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a b s t r a c t 

In this work, the modification of the probabilistic neural network (PNN) is proposed. The 

traditional network is adjusted by introducing the weight coefficients between pattern and 

summation layer. The weights are derived using the sensitivity analysis (SA) procedure. 

The performance of the weighted PNN (WPNN) is examined in data classification prob- 

lems on benchmark data sets. The obtained WPNN’s efficiency results are compared with 

these achieved by a modified PNN model put forward in literature, the original PNN and 

selected state-of-the-art classification algorithms: support vector machine, multilayer per- 

ceptron, radial basis function neural network, k -nearest neighbor method and gene ex- 

pression programming algorithm. All classifiers are collated by computing the prediction 

accuracy obtained with the use of a k -fold cross validation procedure. It is shown that in 

seven out of ten classification cases, WPNN outperforms both the weighted PNN classi- 

fier introduced in literature and the original model. Furthermore, according to the ranking 

statistics, the proposed WPNN takes the first place among all tested algorithms. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Classical feedforward neural networks such as multilayer perceptron or radial basis function network have their layers

linked using weighted connections. Within the training process, the utilized weights must be first initialized and then itera-

tively recomputed to optimize some assumed performance measure of the model for a given training data. The probabilistic

neural network [36,37] , however, is the model unequipped with any additional weighting factors inside its structure. PNN

is therefore free from time consuming weights’ update. This fact gives this network the advantage in application popularity.

The usage of PNN can be found in the domains of medical diagnosis and prediction [9,15,17,18,20] , image classification and

recognition [4,25,45] , earthquake magnitude prediction [1] , multiple partial discharge sources classification [43] , interval in-

formation processing [12–14] , phoneme recognition [7] , email security enhancement [41] , intrusion detection systems [40] ,

classification in a time-varying environment [27,28] or hardware implementation [46] . The variant of PNN in regression

tasks, known as general regression neural network [38] , is also studied by many authors, e.g.: in function approximation

[10] or knowledge discovery in data streams [6] . 

Four layers create a structure of a conventional PNN: the input layer represented by data attributes, the pattern layer

composed of as many neurons as training patterns, the summation layer containing a single neuron for each class and
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the output layer with a decision neuron which determines the classification outcome. In the research centered on PNN

architecture, some minor emphasis is usually placed on applying the weights inside this network. The first contribution

related to PNN’s weights is presented in [22] . However, the coefficients are not computed explicitly. The network operates

using anisotropic Gaussians to provide the output for a considered sample by utilizing the covariance matrix instead of a

single smoothing parameter in the activation function. In the works of [34] and [35] , the weighting coefficients are directly

introduced inside the PNN model. They are placed between pattern and summation layer. These factors are calculated from

soft labeling probability matrix based on Bayesian algorithm. In turn, the authors of [23–25] create weighted PNN based on

the class separability in the data. The weight coefficients are defined as the ratio of ‘between-class variance’ and ‘within-

class variance’ for a particular training pattern. They are included between a pattern and summation layer of PNN. 

In this paper, the weighted probabilistic neural network is introduced. For the computation of the weights, we propose

the use of SA procedure. As in the case of [23–25,34,35] , the coefficients are placed between pattern and summation layer

of the network. The formulas for the weights are analytically derived. The model with a product Cauchy kernel activation

function is utilized. The performance of the proposed WPNN is examined in the classification problems of the UCI machine

learning repository (UCI–MLR) data sets [19] calculating a k -fold cross validation accuracy. Furthermore, we verify WPNN

accuracy with the one obtained for five state-of-the-art classifiers: support vector machine, multilayer perceptron, radial

basis function neural network, k -nearest neighbor method and gene expression programming algorithm. 

The current work is an extension of the preliminary study published by the same authors in [16] . We enrich the pre-

vious paper by comparing the proposed WPNN with the modified probabilistic neural network (MPNN) introduced in

[23–25] where the weighing factors are determined on the basis of the class variances in the data set. Furthermore, the

obtained results are averaged so that the mean and the standard deviation is computed in each data classification case.

Therefore, the results are reliable and worth referring. We also introduce the ranking statistics within the comparison of

WPNN, MPNN, original PNN and the state-of-the-art classification algorithms. This shows in turn, which model performs

best among all tested ones. Finally, we perform the Friedman test to present that the utilized comparison method is appro-

priate. 

At this point, it is necessary to stress the elements of novelty of our study. First of all, despite existing approaches on

PNN weighting factors available in literature, the analytical formula for the weights of this network has not been provided.

