = nP [IP �σ .L]mk

∣∣ n1[I′
1 � light1!off.L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3, with k /∈ {loc1, loc2, loc3, loc4}
• M6 = nP [IP � L]mloc1

∣∣ n1[I′
1 � light1!off.L1]sloc1

∣∣ n2[I2 � L2]sloc4
N6 = nP [IP �σ .L]mloc1

∣∣ n1[I′
1 � light1!off.L1]sloc1

∣∣n2[I2 � L2]sloc4

∣∣ nC [∅ � �c1〈on〉.σ .C�C LM]sloc3
• M7 = nP [IP � L]mloc2

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4
N7 = nP [IP �σ .L]mloc2

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M8 = nP [IP � L]mloc3

∣∣ n1[I′
1 � light1!off.L1]sloc1

∣∣ n2[I2 � L2]sloc4
N8 = nP [IP �σ .L]mloc3

∣∣ n1[I′
1 � light1!off.L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M9 = nP [IP � L]mloc2

∣∣ n1[I′
1 � light1!off.L1]sloc1

∣∣ n2[I2 � L2]sloc4
N9 = nP [IP �σ .L]m ∣∣ n1[I′ � light1!off.L1]s

∣∣ n2[I2 � L2]s
∣∣ nC [∅ �σ .C]s
loc2 1 loc1 loc4 loc3

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.28 (1-30)

28 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
• M10 = nP [IP � L]mloc3

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4
N10 = nP [IP �σ .L]mloc3

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M11 = nP [IP � L]mloc2

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4
N11 = nP [IP �σ .L]mloc2

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M12 = nP [IP �σ .L]mloc4

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � light2!on.σ .L2]sloc4
N12 = nP [IP �σ .L]mloc4

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � light2!on.σ .L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M13 = nP [IP �σ .L]mloc4

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 �σ .L2]sloc4

N13 = nP [IP �σ .L]mloc4

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 �σ .L2]sloc4

∣∣ nC [∅ �σ .C]sloc3, where I′
2(light2) = on

• M14 = nP [IP � L]mloc3

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � L2]sloc4

N14 = nP [IP �σ .L]mloc3

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M15 = nP [IP � L]mloc4

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � light2!off.L2]sloc4

N15 = nP [IP �σ .L]mloc4

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � light2!off.L2]sloc4

∣∣ nC [∅ � �c2〈on〉.σ .C�C]sloc3
• M16 = nP [IP � L]mloc2

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � light2!off.L2]sloc4

N16 = nP [IP �σ .L]mloc2

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � light2!off.L2]sloc4

∣∣ nC [∅ �σ .C]sloc3
• M17 = nP [IP � L]mloc3

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � light2!off.L2]sloc4

N17 = nP [IP �σ .L]mloc3

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I′
2 � light2!off.L2]sloc4

∣∣ nC [∅ �σ .C]sloc3.

For each pair
(
(ν c̃)Mi , (ν c̃, g)Ni

) ∈ R we proceed by case analysis on why (ν c̃)Mi
α−→ M̂ . Then, we do the same for

(ν c̃, g)Ni
α−→ N̂ . Before starting the case analysis we notice that in all pairs of R the physical interfaces of the corresponding

nodes are the same. For that reason we can safely omit the extensional actions of the form a@h!v . Moreover, our processes
never read sensors (we removed from the initial system both the process BoilerCtrl and the network BM). Thus, we can
safely omit transitions labelled with actions of the form s@h?v as well.

– Let us consider the pair
(
(ν c̃)M1 , (ν c̃)(νg)N1

)
. We proceed by case analysis on why (ν c̃)M1

α−→ M̂ .

• Let (ν c̃)M1
α−→ M̂ , for α
= σ . This case is not admissible as the phone is too far to interact with some local light

manager.

• Let (ν c̃)M1
σ−→ (ν c̃)M ′

1, with

M ′
1 = nP [IP � L]mk

∣∣ n1[I1 � light1!off.L1]sloc1

∣∣ n2[I2 � light2!off.L2]sloc4

and k /∈ {loc1, loc2, loc3, loc4}. This means that the phone did not get inside the smart home. For the sake of sim-
plicity we will call k all locations outside the smart home. By two applications of Law 1 of Theorem 5.11 we
have: (ν c̃)M ′

1 � (ν c̃)
(
nP [IP � L]mk

∣∣ n1[I1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

) = (ν c̃)M1. Then, (ν c̃, g)N1
σ−→ =⇒ (ν c̃, g)N1, and (

(ν c̃)M1 , (ν c̃, g)N1
) ∈R.

