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a b s t r a c t

Layered neural networks have greatly improved the performance of various applications including image
processing, speech recognition, natural language processing, and bioinformatics. However, it is still
difficult to discover or interpret knowledge from the inference provided by a layered neural network,
since its internal representation has many nonlinear and complex parameters embedded in hierarchical
layers. Therefore, it becomes important to establish a newmethodology bywhich layered neural networks
can be understood.

In this paper, we propose a newmethod for extracting a global and simplified structure from a layered
neural network. Based on network analysis, the proposed method detects communities or clusters of
units with similar connection patterns. We show its effectiveness by applying it to three use cases.
(1) Network decomposition: it can decompose a trained neural network into multiple small independent
networks thus dividing the problem and reducing the computation time. (2) Training assessment: the
appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters
can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the
community structure in the input, hidden, and output layers, which serves as a clue for discovering
knowledge from a trained neural network.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Layered neural networks have recently been applied to various
tasks (Bengio, Courville, & Vincent, 2013; LeCun, Bengio, & Hinton,
2015), including image processing (Krizhevsky, Sutskever, & Hin-
ton, 2012; Tompson et al., 2014), speech recognition (Hinton et al.,
2012; Sainath et al., 2013), natural language processing (Collobert,
2011; Sutskever, Vinyals, & Le, 2014), and bioinformatics (Leung
et al., 2014; Xiong et al., 2015). Although they have simple lay-
ered structures of units and connections, they outperform other
conventional models by their ability to learn complex nonlinear
relationships between input and output data. In each layer, inputs
are transformed into more abstract representations under a given
set of the model parameters. These parameters are automatically
optimized through training so that they extract the important
features of the input data. In other words, it does not require either
careful feature engineering by hand, or expert knowledge of the
data. This advantage has made layered neural networks successful
in a wide range of tasks, as mentioned above.

However, the inference provided by a layered neural network
consists of a large number of nonlinear and complex parameters,
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which makes it difficult for human beings to understand it. More
complex relationships between input and output can be repre-
sented as the network becomes deeper or the number of units
in each hidden layer increases, however interpretation becomes
more difficult. The large number of parameters also causes prob-
lems in terms of computational time, memory and over-fitting, so
it is important to reduce the parameters appropriately. Since it is
difficult to read the underlying structure of a neural network and
to identify the parameters that are important to keep, we must
perform experimental trials to find the appropriate values of the
hyperparameters and the random initial parameters that achieve
the best trained result.

In this paper, to overcome such difficulties, we propose a new
method for extracting a global and simplified structure from a
layered neural network (For example, Figs. 5 and 11). Based on
network analysis, the proposed method defines a modular rep-
resentation of the original trained neural network by detecting
communities or clusters of units with similar connection patterns.
Although the modular neural network proposed by Azam (2000)
and Jacobs et al. (1991) has a similar name, it takes the opposite
approach to ours. In fact, it constructs the model structure be-
fore training with multiple split neural networks inside it. Then,
each small neural network works as an expert of a subset task.
Our proposed method is based on the community detection algo-
rithm. To date, various methods have been proposed to express
the characteristics of diverse complex networks without layered
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structures (Estrada & Velázquez, 2005; Meunier & Paugam-Moisy,
2006; Newman, 2006; Newman &Girvan, 2004; Newman & Leicht,
2007), however, no method has been developed for detecting the
community structures of trained layered neural networks.

The difficulty of conventional community detection from a
layered neural network arises from the fact that an assumption
commonly used in almost all conventional methods does not hold
for layered neural networks: to detect the community structure of
network, previous approaches assume that there are more intra-
community edges that connect vertices inside a community than
inter-community edges that connect vertices in mutually differ-
ent communities. A network with such a characteristic is called
assortative. This seems to be a natural assumption, for instance,
for a network of relationships between friends. In layered neural
networks, however, units in the same layer do not connect to each
other and they only connect via units in their parent or child layers.
This characteristic is similar to that of a bipartite graph, and such
networks are called disassortative. It is not appropriate to apply
conventional methods based on the assumption of an assortative
network to a layered neural network. A basic community detection
method that can be applied to either assortative or disassortative
networks has been proposed by Newman and Leicht (2007). In
this paper, we propose an extension of this method for extracting
modular representations of layered neural networks.

The proposed method can be employed for various purposes.
In this paper, we show its effectiveness with the following three
applications.

1. Decomposition of layered neural network into indepen-
dentnetworks: the proposedmethoddecomposes a trained
neural network intomultiple small independent neural net-
works. In such a case, the output estimation by the original
neural network can be regarded as a set of independent
estimations made by the decomposed neural networks. In
other words, it divides the problem and reduces the overall
computation time. In Section 4.1, we show that our method
can properly decompose a neural network into multiple
independent networks, where the data consist of multiple
independent vectors.