In this paper, such a solution is given. Secondly, the proposed formula is easy to implement and is additionally interpretable

since it stems from the SA procedure. Moreover, SA has not been utilized for computing the PNN’s weights up to this date.

Finally, no additional iterative procedure, which relies on the minimization of some error function, is involved to compute

the weights. Therefore, the loss in computational time is marginal. 

The rest of this paper is organized as follows. In Section 2 , the SA procedure is presented. Section 3 explains the oper-

ation of the PNN model including the structure of the network, and the computation of the smoothing parameter and the

modification coefficient. In Section 4 , we show the way of deriving the formula for the PNN’s weights. Section 5 outlines

the input data sets and the selected classifiers utilized in our study. Here, the obtained results are also discussed. The final

conclusions are drawn in Section 6 . 

2. Sensitivity analysis 

SA procedure is frequently applied in determining the influence of particular inputs of a neural network. Therefore, it

can be utilized in the elimination of redundant attributes of the input data. The main idea of SA is based on establishing

the importance of input attributes on a neural network output after a training process. Such an importance is defined by

real coefficients [48] 

S (p) 
j,i 

= 

∂ 

∂x i 
y j 
(
x (p) 

1 
, x (p) 

2 
, . . . , x (p) 

N 

)
, (1) 

where x i is an input attribute and y j denotes an output signal. In (1) , i = 1 , . . . , N and j = 1 , . . . , J, where N and J stand for

the number of attributes and outputs, respectively. 

Eq. (1) corresponds to the sensitivity of the j th neural network output on the i th attribute of a sample vector x obtained

on the basis of the p th training pattern x ( p ) for p = 1 , . . . , P where P represents a cardinality of a data set. Considering an N

dimensional data set, Eq. (1) can be presented as the following matrix 

S (p) = 

{
S (p) 

j,i 

}
J×N 

. (2) 

Once S ( p ) is determined for all P training patterns, we are capable of finding aggregated parameters using various types of

norms. In the research, the mean square average sensitivity parameter is usually applied 

S mean 
j,i = 

√ 

1 

P 

P ∑ 

p=1 

(
S (p) 

j,i 

)2 
. (3) 

The absolute value average sensitivity and the maximum sensitivity parameters are also commonly used in input significance

estimation [47] . The selection of a particular norm is influenced by an impact of S 
(p) 
j,i 

on the aggregated outcome of S mean 
j,i 

. 
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The final stage of SA relies on the exploration of particular sensitivities S j , i . For this purpose, the maximum value Q i in

the i th column of the matrix (2) must be defined with the elements aggregated according to some assumed norm, e.g. 

Q i = max 
j=1 , ... ,J 

{
S mean 

j,i 

}
. (4)

If we sort Q i coefficients in descending order, it is possible to evaluate the significance of a neural network’s inputs on

its final output. Such a significance can be established with the use of the difference between two neighboring elements 

�Q i = Q i − Q i +1 , (5)

for i = 1 , . . . , N − 1 . An explicit difference �Q max between Q i and Q i +1 gives us the hint that all smaller Q i elements have

minor impact on a neural network’s output. 

3. Probabilistic neural network 

The operation of the PNN classifier is based on the kernel density estimator (KDE) which, in general, takes the following

form 

ˆ f (x ) = 

1 

P h 

N 

P ∑ 

p=1 

K 

(
x − x 

(p) 

h 

)
, (6)

where x = [ x 1 , . . . , x N ] is a testing sample, h denotes the smoothing parameter and K ( ·) is the kernel function which performs

the mapping R 

N → [0 , ∞ ) . For multidimensional data sets, KDE is often generalized to product notation 

K(x ) = K(x 1 ) · K(x 2 ) · . . . · K(x N ) , (7)

where 

K(x i ) = 

2 

π(x 2 
i 

+ 1) 2 
(8)

stands for the one-dimensional Cauchy multiplicand. The form of the kernel in (8) should be chosen so as to guarantee

its useful analytic form for derivation operation. Moreover, it has been shown that the difference in the selection of kernel

function implies approximately 4% difference in the quality of the nonparametric estimation of the density function [30,44] .

However, the use of kernel function is primarily dependent on application needs. In the current study, the product form of

KDE in (7) with Cauchy realization (8) is used for PNN implementation. 