• Let (ν c̃)M1
σ−→ (ν c̃)M ′

1, with

M ′
1 = nP [IP � L]mloc1

∣∣ n1[I1 � light1!off.L1]sloc1

∣∣ n2[I2 � light2!off.L2]sloc4 .

In this case the smartphone just entered the smart home from its entrance, located at loc1. By two applications of
Law 1 and one application of Law 4 of Theorem 5.11 we have:

(ν c̃)M ′
1 � (ν c̃)

(
nP [IP �σ .L]mloc1

∣∣ n1[I1 � light1!on.σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4

) = (ν c̃)M2 .

Then, there is N2 such that (ν c̃, g)N1
σ−→ =⇒ (ν c̃, g)N2 with

(ν c̃, g)N2 = (ν c̃, g)
(
nP [IP �σ .L]mloc1

∣∣ n1[I1 � light1!on.σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅�σ .C]sloc3

)

and
(
(ν c̃)M2 , (ν c̃, g)N2

) ∈R.

Now, we proceed by case analysis on why (ν c̃, g)N1
α−→ N̂ .

• Let (ν c̃, g)N1
α−→ N̂ , with α
= σ . This case is not admissible.

• Let (ν c̃, g)N1
σ−→ (ν c̃, g)N ′

1, where the phone didn’t enter the house, as its location is different from loc1. This case is
similar to the previous one.

• (ν c̃, g)N1
σ−→ (ν c̃, g)N ′

1, with

N ′
1 = nP [IP � L]m ∣∣ n1[I1 � light1!off.L1]s

∣∣ n2[I2 � light2!off.L2]s
∣∣ nC [∅� C]s .
loc1 loc1 loc4 loc3

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.29 (1-30)

R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–••• 29
Because the phone just moved to location loc1. By two applications of Law 1, one application of Law 2, and two
applications of Law 4 of Theorem 5.11 we have:

(ν c̃, g)N ′
1 � (ν c̃, g)

(
nP [IP �σ .L]mloc1

∣∣n1[I1 � light1!on.σ .L1]sloc1

∣∣n2[I2 � L2]sloc4

∣∣nC [∅�σ .C]sloc3

) = (ν c̃, g)N2 .

Then, there is M2 such that (ν c̃)M1
σ−→ =⇒ (ν c̃)M2, with

M2 = nP [IP �σ .L]mloc1

∣∣ n1[I1 � light1!on.σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4

and
(
(ν c̃)M2 , (ν c̃, g)N2

) ∈R.

– Let us consider the pair
(
(ν c̃)M2 , (νc̃)(νg)N2

)
. The only possible transition in both networks is a strong transition

light1−−−→ which leads to the pair
(
(ν c̃)M3 , (νc̃)(νg)N3

) ∈R.

– Let us consider the pair
(
(ν c̃)M3 , (νc̃)(νg)N3

)
. We proceed by case analysis on why (ν c̃)M3

α−→ M̂ .

• Let (ν c̃)M3
α−→ M̂ , for α
= σ . This case is not admissible.

• Let (ν c̃)M3
σ−→ (ν c̃)M ′

3, where M ′
3 = nP [IP � L]mloc1

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � light2!off.L2]sloc4 because the phone remained
at location loc1. By two applications of Law 1 and one application of Law 4 of Theorem 5.11 we get:

(ν c̃)M ′
3 � (ν c̃)

(
nP [IP �σ .L]mloc1

∣∣ n1[I′
1 �σ .L1]sloc1

∣∣ n2[I2 � L2]sloc4

) = (ν c̃)M3 .

Then, (ν c̃, g)N3
σ−→ =⇒ (ν c̃, g)N3, and obviously

(
(ν c̃)M3 , (νc̃, g)N3

) ∈R.

• Let (ν c̃)M3
σ−→ (ν c̃)M ′

3, where M ′
3 = nP [IP � L]mk

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � light2!off.L2]sloc4, with k /∈ {loc1, loc2, loc3, loc4},
i.e. the phone moved out of the house. By applying Law 1 of Theorem 5.11 we get

(ν c̃)M ′
3 � (ν c̃)nP [IP � L]mk

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4 = (ν c̃)M4 .

Then, there is N4 such that (ν c̃, g)N3
σ−→ =⇒ (ν c̃, g)N4 with:

N4 = nP [IP �σ .L]mk
∣∣ n1[I′

1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅�σ .C]sloc3

and
(
(ν c̃)M4 , (ν c̃, g)N4

) ∈R.