2. Generalization error estimation from community struc-
ture: modularity (Newman & Girvan, 2004) is defined as
a measure of the effectiveness of a community detection
result. Section 4.2 reveals that there is a correlation between
modularity and the generalization error of a layered neural
network. It is shown that the appropriateness of the trained
result can be estimated from the community structure of the
network.

3. Knowledge discovery from modular representation: the
modular representation extracted by the proposed method
serves as a clue for understanding the trained result of a
layered neural network. It extracts the community structure
in the input, hidden, and output layer. In Section 4.3, we
introduce the result of applying the proposed method to
practical data.

The remaining part of this paper is composed as follows: we
first describe a layeredneural networkmodel in Section 2. Then,we
explain our proposedmethod for extracting amodular representa-
tion of a neural network in Section 3. The experimental results are
reported in Section 4,which show the effectiveness of the proposed
method in the above three applications. In Section 5,we discuss the
experimental results. Section 6 concludes this paper.

2. Layered neural networks

We start by defining x ∈ RM , y ∈ RN and a probability density
function q(x, y) on RM

× RN . A training dataset {(Xi, Yi)}ni=1 with

a sample size n is assumed to be generated independently from
q(x, y). Let f (x, w) be a function from x ∈ RM , w ∈ RL to RN of a
layered neural network that estimates an output y from an input x
and a parameter w.

For a layered neural network, w = {ωd
ij, θ

d
i }, where ωd

ij is the
weight of connection between the ith unit in the depth d layer and
the jth unit in the depth d + 1 layer, and θd

i is the bias of the ith
unit in the depth d layer. A layered neural network with D layers is
represented by the following function:

fj(x, w) = σ (
∑

i

ωD−1
ij oD−1i + θD−1

j ),

oD−1j = σ (
∑

i

ωD−2
ij oD−2i + θD−2

j ),

...

o2j = σ (
∑

i

ω1
ijxi + θ1

j ),

where a sigmoid function is defined by

σ (x) =
1

1+ exp(−x)
.

The training error E(w) and the generalization error G(w) are,
respectively, defined by

E(w) =
1
n

n∑
i=1

∥Yi − f (Xi, w)∥2,

G(w) =
∫
∥y− f (x, w)∥2q(x, y)dxdy,

where ∥ · ∥ is the Euclidean norm of RN .
The generalization error is approximated by

G(w) ≈
1
m

m∑
j=1

∥Yj
′
− f (Xj

′, w)∥2,

where {(Xj
′, Yj
′)}mj=1 is a test dataset that is independent of the

training dataset.
To construct a sparse neural network, we adopt the LASSO

method (Ishikawa, 1990; Tibshirani, 1994) inwhich theminimized
function is defined by

H(w) =
n
2
E(w)+ λ

∑
d,i,j

|ωd
ij|,

where λ is a hyperparameter.
The parameters are trained by the stochastic steepest descent

method,

∆w = −η∇Hi(w)

= −η

(1
2
∇{∥Yi − f (Xi, w)∥2} + λ sgn(w)

)
, (1)

where Hi(w) is the training error computed only from the ith
sample (Xi, Yi). Here, η is defined for training time t such that

η(t) ∝
1
t
,

which is sufficient for convergence of the stochastic steepest de-
scent. Eq. (1) is numerically calculated by the following proce-
dure, which is called error back propagation (Rumelhart, Hinton,
& Williams, 1986; Werbos, 1974): for the Dth layer,

δDj = (oDj − yj) oDj (1− oDj ),

∆ωD−1
ij = −η(δDj o

D−1
i + λ sgn(ωD−1

ij )),

∆θD
j = −ηδDj .
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For d = D− 1, D− 2, . . . , 2,

δdj =

ld+1∑
k=1

δd+1k ωd
jk o

d
j (1− odj ),

∆ωd−1
ij = −η(δdj o

d−1
i + λ sgn(ωd−1

ij )),

∆θd
j = −ηδdj .

Algorithm 1 is used for training a layered neural network based
on error back propagation. With this algorithm, we obtain a neural
network whose redundant weight parameters are close to zero.

Algorithm 1 Stochastic steepest descent algorithm of a layered
neural network
for i = 1 to a1 ∗ n do

Randomly sample k from uniform distribution on
{1, 2, · · · , n}.
xj ← xkj ,
yj ← ykj ,
where xkj and ykj is the j-th element of k-th sample.
η = 0.8× a1×n

a1×n+5×i
,

where a1 × n is the number of iterations. (Here, we defined η

so that it gets smaller and smaller as the iteration proceeds, to
accelerate convergence of the algorithm.)
(1) Output calculation of all layers: let odj be an output of the
j-th unit in the depth d layer.
o1j ← xj.
for d = 2 to D do

odj ← σ (
∑

i ω
d−1
ij od−1i + θd

j ).
end for
(2) Update weight ωd

ij and bias θd
j based on back propagation,

where ϵ > 0 is a small constant.
δDj ← (oDj − yj)(oDj (1− oDj )+ ϵ).
∆ωD−1

ij ←−η(δDj o
D−1
i + λ sgn(ωD−1

ij )).
∆θD

j ←−ηδDj .
for d = D− 1 to 2 do

δdj ←
∑

j′ δ
d+1
j′ ωd

jj′ (o
d
j (1− odj )+ ϵ).