3.1. Structure of the model 

PNN consists of four layers. The attributes of an input vector x comprise the first input layer. The second, pattern layer

is composed of as many neurons as training data. The output of the pattern neurons is fed forward to the next summation

layer. There are J neurons in the summation layer, with each j th node acquiring signals from the neurons of j th class. Two

approaches are usually utilized in literature to compute the output of the pattern layer: the radial kernels [18,37] and the

product kernels [14,44] . In this work, we use the second approach, therefore the summation neuron output is defined in the

following way 

ˆ f j (x ) = 

1 

P j det (h ) 

P j ∑ 

p=1 

1 

s N p 

K 

( (
x − x 

(p) 
j 

)T 
h 

−1 

s p 

) 

, (9)

where: 

• P j denotes data cardinality in the j th class ( j = 1 , . . . , J) ; 

• h = diag (h 1 , . . . , h N ) is the diagonal matrix consisting of the smoothing parameters h i ; 

• det (h ) = 

∏ N 
i =1 h i defines the determinant of h ; 

• s p stands for the modification coefficient; 

• x 
(p) 
j 

= [ x 
(p) 
j, 1 

, . . . , x 
(p) 
j,N 

] indicates the p th training pattern belonging to the j th class. 

Eq. (9) is also referred to as KDE for the PNN’s j th class. If as the pattern neuron activation function we consider Eqs. (7) and

(8) , KDE for the PNN’s j th class amounts to 
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ˆ f j (x ) = 

1 

P j det (h ) 

P j ∑ 

p=1 

1 

s N p 

N ∏ 

i =1 

2 

π

((
x i −x (p) 

j,i 

h i s p 

)2 

+ 1 

)2 
. (10) 

Finally, the single neuron in the PNN’s output layer produces the decision outcome for a new test vector x using Bayes

theorem [37] 

C(x ) = argmax 
j=1 ... J 

f j (x ) , (11) 

where C ( x ) denotes the predicted class. 

The PNN training algorithm relies on the appropriate choice of the smoothing parameter h i and the modification coeffi-

cient s p . The way of how to determine these parameters is explained in Section 3.2 . 

3.2. Smoothing parameter 

The prediction accuracy of the PNN classifier varies from the value of the smoothing parameter. Therefore, the algorithm

which suitably updates the value of h i needs to be implemented. In this paper, the smoothing parameter is treated as the

N element vector whose coordinates correspond to the attributes of the input pattern; h is computed independently for a

particular class of the data set. 

In the case when KDE is determined based on the product kernel (7) , the plug-in method [44] is recommended to

calculate h . Each coefficient h i is computed according to the following formula 

h = 

[
R (K) 

U(K) 2 
8 

√ 

π ˆ σ 9 

3 P 

] 1 
5 

, (12) 

where 

R (K) = 

∫ 
R N 

K(x 2 ) dx, (13) 

and 

U(K) = 

∫ 
R N 

x 2 K(x ) dx, (14) 

where ˆ σ denotes the estimator of the standard deviation. R (K) = 1 and U(K) = 5 / 4 π for the Cauchy kernel in (8) . Since

the type of the density of the random variable x is unknown, the approximation of ˆ σ is solved iteratively. In practical

applications, the second order level approximation is sufficient to estimate ˆ σ [30,44] . 

Once the temporary values of the smoothing parameter vector are computed using the plug-in method, the KDE quan-

tities are determined according to (6) for each element x ( p ) for p = 1 , . . . , P . This allows us to calculate the modification

parameter s p for all x ( p ) patterns independently in the following way 

s p = 

(
ˆ f (x 

(p) ) 

˜ s 

)−c 

, (15) 

where ˜ s is the geometrical mean of KDE ˆ f (x (p) ) and c ≥ 0 is the constant of the modification intensity. The increase of c

value contributes to the growth of this intensity. Note that for c = 0 , s p ≡ 1; in such a case, the modification of the smoothing

parameter does not take place. 

4. Computation of weights 

In this section, we derive the analytical formula for the weights of the proposed WPNN. The obtained formula requires

solely the knowledge on the smoothing parameter h i and the modification coefficient s p . The computed weighting factors

must be included between pattern and summation layer of the network. They reflect the importance of a particular pattern

p from the j th class. 

The idea for determining the weights begins with the calculation of the sensitivity coefficients for all r = 1 , 2 , . . . , P j 
neurons in the pattern layer 

S = 

∂ ˆ f j 
(
x 

(p) 
j 

)
∂x 

(r) 
j 

, (16) 
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where x 
(p) 
j 

∈ 

{ 
x (1) 

j 
, x (2) 

j 
, . . . , x 

(P j ) 

j 

} 
is the v ect or argument fr om j th class. Thus, S for j th class takes the matrix form 

S j = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ ˆ f j 
(
x 

(1) 
j 

)
∂x 

(1) 
j 

. . . 
∂ ˆ f j 
(
x 

(1) 
j 

)
∂x 

(r) 
j 

. . . 
∂ ˆ f j 
(
x 

(1) 
j 

)
∂x 

(P j ) 

j 

. . . 
. . . 