• Let (ν c̃)M3
σ−→ (ν c̃)M ′

3, where M ′
3 = nP [IP � L]mloc2

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � light2!off.L2]sloc4, because the phone moved
from loc1 to loc2. In this case, by applying Law 1 of Theorem 5.11 we have:

(ν c̃)M ′
3 � (ν c̃)

(
nP [IP � L]mloc2

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

) = (ν c̃)M7 .

Then, we have that (ν c̃, g)N3
σ−→ =⇒ (ν c̃, g)N7, where

N7 = nP [IP �σ .L]mloc2

∣∣ n1[I′
1 � L1]sloc1

∣∣ n2[I2 � L2]sloc4

∣∣ nC [∅�σ .C]sloc3

and
(
(ν c̃)M7 , (ν c̃, g)N7

) ∈R.

The case analysis when (ν c̃, g)N3
α−→ N̂ is similar.

The remaining cases, dealing with the pairs
(
(ν c̃)Mi , (νc̃)(νg)Ni

)
, for 4 ≤ i ≤ 17, work in a similar manner. �

References

[1] R. Lanotte, M. Merro, A semantic theory of the Internet of Things (extended abstract), in: COORDINATION, in: Lect. Notes Comput. Sci., vol. 9686,
Springer, 2016, pp. 157–174.

[2] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions, Future Gener. Comput.
Syst. 29 (7) (2013) 1645–1660, https://doi.org/10.1016/j.future.2013.01.010.

[3] L. Atzori, A. Iera, G. Morabito, The Internet of Things: a survey, Comput. Netw. 54 (15) (2010) 2787–2805, https://doi.org/10.1016/j.comnet.2010.05.010.
[4] D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Internet of Things: vision, applications and research challenges, Ad Hoc Netw. 10 (7) (2012)

1497–1516, https://doi.org/10.1016/j.adhoc.2012.02.016.
[5] G. Roussos, V. Kostakos, RFID in pervasive computing: state-of-the-art and outlook, Pervasive Mob. Comput. 5 (1) (2009) 110–131, https://doi.org/

10.1016/j.pmcj.2008.11.004.
[6] M.P. Papazoglou, W. van den Heuvel, Service oriented architectures: approaches, technologies and research issues, VLDB J. 16 (3) (2007) 389–415,

https://doi.org/10.1007/s00778-007-0044-3.
[7] S. De, T. Elsaleh, P. Barnaghi, S. Meissner, An Internet of Things platform for real-world and digital objects, Scalable Comput. Pract. Exp. 13 (1).
[8] I. Lanese, L. Bedogni, M. Di Felice, Internet of Things: a process calculus approach, in: ACM SAC, ACM, 2013, pp. 1339–1346.
[9] K. Honda, N. Yoshida, On reduction-based process semantics, Theor. Comput. Sci. 151 (2) (1995) 437–486, https://doi.org/10.1016/

0304-3975(95)00074-7.

http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4D654C613136s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4D654C613136s1
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1016/j.pmcj.2008.11.004
https://doi.org/10.1007/s00778-007-0044-3
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4C4264463133s1
https://doi.org/10.1016/0304-3975(95)00074-7
https://doi.org/10.1016/j.pmcj.2008.11.004
https://doi.org/10.1016/0304-3975(95)00074-7

JID:YINCO AID:4340 /FLA [m3G; v1.227; Prn:8/01/2018; 13:58] P.30 (1-30)

30 R. Lanotte, M. Merro / Information and Computation ••• (••••) •••–•••
[10] D. Sangiorgi, D. Walker, The π -Calculus: a Theory of Mobile Processes, Cambridge University Press, 2001.
[11] A. van der Schaft, J. Schumacher, An Introduction to Hybrid Dynamical Systems, Lect. Notes Control Inf. Sci., vol. 251, Springer, 2000.
[12] G. Plotkin, A Structural Approach to Operational Semantics, Report DAIMI FN-19, Aarhus University, 1981.
[13] M. Hennessy, T. Regan, A process algebra for timed systems, Inf. Comput. 117 (2) (1995) 221–239, https://doi.org/10.1006/inco.1995.1041.
[14] R. Milner, D. Sangiorgi, Barbed bisimulation, in: ICALP, in: Lect. Notes Comput. Sci., vol. 623, Springer, 1992, pp. 685–695.
[15] A. Cerone, M. Hennessy, M. Merro, Modelling MAC-layer communications in wireless systems, Log. Methods Comput. Sci. 11 (1:18) (2015),

https://doi.org/10.2168/LMCS-11(1:18)2015.
[16] B. Sundararaman, U. Buy, A. Kshemkalyani, Clock synchronization for wireless sensor networks: a survey, Ad Hoc Netw. 3 (3) (2005) 281–323,