∆ωd−1
ij ←−η(δdj o

d−1
i + λ sgn(ωd−1

ij )).
∆θd

j ←−ηδdj .
end for
ωd

ij ← ωd
ij +∆ωd

ij.
θd
j ← θd

j +∆θd
j .

end for

3. Modular representation of layered neural networks

Here we propose a new community detectionmethod, which is
applied to any layered neural networks (Fig. 1(A)). The proposed
method is an extension of the basic approach proposed by New-
man and Leicht (2007). It detects communities of assortative or
disassortative networks. The key idea behind our method is that
the community assignment of the units in each layer is estimated
by using connection with adjacent layers.

As shown in Fig. 1(B), a partial network consisting of the con-
nections between every layer and its adjacent layers is represented
in the form of two matrices: Ad

= {Ad
ij} and Bd

= {Bd
ij}. The matrix

Ad and Bd represent the connections between two layers of depth
d − 1 and d, and two layers of depth d and d + 1, respectively. In
this paper, an element Ad

ij is given by

Ad
ij =

{
1 (|ωd−1

ij | ≥ ξ ),
0 (otherwise),

(2)

where ξ is called a weight removing hyperparameter. In a similar
way, an element Bd

ij is given by

Bd
ij =

{
1 (|ωd

ij| ≥ ξ ),
0 (otherwise).

(3)

For simplicity, we denote Ad and Bd as A and B, respectively, in the
following explanation.

Our method is based on the assumption that units in the same
community have a similar probability of connection from/to other
units. This assumption is almost the same as that in the previous
method (Newman & Leicht, 2007), except that our method utilizes
both incoming and outgoing connections of each community, and
it detects communities in individual layers. Therefore, the commu-
nity detection result is derived in a similar way to the previous
method (Newman & Leicht, 2007), as explained in the rest of this
section. As shown on the right in Fig. 1(B), the statistical model
for community detection has three kinds of parameters. The first
parameter π = {πc} represents the prior probability of a unit in
the depth d layer that belongs to the community c . The conditional
probability of connections for a given community c is represented
by the second and third parameters τ = {τc,i} and τ ′ = {τ ′c,j},
where τc,i represents the probability that a connection to a unit
in the community c is attached from the ith unit in the depth d− 1
layer. Similarly, τ ′c,j represents the probability that a connection
from a unit in the community c is attached to the jth unit in the
depth d+ 1 layer. Here, we omit the index d for these parameters
π, τ , τ ′ for simplicity. These parameters are normalized so that
they satisfy the following condition:∑

c

πc = 1.
∑

i

τc,i = 1.
∑

j

τ ′c,j = 1. (4)

Our purpose is to find the parameters π, τ , τ ′ that maximize
the likelihood of given matrices A, B. To solve this problem, we
introduce the community assignment g = {gk}, where gk is the
community of the kth unit in the depth d layer. The parameters are
optimized so that they maximize the likelihood of A, B and g:

Pr(A, B, g|π, τ , τ ′) = Pr(A, B|g, π, τ , τ ′) Pr(g|π, τ , τ ′),

where

Pr(A, B|g, π, τ , τ ′) =
∏
k

{∏
i

(
τgk,i

)Ai,k
}⎧⎨⎩∏

j

(
τ ′gk,j

)Bk,j

⎫⎬⎭ ,

Pr(g|π, τ , τ ′) =
∏
k

πgk .

Then, the log likelihood of A, B and g is given by

L = ln Pr(A, B, g|π, τ , τ ′)

=

∑
k

⎧⎨⎩lnπgk +
∑

i

Ai,k ln τgk,i +
∑

j

Bk,j ln τ ′gk,j

⎫⎬⎭ .

Here, the community assignment g is a latent variable and is
unknown in advance, so we cannot directly calculate the above
L. Therefore, we calculate the expected log likelihood L̄ over g
instead.

L̄ =
∑
g1

· · ·

∑
gl

Pr(g|A, B, π, τ , τ ′)
∑
k

⎧⎨⎩ lnπgk

+

∑
i

Ai,k ln τgk,i +
∑

j

Bk,j ln τ ′gk,j

⎫⎬⎭
=

∑
k,c

Pr(gk = c|A, B, π, τ , τ ′)
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Fig. 1. Proposed method. (A) Trained network: a layered neural network is trained by the stochastic steepest descent method. (B) Community detection: the connections
between every layer and its adjacent layers are represented by partial network matrices Ad and Bd . Communities in each layer are extracted by using network analysis. (C)
Community structure: the community assignments of all units are determined from the estimated parameters in (B). (D) Modular representation: bundled connections are
defined that summarize multiple connections between pairs of communities.