. . . 

∂ ˆ f j 
(
x 

(p) 
j 

)
∂x 

(1) 
j 

. . . 
∂ ˆ f j 
(
x 

(p) 
j 

)
∂x 

(r) 
j 

. . . 
∂ ˆ f j 
(
x 

(p) 
j 

)
∂x 

(P j ) 

j 

. . . 
. . . 

. . . 

∂ ˆ f j 

(
x 

(P j ) 

j 

)
∂x 

(1) 
j 

. . . 

∂ ˆ f j 

(
x 

(P j ) 

j 

)
∂x 

(r) 
j 

. . . 

∂ ˆ f j 

(
x 

(P j ) 

j 

)
∂x 

(P j ) 

j 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (17)

In (17) , the elements of r th column represent the sensitivities of KDE in j th class in regard to each r th pattern neuron

computed for a specific input pattern p . Since the denominator of each item of S j is a vector, the following gradient has to

be determined 

∇ ̂

 f (p,r) 
j 

= 

∂ ˆ f j 
(
x 

(p) 
j 

)
∂x 

(r) 
j 

= 

[ 
∂ ˆ f j 
(
x 

(p) 
j 

)
∂x (r) 

j, 1 

, . . . , 
∂ ˆ f j 
(
x 

(p) 
j 

)
∂x (r) 

j,N 

] 
, (18)

where 

∂ ˆ f j 
(
x 

(p) 
j 

)
∂x (r) 

j,i 

= 

1 

P j det (h ) 

1 

s N r 

∂ 

∂ x (r) 
j,i 

K 

( (
x 

(p) 
j 

− x 

(r) 
j 

)T 
h 

−1 

s r 

) 

. (19)

The product form of KDE in (7) expands (19) into the following formula 

∂ ˆ f j 
(
x 

(p) 
j 

)
∂x (r) 

j,i 

= 

1 

P j det (h ) 

1 

s N r 

K 

( 

x (p) 
j, 1 

− x (r) 
j, 1 

h 1 s r 

) 

. . . 

∂ 

∂x (r) 
j,i 

K 

� 

( 

x (p) 
j,i 

− x (r) 
j,i 

h i s r 

) 

. . . K 

( 

x (p) 
j,N 

− x (r) 
j,N 

h N s r 

) 

. (20)

The Cauchy kernel in (8) allows us to determine the i th part of (20) 

∂ 

∂x (r) 
j,i 

K 

� 
(
x (p) 

j,i 

)
= 

8 

(
x (p) 

j,i 
− x (r) 

j,i 

)
πh 

2 
i 
s 2 r 

((
x (p) 

j,i 
−x (r) 

j,i 

h i s r 

)2 

+ 1 

)3 
. (21)

We can see that ∇ ̂

 f 
(p,r) 
j 

is a vector field, therefore, in order to extract an information on sensitivity of KDE of the j th class

for a given r th pattern neuron, it is necessary to determine the norm of (18) . Thus, S j in (17) must be generalized to the

following matrix 

S j = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∥∥∥∇ ̂

 f (1 , 1) 
j 

∥∥∥
n 

. . . 

∥∥∥∇ ̂

 f (1 ,r) 
j 

∥∥∥
n 

. . . 

∥∥∥∇ ̂

 f 
(1 ,P j ) 

j 

∥∥∥
n 

. . . 
. . . 

. . . ∥∥∥∇ ̂

 f (p, 1) 
j 

∥∥∥
n 

. . . 

∥∥∥∇ ̂

 f (p,r) 
j 

∥∥∥
n 

. . . 

∥∥∥∇ ̂

 f 
(p,P j ) 

j 

∥∥∥
n 

. . . 
. . . 

. . . ∥∥∥∇ ̂

 f 
(P j , 1) 

j 

∥∥∥
n 

. . . 

∥∥∥∇ ̂

 f 
(P j ,r) 

j 

∥∥∥
n 

. . . 

∥∥∥∇ ̂

 f 
(P j ,P j ) 

j 

∥∥∥
n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (22)

where for n = 2 

∥∥∥∇ ̂

 f (p,r) 
j 

∥∥∥
n 

= 

( 

N ∑ 

i =1 

∣∣∣∣∣∂ 
ˆ f j 
(
x 

(p) 
j 

)
∂x (r) 

j,i 

∣∣∣∣∣
n ) 

1 
n 

(23)
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Fig. 1. The architecture of the weighted probabilistic neural network. 