https://doi.org/10.1016/j.adhoc.2005.01.002.
[17] G. Berry, G. Gonthier, The Esterel synchronous programming language: design, semantics, implementation, Sci. Comput. Program. 19 (2) (1992) 87–152,

https://doi.org/10.1016/0167-6423(92)90005-V.
[18] R. Amadio, A synchronous pi-calculus, Inf. Comput. 205 (9) (2007) 1470–1490, https://doi.org/10.1016/j.ic.2007.02.002.
[19] F. Boussinot, R. de Simone, The SL synchronous language, IEEE Trans. Softw. Eng. 22 (4) (1996) 256–266, https://doi.org/10.1109/32.491649.
[20] L. Cardelli, A. Gordon, Mobile ambients, Theor. Comput. Sci. 240 (1) (2000) 177–213, https://doi.org/10.1016/S0304-3975(99)00231-5.
[21] G. Wang, G. Cao, T. La Porta, Movement-assisted sensor deployment, IEEE Trans. Mob. Comput. 5 (6) (2006) 640–652, https://doi.org/10.1109/

TMC.2006.80.
[22] M. Merro, F. Zappa Nardelli, Behavioral theory for mobile ambients, J. ACM 52 (6) (2005) 961–1023, https://doi.org/10.1145/1101821.1101825.
[23] S. Arun-Kumar, M. Hennessy, An efficiency preorder for processes, Acta Inform. 29 (8) (1992) 737–760, https://doi.org/10.1007/BF01191894.
[24] C. Bodei, P. Degano, G. Ferrari, L. Galletta, Where do your iot ingredients come from?, in: COORDINATION, in: Lect. Notes Comput. Sci., vol. 9686,

Springer, 2016, pp. 35–50.
[25] C. Bodei, P. Degano, G. Ferrari, L. Galletta, Tracing where IoT data are collected and aggregated, Log. Methods Comput. Sci. 13 (3) (2017) 1–38,

https://doi.org/10.23638/LMCS-13(3:5)2017.
[26] D. Gelernter, Generative communication in Linda, ACM Trans. Program. Lang. Syst. 7 (1) (1985) 80–112, https://doi.org/10.1145/2363.2433.
[27] R. Lanotte, M. Merro, A calculus of cyber-physical systems, in: LATA, vol. 10168, Springer, 2017, pp. 115–127.
[28] R. Lanotte, M. Merro, S. Tini, A probabilistic calculus of cyber-physical systems, CoRR abs/1707.02279.
[29] R. Lanotte, M. Merro, R. Muradore, L. Viganò, A formal approach to cyber-physical attacks, in: IEEE CSF, IEEE Computer Society, 2017, pp. 436–450.
[30] I. Lanese, D. Sangiorgi, An operational semantics for a calculus for wireless systems, Theor. Comput. Sci. 411 (2010) 1928–1948, https://doi.org/

10.1016/j.tcs.2010.01.023.
[31] S. Nanz, C. Hankin, A framework for security analysis of mobile wireless networks, Theor. Comput. Sci. 367 (1–2) (2006) 203–227, https://

doi.org/10.1016/j.tcs.2006.08.036.
[32] M. Merro, An observational theory for mobile ad hoc networks (full paper), Inf. Comput. 207 (2) (2009) 194–208, https://doi.org/10.1016/

j.ic.2007.11.010.
[33] J. Godskesen, A calculus for mobile ad hoc networks, in: COORDINATION, in: Lect. Notes Comput. Sci., vol. 4467, Springer, 2007, pp. 132–150.
[34] F. Ghassemi, W. Fokkink, A. Movaghar, Verification of mobile ad hoc networks: an algebraic approach, Theor. Comput. Sci. 412 (28) (2011) 3262–3282,

https://doi.org/10.1016/j.tcs.2011.03.017.
[35] M. Merro, F. Ballardin, E. Sibilio, A timed calculus for wireless systems, Theor. Comput. Sci. 412 (47) (2011) 6585–6611, https://doi.org/

10.1016/j.tcs.2011.07.016.
[36] M. Merro, E. Sibilio, A calculus of trustworthy ad hoc networks, Form. Asp. Comput. 25 (5) (2013) 801–832, https://doi.org/10.1007/s00165-011-0210-7.
[37] R. Lanotte, M. Merro, Semantic analysis of gossip protocols for wireless sensor networks, in: CONCUR, in: Lect. Notes Comput. Sci., vol. 6901, Springer,

2011, pp. 156–170.
[38] A. Singh, C. Ramakrishnan, S. Smolka, A process calculus for mobile ad hoc networks, Sci. Comput. Program. 75 (6) (2010) 440–469, https://

doi.org/10.1016/j.scico.2009.07.008.
[39] A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann, W. Tan, A process algebra for wireless mesh networks, in: ESOP, in: Lect. Notes Comput.