×

⎧⎨⎩lnπc +
∑

i

Ai,k ln τc,i +
∑

j

Bk,j ln τ ′c,j

⎫⎬⎭ ,

where l is the number of units in the depth d layer. By defining

qk,c = Pr(gk = c|A, B, π, τ , τ ′) =
Pr(A, B, gk = c|π, τ , τ ′)

Pr(A, B|π, τ , τ ′)
, (5)

the above equation can be rewritten as follows:

L̄ =
∑
k,c

qk,c

⎧⎨⎩lnπc +
∑

i

Ai,k ln τc,i +
∑

j

Bk,j ln τ ′c,j

⎫⎬⎭ . (6)

The parameter qk,c represents the probability that the kth unit
is assigned to the community c . In other words, the community
detection result is given by the estimated {qk,c}. The optimal
parameters for maximizing L̄ of Eq. (6) are found with the EM
algorithm. The parametersπ, τ , τ ′with given {qk,c} are iteratively
optimized.

Theorem 3.1. If {qk,c}, {πc}, {τc,i}, {τ
′

c,j} maximizes L̄, then they
satisfy

qk,c =
πc

[∏
i τc,i

Ai,k
] [∏

j τ
′

c,j
Bk,j

]
∑

s πs
[∏

i τs,i
Ai,k

] [∏
j τ
′

s,j
Bk,j

] , (∀k, c) (7)

and

πc =

∑
k qk,c
l

,

τc,i =

∑
k qk,cAi,k∑
k,i qk,cAi,k

,

τ ′c,j =

∑
k qk,cBk,j∑
k,j qk,cBk,j

. (∀c, i, j). (8)

Proof. The denominator and numerator in the last term of Eq. (5)
are given by

Pr(A, B, gk = c|π, τ , τ ′) =
∑
g1

· · ·

∑
gl

δgk,cPr(A, B, g|π, τ , τ ′)

=

∑
g1

· · ·

∑
gl

δgk,c
∏
h

⎧⎨⎩πgh

[∏
i

τgh,i
Ai,h

]⎡⎣∏
j

τ ′gh,j
Bh,j

⎤⎦⎫⎬⎭
=

⎧⎨⎩πc

[∏
i

τc,i
Ai,k

]⎡⎣∏
j

τ ′c,j
Bk,j

⎤⎦⎫⎬⎭
×

⎧⎨⎩∏
h̸=k

∑
s

πs

[∏
i

τs,i
Ai,h

]⎡⎣∏
j

τ ′s,j
Bh,j

⎤⎦⎫⎬⎭ ,

and

Pr(A, B|π, τ , τ ′) =
∑
g1

· · ·

∑
gl

Pr(A, B, g|π, τ , τ ′)

=

∏
k

∑
s

πs

[∏
i

τs,i
Ai,k

]⎡⎣∏
j

τ ′s,j
Bk,j

⎤⎦ ,

where δi,j is the Kronecker delta. Therefore, qk,c is given by Eq. (7).
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The problem is to maximize L̄ of Eq. (6) with a given {qk,c}
under the condition of Eq. (4). This is solved with the Lagrangian
undetermined multiplier method, which employs

f = L̄− α
∑
c

πc −
∑
c

βc

∑
i

τc,i −
∑
c

γc

∑
j

τ ′c,j,

and
∂ f
∂πc
=

∂ f
∂τc,i
=

∂ f
∂τ ′c,j
= 0. (∀c, i, j). (9)

From Eq. (9), the following equations are derived:

∂L̄
∂πc
= α,

∂L̄
∂τc,i
= βc,

∂L̄
∂τ ′c,j
= γc . (∀c, i, j). (10)

Using Eq. (6) and Eq. (10), we obtain

πc =
1
α

∑
k

qk,c, τc,i =
1
βc

∑
k

qk,cAi,k,

τ ′c,j =
1
γc

∑
k

qk,cBk,j. (∀c, i, j). (11)

FromEq. (11) and the condition of Eq. (4), Lagrange’s undetermined
multipliers α, {βc}, {γc} are determined, and Eq. (11) is rewritten
as Eq. (8).

From the above theorem, the optimal parameters π, τ , τ ′ and
the probability of community assignment q for the optimized pa-
rameters are iteratively estimated based on Eqs. (7) and (8). In this
paper, the community assigned to the kth unit is determined by the
c that maximizes qk,c (Fig. 1(C)).

Finally, we use the following methods to determine a modular
representation of a layered neural network that summarizes mul-
tiple connections between the pairs of communities (Fig. 1(D)).
Four algorithms for determining bundled connections:

• Method 1: Community a and b have a bundled connection
iff there exists at least one connection between the pairs of
units {i, j}, i ∈ a, j ∈ b.
• Method 2: Let the number of units in communities a and b

be la and lb, respectively, and let the number of connections
between the pairs of units {i, j}, i ∈ a, j ∈ b be la,b.
Communities a and b have a bundled connection iff ra,b ≡
la,b
la lb
≥ ζ holds, where ζ is a threshold.