 

 

 

the Euclidean norm is utilized. 1 The matrix S j is computed for j = 1 , . . . , J. 

Now it is necessary to aggregate all p = 1 , . . . , P j entries in each r th column of S j in (22) to obtain the aggregated sensi-

tivity vector. For the mean square average sensitivity measure (3) , this vector takes the following form 

a j = 

⎡ 

⎣ 

√ √ √ √ 

1 

P j 

P j ∑ 

p=1 

∥∥∥∇ ̂

 f (p, 1) 
j 

∥∥∥2 

n 
, . . . , 

√ √ √ √ 

1 

P j 

P j ∑ 

p=1 

∥∥∥∇ ̂

 f 
(p,P j ) 

j 

∥∥∥2 

n 

⎤ 

⎦ . (24) 

Finally, the normalization of the elements of a j to some interval introduces the weight vector for each j th class 

w j = 

1 ∥∥a j 
∥∥

n 

[ 
a (1) 

j 
, a (2) 

j 
, . . . , a 

(P j ) 

j 

] 
. (25) 

Formally, for n = ∞ , 
∥∥a j 
∥∥

n 
= max 

{ 
| a (1) 

j 
| , . . . , | a (P j ) 

j 
| 
} 
, therefore, in such a case w j is normalized to [0, 1] interval. Including

the weights’ coefficients, KDE in (9) is computed according to 

ˆ f j (x ) = 

1 

P j det (h ) 

P j ∑ 

{ p,r} =1 

w 

(r) 
j 

1 

s N p 

K 

( (
x − x 

(p) 
j 

)T 
h 

−1 

s p 

) 

, (26) 

where 

w 

(r) 
j 

= 

1 ∥∥a j 
∥∥

n 1 

√ √ √ √ 

1 

P j 

P j ∑ 

p=1 

∥∥∥∇ ̂

 f (p,r) 
j 

∥∥∥2 

n 2 

, (27) 

where r refers to r th element of a j , and { n 1 , n 2 } ≥ 1 are the norms to be chosen. In the current work, we choose n 1 = ∞ and

n = 2 . The architecture of WPNN with weights included between pattern and summation layer is illustrated in Fig. 1 . 
2 

1 In literature, p letter is used instead of n to denote the p –norm or L p . However, in this work, p stands for the pattern index. Lower case n removes 

ambiguity. 
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Table 1 

The UCI–MLR data sets used to test all compared models. 

Data set Records Attributes Classes Class distribution 

Breast cancer 683 9 2 4 4 4–239 

Statlog heart 270 13 2 150–120 

Diabetes 786 8 2 500–268 

Ecoli 327 5 5 143–77–35–20–52 

Parkinson 195 22 2 147–48 

Iris 150 4 3 50–50–50 

Breast tissue 106 9 6 21–15–18–16–14–22 

Monk 432 6 2 216–216 

Seeds 210 7 3 70–70–70 

Cardiotocography 2126 22 3 1655–295–176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Computational experiments 

In this section, we present the classification results obtained by the proposed WPNN model, MPNN – the modified proba-

bilistic neural network presented in [23–25] and the original PNN classifier. The received outcomes are compared with these

achieved by support vector machine (SVM), multilayer perceptron (MLP), radial basis function neural network (RBFNN), k -

nearest neighbor method (kNN) and gene expression programming algorithm (GEP). The the input data sets and selected

classifiers used in the simulations are also described. 

5.1. Input data sets 

The performance of the proposed WPNN, MPNN, original PNN and the state-of-the-art algorithms (SVM, MLP, RBFNN,

kNN and GEP) is assessed on UCI–MLR data sets. The following well known and commonly tested databases are utilized:

breast cancer, statlog heart, diabetes, ecoli, parkinson, iris, breast tissue, monk, seeds and cardiotocography. Table 1 presents

the cardinality, dimensionality, number of classes and the class distributions of each considered data set. 

5.2. State-of-the-art classifiers used in the comparison 

This subsection shows a brief description of the MPNN model and the selected classification algorithms. We also provide

the parameter settings used in the simulations for these classifiers. 

5.2.1. Literature’s weighted PNN 

As in the case of our solution, MPNN has its weighting coefficients introduced between pattern and summation layer

of the network. The weights are defined as the ratio of between-class-variance and within-class-variance for the training

pattern x 
(p) 
j 

. This ratio takes a high value for a high class separability among the data. In the case when low class separa-

bility is faced, this ratio is low. Therefore, all patterns are weighted based on their class separability. For more details, see

[23–25] . 