Sci., vol. 7211, Springer, 2012, pp. 295–315.
[40] J. Borgström, S. Huang, M. Johansson, P. Raabjerg, B. Victor, J. Pohjola, J. Parrow, Broadcast psi-calculi with an application to wireless protocols, Softw.

Syst. Model. 14 (1) (2015) 201–216, https://doi.org/10.1007/s10270-013-0375-z.
[41] J. Godskesen, S. Nanz, Mobility models and behavioural equivalence for wireless networks, in: COORDINATION, in: Lect. Notes Comput. Sci., vol. 5521,

Springer, 2009, pp. 106–122.
[42] R. Vigo, F. Nielson, H. Nielson Broadcast, Denial-of-service, and secure communication, in: IFM, in: Lect. Notes Comput. Sci., vol. 7940, Springer, 2013,

pp. 412–427.
[43] X. Wu, H. Zhu, Formal analysis of a calculus for WSNs from quality perspective, Sci. Comput. Program. (2018), https://doi.org/10.1016/

j.scico.2017.08.007, in press.
[44] P. Attar, I. Castellani, Fine-grained and coarse-grained reactive noninterference, in: TGC, in: Lect. Notes Comput. Sci., vol. 8358, Springer, 2013,

pp. 159–179.
[45] R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi, A formal approach to autonomic systems programming: the SCEL language, ACM Trans. Auton. Adapt. Syst.

9 (2014) 1–29, https://doi.org/10.1145/2619998.

http://refhub.elsevier.com/S0890-5401(18)30001-4/bib53616E67696F7267692D626F6F6Bs1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib76616E32303030696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib506C6F3034s1
https://doi.org/10.1006/inco.1995.1041
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4D533932s1
https://doi.org/10.2168/LMCS-11(1:18)2015
https://doi.org/10.1016/j.adhoc.2005.01.002
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/j.ic.2007.02.002
https://doi.org/10.1109/32.491649
https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.1109/TMC.2006.80
https://doi.org/10.1145/1101821.1101825
https://doi.org/10.1007/BF01191894
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib424446473136s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib424446473136s1
https://doi.org/10.23638/LMCS-13(3:5)2017
https://doi.org/10.1145/2363.2433
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4C4D3137s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4C4D4D563137s1
https://doi.org/10.1016/j.tcs.2010.01.023
https://doi.org/10.1016/j.tcs.2006.08.036
https://doi.org/10.1016/j.ic.2007.11.010
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib476F64736B6573656E3037s1
https://doi.org/10.1016/j.tcs.2011.03.017
https://doi.org/10.1016/j.tcs.2011.07.016
https://doi.org/10.1007/s00165-011-0210-7
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4C4D3131s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4C4D3131s1
https://doi.org/10.1016/j.scico.2009.07.008
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4647484D50543132s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib4647484D50543132s1
https://doi.org/10.1007/s10270-013-0375-z
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib476F644E616E7A3039s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib476F644E616E7A3039s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib564E4E3133s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib564E4E3133s1
https://doi.org/10.1016/j.scico.2017.08.007
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib43617374656C6C616E69s1
http://refhub.elsevier.com/S0890-5401(18)30001-4/bib43617374656C6C616E69s1
https://doi.org/10.1145/2619998
https://doi.org/10.1109/TMC.2006.80
https://doi.org/10.1016/j.tcs.2010.01.023
https://doi.org/10.1016/j.tcs.2006.08.036
https://doi.org/10.1016/j.ic.2007.11.010
https://doi.org/10.1016/j.tcs.2011.07.016
https://doi.org/10.1016/j.scico.2009.07.008
https://doi.org/10.1016/j.scico.2017.08.007

	A semantic theory of the Internet of Things
	1 Introduction
	2 The calculus
	2.1 Reduction semantics
	2.2 Contextual behavioural equivalence
	2.3 Design choices

	3 Case study: a smart home
	4 Labelled transition semantics
	4.1 Intensional semantics
	4.2 Extensional semantics

	5 Coinductive characterisation
	5.1 Algebraic laws and examples

	6 Conclusions and related work
	Acknowledgments
	Appendix A Proofs
	A.1 Proofs of Section 2
	A.2 Proofs of Section 3
	A.3 Proofs of Section 4
	A.4 Proofs of Section 5

	References