• Method 3: Among the bundled connections defined by
Method 2, only those that satisfy the following (1) OR (2)
are kept and the others are removed. (1) for any community
a′ in the same layer as community a, ra,b ≥ ra′,b. (2) for any
community b′ in the same layer as community b, ra,b ≥ ra,b′ .
• Method 4: Among the bundled connections defined by

Method 2, only those that satisfy the above (1) AND (2) are
kept and the others are removed.

By these procedures, we obtain the modular representation of
a layered neural network.

4. Experiments

In this section, we show three applications of the proposed
method: (1) the decomposition of a layered neural network into
independent networks, (2) generalization error estimation from a
community structure, and (3) knowledge discovery from a modu-
lar representation. Herewe verify the effectiveness of the proposed
method in the above three applications.

The following processingwas performed in all the experiments:

(1) The input data were normalized so that the minimum and
maximum values were xmin and xmax, respectively.

(2) The output data were normalized so that the minimum and
maximum values were 0.01 and 0.99, respectively.

(3) The initial parameters were independently generated as
follows: ωd

ij
i.i.d.
∼ N (0, 0.5). θd

j
i.i.d.
∼ N (0, 0.5).

(4) As in Eq. (2), the connectionmatrix Ad
ij = 0.99 if the absolute

value of the connection weight between the ith unit in the
depth d−1 layer and the jth unit in the depth d layer is larger
than a threshold ξ , otherwise Ad

ij = 0.01. Note that 0.99
and 0.01 are used instead of 1 and 0 for stable computation.
Similarly, Bd

ij is defined from the connectionweight between
the ith unit in the depth d layer and the jth unit in the depth
d + 1 layer (Eq. (3)). All units were removed that had no
connections to other units.

(5) For each layer in a trained neural network, 10 community
detection trialswere performed.Wedefined the community
detection result as one that achieved the largest expected
log likelihood in the last of 200 iterations of the EM algo-
rithm.

(6) In each community detection trial, the initial values of the
parameters π, τ , τ ′ were independently generated from a
uniform distribution on (0, 1), and then normalized so that
Eq. (4) held.

(7) In visualization of modular representation, all communities
with no output bundled connections from them were re-
garded as unnecessary communities. In the output layer, the
communities with no input bundled connections were re-
garded in the same way as above. The bundled connections
with such unnecessary communities were also removed.
These unnecessary communities and bundled connections
were detected from depth D to 1, since the unnecessary
communities in the shallower layers depend on the removal
of unnecessary bundled connections in the deeper layers.

4.1. Decomposition of independent layered neural networks

We show that the proposed method can properly decompose a
neural network into a set of small independent neural networks,
where the dataset consists of multiple independent dimensions.
For validation, we made the synthetic data of three independent
parts, merged them, and applied the proposed method to decom-
pose them into the three independent parts.

4.1.1. Generation method of synthetic data
The method we used to generate the synthetic data is shown

in Fig. 2. In the following, we explain the experimental settings in
detail.

First, three sets of input data were independently generated.
All the sets contained input data with 15 dimensions, and their
values followed: xnj

i.i.d.
∼ N (0, 3). Then, three neural networks were

defined, each of which has independent weights and biases. In
each neural network, all the layers consisted of 15 units, and the
number of hidden layers was set at one. The sets of weights and
biases for the first, second and third neural networks are denoted
as {ω, θ}, {ω′, θ ′}, and {ω′′, θ ′′}, respectively. These parameters
were randomly generated as follows:

ωd
i,j, ω′

d
i,j, ω′′

d
ij

i.i.d.
∼ N (0, 2),

θd
j , θ ′

d
j , θ ′′

d
j

i.i.d.
∼ N (0, 0.5).

For theweightsω, ω′ andω′′, the connectionswith absolute values
of one or smaller were replaced by 0.

Finally, three sets of output data were generated by using the
above input data and neural networks by adding independent
noise following N (0, 0.05). The three generated sets of input and
output data were merged into one set of data, as shown in Fig. 2.
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Fig. 2. Method for generating synthetic data. First, three vectors of input data were independently generated. Then, each input vector was connected to a different layered
neural network with independent weights and biases. Independent noises were added to the resulting three output vectors, to generate the output data. These three sets of
input and output data were merged into one.

Fig. 3. Neural network trained using the synthetic data. The numbers above the
input layer and below the output layer are the indices of the three datasets.

Fig. 4. Result of community detection with proposed method.

4.1.2. Neural network training andmodular representation extraction
We trained another neural network with 45 dimensions for

input, hidden and output layer using themergeddata. Then, amod-
ular representation of the trained neural network was made with
the proposedmethod. The results of the trained neural network, its
community structure, and itsmodular representation are shown in
Figs. 3, 4, and 5, respectively. The numbers above the input layer
and below the output layer are the indices of the three sets of data.
These results showed that the proposed method could decompose
the trained neural network into three independent networks.