5.2.2. SVM 

SVM is the binary classification algorithm proposed by Vapnik [42] . Within the training process, SVM solves the quadratic

programming (QP) optimization problem. For this purpose, various kernel functions must be explored. In this study, we test

the radial basis kernel 

K(x i , x j ) = exp 

(
−‖ x i − x j ‖ 

2 

2 σ 2 

)
, (28)

and the polynomial kernel 

K(x i , x j ) = 

(
α
(
x i · x j 

)
+ β
)k 

. (29)

In the SVM training, the capacity control C has an impact on the solution of the QP problem. Therefore, this indicator needs

to be appropriately selected. Furthermore, the kernel functions and the kernel parameters must be properly adapted since

their values influence the final classification outcome. In the first row of Table 2 , we present the settings of the SVM model

in this work. All possible setting configurations are utilized. 

5.2.3. MLP 

MLP is a feedforward neural network trained with the use of a backpropagation procedure [26] . The network consists of

an input layer, hidden layers, and an output layer. The number of hidden layers, the number of neurons in hidden layers

and the transfer functions must be appropriately selected for MLP. In this work, we test the transfer functions from the set:

{linear, logistic, hyperbolic tangent}. A scaled conjugate gradient method is utilized for the MLP training [21] . The second
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Table 2 

Simulation parameters of the examined state-of-the-art classification algorithms. 

SVM 

Kernel functions: 

–radial basis kernel (28) 

–polynomial kernel (29) 

The grid search is performed for σ , α, β and k 

Capacity control coefficient: 

C = 

{
10 −1 , 10 0 , 10 1 , 10 2 , 10 3 , 10 4 , 10 5 

}
MLP 

Training method: scaled conjugate gradient 

Number of hidden layers: {1, 2} 

Number of hidden neurons: { 2 , 3 , . . . , 30 } 
Transfer functions: {linear, logistic, hyperbolic tangent} 

RBFNN 

Training method: weighted boosting search 

Neuron tuning parameters: 

Size of population: {400, 600, 800, 1000} 

Maximum generation: {100, 200, 500} 

Boosting iterations: 50 

Number of hidden neurons: { 2 , 3 , . . . , 30 } 
kNN 

Number of neighbors: k = { 2 , . . . , K} 
Distance measures: {Euclidean, Cityblock, Chebychev, Minkowski} 

GEP 

Head size: {2, 3, 4, 5, 6, 7, 8} 

Number of genes: {1, 2, ..., 15} 

Linking function: addition, multiplication 

Computing functions: + , − , ∗ , /, −x, 1/ x , exp (−(x − a ) 2 / (2 b 2 )) 

Fitness function: number of hits with penalty, mean squared error 

Genetic operators: set according to [29] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

row of Table 2 shows the set of all parameters of MLP. In the present study, the network is simulated using all feasible

parameter arrangements. 

5.2.4. RBFNN 

RBFNN, similar to PNN and MLP, is a feedforward neural network [2] . This model is composed of three layers: an input

layer, a single hidden layer and an output layer. The hidden neurons are activated by means of a radial basis function

while the output neuron produces the signal after linear activation. The number of the neurons in the hidden layer and

the parameters of the RBFNN training method must be suitably selected. An evolutionary approach proposed by Chen et al.

called weighted boosting search [3] is applied to train RBFNN. In the third row of Table 2 , the utilized parameters of the

RBFNN training algorithm are provided along with the number of explored hidden neurons. The network is trained by means

of all parameter configurations. 

5.2.5. kNN 

kNN is a supervised learning algorithm which classifies an unknown sample vector x to the class represented by the

majority the nearest data patterns [5] . The algorithm is based on calculation of k nearest distances between x and the train-

ing vectors x ( p ) , p = 1 , . . . , P which provide k number of nearest neighbors. A greater number of these neighbors forms the

prediction for x . In our study, the distance measures are examined from the following set {Euclidean, Cityblock, Chebychev,

Minkowski}. The fourth row of Table 2 reveals all kNN training parameters. K is set depending on the data set cardinality. 

5.2.6. GEP 

GEP is an emulating biological evolution algorithm which creates and evolves computer programs [8] . In GEP, the chro-

mosomes are represented using linear strings of fixed length. Each chromosome consists of genes structurally organized

in the head and the tail. The genes are connected to each other with use of linking functions. The individuals, which are

encoded by the chromosomes, create population which undergoes evolution where the predefined genetic operators are

applied to compute the fitness. The GEP’s parameters are specified in the bottom row of Table 2 . In all experiments, the

population size is set to 30. Evolution is performed until 10,0 0 0 generations are reached. 

5.3. Results and discussion 

To assess the predictive capabilities of all compared classifiers, a k -fold cross validation (CV) procedure is utilized [11] . In

a k -fold CV, the entire data set is randomly partitioned into k mutually exclusive subsets of possibly equal size. The model

is trained on k − 1 subsets and then tested on the subset held out by computing the CV accuracy ( Acc ). Acc is defined as

the number of correct classifications divided by the test set cardinality. The procedure is repeated for a total of k runs, each
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Table 3 

10-fold Acc , standard deviation and ranking points achieved by WPNN, MPNN, original PNN, SVM, MLP, 

RBFNN, kNN and GEP in the classification tasks. 

Data set WPNN MPNN PNN SVM MLP RBFNN kNN GEP 

Breast cancer 97.22 96.70 96.92 95.02 97.10 96.38 97.49 95.31 

0.13 2.15 0.17 0.35 0.18 0.32 0.15 0.26 

7 4 5 1 6 3 8 2 

Statlog heart 80.85 78.89 78.15 78.63 80.70 79.04 72.85 80.63 

0.70 7.07 0.62 1.37 0.93 2.02 0.41 1.92 

8 4 2 3 7 5 1 6 

Diabetes 68.82 67.79 67.74 75.70 77.29 75.14 76.39 71.07 

0.45 4.61 0.36 0.64 0.52 1.16 0.32 1.62 

3 2 1 6 8 5 7 4 

Ecoli 88.91 82.17 83.19 78.75 85.07 86.73 88.68 83.82 

1.09 6.23 1.19 0.55 0.98 1.11 0.46 1.64 

8 2 3 1 5 6 7 4 

Parkinson 91.20 90.36 89.64 91.18 89.85 88.26 86.72 86.15 

1.69 5.49 1.05 0.94 1.33 1.77 0.63 1.43 

8 6 4 7 5 3 2 1 

Iris 95.47 95.40 95.06 95.39 95.33 95.27 97.86 92.80 

0.40 5.16 0.32 0.46 0.42 0.36 0.26 1.65 

7 6 2 5 4 3 8 1 

Breast tissue 69.53 68.69 73.35 68.87 62.36 65.47 64.25 67.45 

2.88 1.19 4.13 2.92 2.94 3.11 1.81 2.47 

7 5 8 6 1 3 2 4 

Monk 87.61 88.51 86.69 99.21 90.02 75.67 99.75 79.70 

1.39 6.61 1.55 0.46 3.55 0.92 0.37 1.88 

4 5 3 7 6 1 8 2 

Seeds 93.34 95.24 95.01 95.62 92.19 94.57 92.47 92.43 

1.78 5.33 0.71 0.69 0.88 0.88 0.28 1.45 

4 7 6 8 1 5 3 2 

Cardiotocography 85.37 85.85 85.82 97.39 94.58 97.42 93.14 90.51 

0.09 2.35 0.09 0.06 0.52 0.14 0.17 0.47 

1 3 2 7 6 8 5 4 

Total ranking points 57 44 36 51 49 42 51 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time using different subset for validation. Final prediction accuracy is computed as the mean over particular accuracy scores.

In this work, k is set to 10. 

In Table 3 , we present 10-fold Acc (in %) determined for WPNN, MPNN, original PNN and the state-of-the-art classifiers

in the classification problems of considered benchmark data sets. For each classification task, the mean of Acc is reported

along with the standard deviation obtained after ten separate CV simulations. Additionally, as a comparative factor, we

provide the ranking points ( RP ) statistics which inform about the order of achieved results for all analyzed classification

algorithms. RP = 8 indicates a model which yields the highest Acc while RP = 1 means that a model performs worst. 

Analyzing the results in Table 3 , we observe that the proposed WPNN and kNN provide the highest Acc value in three

classification cases. The remaining models achieve the best result only once excluding MPNN and GEP which “do not win

the contest at all”. The above observation is confirmed by the outcomes shown in the last row of the table described as total

ranking points ( TRP ). TPR for the proposed WPNN is 57 (the highest value) while for kNN and SVM, T P R = 51 (second best

results). Such a good outcome of WPNN stems from RP = { 8 , 7 } achieved in six out of ten classification tasks. Additionally,

WPNN receives RP = 1 only for the cardiotocography data set in contrast to SVM, MLP, and GEP for which the lowest RP

value is reported twice. Of note is the fact that for the original PNN model, T P R = 36 ; thus, the introduction of the weights

into the network’s structure results in substantial improvement in terms of prediction ability. 