4.1.3. Modular representation extraction using data generated by
mutually dependent neural networks

We also conducted an experiment to extract modular repre-
sentations from neural networks trained with data generated by
mutually dependent neural networks. To control the extent of in-
dependence between three neural networks, we added κ bundled
connections between randomly chosen pairs of communities in

Fig. 5. Extracted modular representation of trained neural network. These results
showed that our method could decompose the trained neural network into three
independent networks.

mutually adjacent layers, where κ is set at 1, 2, . . . , 10. For exam-
ple, in Fig. 2, the community in the input layer of neural network
1 and the community in the hidden layer of neural network 2
are randomly chosen and a bundled connection is added between
them. The connectionweights between a pair of communitieswith
a bundled connection are independently generated from N (0, 2).
As in the experiment described in Section 4.1.1, the output data
of three communities were generated by using the above neural
network with additional bundled connections and three sets of
input data that were independently generated.

As in Section 4.1.2, a modular representations of the trained
neural networks were extracted with the proposed method, with
varying number of true additional bundled connections (κ =
1, 2, . . . , 10). The results of the modular representations are
shown in Fig. 6. These results showed that our proposed method
could almost properly decompose the units in all layers when κ ≤
7holds. As thenumber of additional bundled connections increases
(κ ≥ 8), a pair of communities in the same layer is more likely to
share much connections to other units in the ground truth neural
network, resulting that the units in such ground truth communities
cannot be decomposed properly.

4.2. Generalization error estimation from community structure

In general, a trained result of a layered neural network is af-
fected by different hyperparameters and initial parameter values.
Here, we show that the appropriateness of a trained result can be
estimated from the extracted community structure by checking the
correlation between the generalization error and the modularity
(Newman & Girvan, 2004).

The modularity is defined as a measure of the effectiveness
of the community detection result, and it becomes higher with
more intra-community connections and fewer inter-community
connections. In other words, a network can be divided into differ-
ent communities more clearly, as the modularity becomes higher.
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Fig. 6. Extracted modular representation of neural network trained using the data with varying true structure. From the top left, the number of true additional bundled
connections is 1, 2, . . . , 10.

Let the number of communities in the network be C , and Ā = {Āij}

be a C × C matrix whose element Āij is the number of connections
between communities i and j, divided by the total number of
connections in the network. The modularity Q of the network is
defined by

Q =
∑

i

(
Āii −

⎧⎨⎩∑
j

Āij

⎫⎬⎭
2)

.

This is a measure for verifying the community structure of assor-
tative networks, so it cannot be applied directly to layered neural

networks. In this paper, we define a modified adjacency matrix
based on the original adjacencymatrix of a layered neural network,
and use it for measuring modularity. In the modified adjacency
matrix, an element indexed by row i and column j represents the
number of common units that connect with both the ith and jth
units (Fig. 7). We set the diagonal elements of modified adjacency
matrix at 0, resulting that there are no self-loops.

4.2.1. Correlation between modularity and generalization error when
using input data of mutually independent dimensions

If the data consist of multiple independent dimensions like the
synthetic data used in the experiment described in Section 4.1, the
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Fig. 7. Left and center: method for defining themodified adjacencymatrix of a layered neural network for calculatingmodularity. Right: a matrix Āwhose elements indicate
the fraction of the connection weights between two communities in the network.

Fig. 8. Relationship between generalization error and modularity. Community detection was performed with layered neural networks trained by multiple independent sets
of data. The LASSO hyperparameter λ is 1.0×10−5 (left), 1.0×10−6 (center) 1.0×10−7 (right). The weight removing hyperparameter ξ is 0.1 (top), 0.3 (center) 0.6 (bottom).
Better trained results were obtained (with smaller generalization errors) when the trained neural networks had clearer community divisions (with high modularity) except
when (λ, ξ ) = (1.0× 10−5, 0.6).

generalization error is expected to be smaller when the weights
of the connections between independent sets of input and output
are trained to be smaller. Therefore, a higher modularity indicates
a smaller generalization error.

In the experiment, we iterated the neural network training and
community detection from the trained network 300 times, using
15 dimensional data that are generated in the same way as the
experiment described in Section 4.1.1. The generalization error
and modularity results for nine pairs of hyperparameters {λ, ξ}

are shown in Fig. 8, where λ is the LASSO hyperparameter and ξ
is the weight removing hyperparameter. For the smaller λ and ξ ,
the overall modularities were lower, which indicates that there
were more connections between mutually independent neural
networks. It was experimentally shown for some hyperparameters
that better trained results were obtained (with smaller gener-
alization errors) when the trained neural networks had clearer
community divisions (with higher modularity). Table 1 shows the
correlations and the p-values for given {λ, ξ}.
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Table 1
The correlation R and the p-value p for the generalization errors and the modularities.

ξ λ

1.0× 10−5 1.0× 10−6 1.0× 10−7

0.1 R : −0.24, p : 2.1× 10−5 R : −0.23, p : 5.0× 10−5 R : −0.17, p : 3.6× 10−3

0.3 R : −0.43, p : 3.5× 10−15 R : −0.58, p : 1.5× 10−28 R : −0.61, p : 1.3× 10−31

0.6 R : 0.040, p : 0.49 R : −0.44, p : 7.9× 10−16 R : −0.55, p : 5.1× 10−25

Table 2
The correlation R and the p-value p for the generalization errors and themodularities with varying dependence between
input data. The parameter α represents the strength of dependence.

α 0 0.1 0.2 0.3 0.4

R −0.58 −0.72 −0.58 −0.62 −0.56
p 1.5× 10−28 5.4× 10−49 3.1× 10−28 4.9× 10−33 1.5× 10−26

α 0.5 0.6 0.7 0.8 0.9

R −0.59 −0.33 −0.32 −0.014 0.14
p 2.6× 10−29 6.2× 10−9 1.5× 10−8 0.81 0.018

4.2.2. Correlation between modularity and generalization error when
using input data of correlated dimensions

We also evaluated the relationship between modularity and
generalization error, when there is dependence between dimen-
sions of input data. Values of each dimensions of input data were
given by

xnj =

⎧⎨⎩
znj (1 ≤ j ≤ 5),
(1− α)× znj + α × znj−5 (6 ≤ j ≤ 10),
(1− α)× znj + α × znj−10 (otherwise),

(12)

where α is a control parameter of dependence in input data and
znj

i.i.d.
∼ N (0, 3).
We varied the parameter α from 0 to 0.9, and checked the

correlation between modularity and generalization error for each
setting. Here, we set the hyperparameters at (λ, ξ ) = (1.0 ×
10−6, 0.3), and used the same experimental settings other than
the generation method of input data and the hyperparameters.
Table 2 shows the correlations and the p-values for varying control
parameter α. It was shown that there was a correlation between
generalization error and modularity when the dependence be-
tween input data was not so strong. Roughly, for the larger α,
modularity and generalization error have the weaker correlation.
This is because the three sets of input data were not necessarily
be decomposed into different communities, even if the training
result of neural network was appropriate. If the input data contain
strongly dependent dimensions, it is necessary to remove such
dimensions in advance, for analyzing the extracted modular struc-
ture properly. To construct a method for improving input data
appropriately based on their dependency is a future work.

4.3. Knowledge discovery from modular representation

In order to show that the modular representation extracts the
global structure of a trained neural network, we applied the pro-
posed method to a neural network trained with practical data. We
used data that represent the characteristics of eachmunicipality in
Japan (e-stat, 0000). The characteristics shown in Table 3wereused
as the input and output data, and the data of municipalities that
had any missing value were removed. There were 1905 data, and
we divided them into 952 training data and 953 test data. Before
the neural network was trained, all the dimensions for all sets of
data were converted through the function of log(1 + x), because
the original data are highly biased. The results are shown in Fig. 9.

We iterated the neural network training and community de-
tection from the trained network 300 times, using the above
data. The trained neural network and the modular representation
with minimum generalization error are shown in Figs. 10 and 11,

respectively. The correlation R between modularity and general-
ization error was −0.028. Fig. 11 shows, for example, that the
number of births, deaths, marriages, divorces, people who engage
in secondary industry work, and unemployed people (A4) were
inferred from the population of transference, the number of out-
migrants, households, secondary industry establishments and so
on (A1).

From the extracted modular representation, we found not only
the grouping of the input and output units, but also the relational
structure between the communities of the input, output and hid-
den layers. For instance, the third community from the right in the
depth 2 layer (B2) and the second community from the right in
the depth 3 layer (B3) only connected to partial input and output
units: they were used only for inferring the number of nuclear
family households, single households, nuclear family households
with members aged 65 and older, and elderly households (B4),
from the population between 15 and 64 years of age, the number
of general households and executives (B1).

5. Discussion

In this section, we discuss the proposed algorithm from four
viewpoints, the community detectionmethod, the validation of the
extracted result, the scalability of our method, and the application.

First, to extract a modular representation from a trained neu-
ral network, we employed a basic iterative community detection
method for each layer. It is possible to modify this method, for
example, by using the weights of connections or the connections
in further layers. Utilizing the output of each unit might also
improve preciseness of the community detection result. In general,
connection weights of a neural network can be trained the more
appropriately with the more training data, resulting in the more
valid modular representation extraction. For a given set of data,
the optimal hyperparameters λ and ξ in the sense of the smallest
generalization error can be found by cross-validation, but it takes
heavy computational cost. To seek a method for determining the
sufficient number of training data, or for optimizing community
detection methods and hyperparameters according to the task
with small computational complexity is future work.

Second, knowledge discovered from a modular representation
depends on both the data and the analyst who utilizes the pro-
posed method. For quantitative evaluation of extracted modular
structure, statistical hypothesis test or statistical model selection
method is required. However, such method has not been con-
structed in the field of network analysis, so it is also an important
mathematical task in the future. Experimentally, there are both
sensitive and robust communities which do and do not depend
on them. Therefore, it becomes important to separate the essential
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Fig. 9. Histogram of each dimension of data that contain the characteristics of each municipality in Japan. The data were converted through the function of log(1+ x). The
notations are shown in Table 3.

Fig. 10. Trained neural network for practical data. The input and output data notations are shown in Table 3.

results from fluctuations. We anticipate that our method will form
the basic analytic procedure of such a study.

Third, in this paper, we experimentally evaluated the rela-
tionship between modularity and generalization error. It is well
known that a community detection technique can be employed
for large size networks. The analysis of larger datasets with higher
dimensions would provide further information on layered neural
networks. For such large datasets, it would also be important to
evaluate the effectiveness of parallel computation, using the inde-
pendent neural networks extracted with our proposed method.

And lastly, our proposed community detection method can be
used for various applications, such as neural network compression.
For instance, it would be possible to use modularity index of a re-
sulting community structure as a penalty term for neural network
regularization.

6. Conclusion

Layered neural networks have achieved a significant improve-
ment in terms of classification or regression accuracy over a wide
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Fig. 11. Extracted modular representation of trained neural network. This figure shows, for example, that the number of births, deaths, marriages, divorces, people who
engage in secondary industry work, and unemployed people (A4) were inferred from the population of transference, the number of out-migrants, households, secondary
industry establishments and so on (A1).

Table 3
Notations of the data.

Name Meaning Name Meaning

I1 Total population I22 Number of employed people by business location
I2 Population under 15 years of age I23 Number of commuters from other municipalities
I3 Population between 15 and 64 years of age I24 Number of post offices
I4 Population aged 65 and older O1 Number of births
I5 Foreign population O2 Number of deaths
I6 Population of transference O3 Number of nuclear family households
I7 Number of out-migrants O4 Number of single households
I8 Daytime population O5 Number of nuclear family households with members aged 65 and older
I9 Number of households O6 Number of elderly couple households
I10 Number of general households O7 Number of elderly single households
I11 Number of establishments O8 Number of marriages
I12 Number of secondary industry establishments O9 Number of divorces
I13 Number of tertiary industry establishments O10 Number of secondary industry workers
I14 Number of workers O11 Number of tertiary industry workers
I15 Labor force population O12 Number of employees in manufacturing industry
I16 Number of employed people O13 Number of unemployed people
I17 Number of executives O14 Number of primary industry employees
I18 Number of employees with employment O15 Number of secondary industry employees
I19 Number of employees without employment O16 Number of tertiary industry employees
I20 Number of family workers O17 Number of employees
I21 Number of commuters to other municipalities O18 Number of employed workers in their municipalities

range of applications by their ability to capture the complex hidden
structure between input and output data. However, the discovery
or interpretation of knowledge using layered neural networks has
been difficult, since its internal representation consists of many
nonlinear and complex parameters.

In this paper, we proposed a new method for extracting a
modular representation of a trained layered neural network. The
proposed method detects communities of units with similar con-
nection patterns, and determines the relational structure between
such communities. We demonstrated the effectiveness of the pro-
posed method experimentally in three applications. (1) It can de-
compose a layered neural network into a set of small independent
networks,which divides the problemand reduces the computation
time. (2) The trained result can be estimated by using amodularity

index, whichmeasures the effectiveness of a community detection
result. And (3) providing the global relational structure of the
network would be a clue to discover knowledge from a trained
neural network.
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Appendix

Table 3 shows the notations of the data (e-stat, 0000) used in the
experiment described in Section 4.3. The experimental settings of
the parameters are shown in Table 4.
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Table 4
The experimental settings of the parameters.

Name Meaning Exp.1 Exp.2 Exp.3

a1 Mean iteration number of neural network training per set of data 4000 2000
n Number of training datasets 3000 500 952
m Number of test datasets 0 500 953
{ld} Number of units in depth d layer {45, 45, 45} {15, 15, 15} {24, 20, 20, 18}
D Number of layers including input, hidden, and output layers 3 4
λ Hyperparameter of LASSO 1.0× 10−6 a 1.0× 10−7
ϵ Hyperparameter for convergence of neural network 0.001
ξ Weight removing hyperparameter 0.3 a 0.5
C Number of communities per layer 3 5
Method Method for defining bundled connections 2 3
ζ Threshold for defining bundled connections 0.3
xmin Minimum value of normalized input data −3 −1
xmax Maximum value of normalized input data 3 1

a The nine parameters shown in the caption of Fig. 8 are used.
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