It is necessary to point the remark that the proposed introduction of the weights into PNN structure significantly in-

creases its accuracy in seven out of ten classification tasks. For the ecoli and statlog heart data sets this increase amounts

to 5.72% and 2.70%, respectively. Only in three cases, WPNN, compared to the original network, performs worse. However,

for seeds and cardiotocography databases, the accuracy gap remains acceptable (1.67% and 0.45%, respectively). For breast

tissue data set, our result is 3.82% lower than the one for PNN but, in must be emphasized, the original network is the best

classifier among all tested models with Acc = 73 . 35% in this case. 

The other important observation is a higher Acc value received by WPNN in comparison with the one of MPNN in seven

classification cases. For four data sets (breast cancer, parkinson, iris and breast tissue), the improvement of the proposed

method is less than 1%. The advantage of the WPNN over MPNN is especially meaningful in the ecoli database classification

problem (6.74%). 
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Table 4 

The parameter values for the state-of-the-art classifiers for which the highest Acc is obtained. 

Data set SVM MLP RBFNN kNN GEP 

C σ structure n k g 

Breast cancer 10 3 0.5 9–3–2 50 7 4 

Statlog heart 10 2 2.5 13–19–2 38 29 9 

Diabetes 10 3 0.3 8–7–2 74 21 10 

Ecoli 10 4 1.5 5–13–4–5 66 7 8 

Parkinson 10 5 0.1 22–7–2 54 6 7 

Iris 10 0 1.5 4–5–3 16 12 10 

Breast tissue 10 1 27.1 9–3–6 34 3 6 

Monk 10 2 0.7 6–14–8–2 3 5 5 

Seeds 10 3 0.2 7–8–10–3 41 18 3 

Cardiotocography 10 2 2.6 22–13–6–3 100 3 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth collating the result of MPNN and PNN as well. The MPNN model also outperforms the original network in

seven classification cases. However, if we look more closely at the results, we can easily discover that the gain in Acc value

is not that substantial. It is as follows: (a) for the diabetes and cardiotocography data sets – less than 0.5 ‰ ; (b) for the

seeds and iris data sets – 2–3 ‰ ; (c) for the statlog heart and parkinson data sets – approximately 0.75%. Only in the monk

data classification task, 1.82% of the MPNN accuracy increase is noticed. Despite relatively better performance in relation

to the original PNN, MPNN results are characterized by problematic values of the standard deviation ( sd ). This parameter

constitutes a multiple of the highest sd obtained by other methods. For example, MPNN’s standard deviation received in the

breast cancer and iris data set classification cases is over 6 and 11 times greater, respectively, than the highest sd determined

by the SVM model. For the statlog heart data set, in turn, standard deviation sets up 10% of the entire Acc value. 

Some comments need to be made on the outcomes of the state-of-the-art algorithms. As mentioned above, for the kNN

classifier the highest accuracy is attained three times (breast cancer, iris and monk data sets) while the remaining models,

i.e. SVM, MLP and RBFNN perform best only once. Taking TRP into a consideration, kNN, SVM and MLP score respectively

51, 51 and 49 points which constitutes some margin in comparison to the best classifier, i.e. WPNN ( T RP = 57 ). In spite of

achieving the highest Acc value in the classification of the cardiotocography data set, the RBFNN is the third worst among

all tested models with T RP = 42 . 

In this work, in order to statistically evaluate the results obtained by all models, the non-parametric Friedman test is

used. Based on the ranks of the scores presented in Table 3 for each classifier, we assume null and alternative hypotheses.

The null hypothesis of the test is formulated as follows: 

H 0 : The methods all have identical effects. 

The alternative hypothesis is formulated as follows: 

H 1 : The methods do have different effects. 

On the basis of the TRP in Table 3 , the Friedman Q value statistic equals 9.13, while the number of the degrees of freedom is

63. Assuming statistical significance at 0.999 level, the critical test value ( CTV ) is 33.91. The calculated Q statistic is not larger

then CTV , therefore the alternative hypothesis can be rejected. Thus, the methods investigated for comparison purposes do

not have different effects. This outcome of the test implies the consistency of the comparison of the ranking results. 

Table 4 shows the parameters of the reference classifiers for which the highest Acc is achieved in each classification

problem. The reported values are obtained after performing a vast number of simulations by exploring all possible settings’

combinations according to Table 2 . In the case of the SVM model, the capacity control C and the spread constant σ are

shown. This gives us the possibility of discovering that for the radial basis kernel (28) , C = 10 3 and σ = 0 . 5 , Acc = 95 . 02% is

obtained in the classification of the breast cancer data set. Similar information can be read for MLP. The network structure is

presented in the form of the string w–x–y–z , where w and z denote the number of input and output neurons, respectively,

while x and y stand for the number of neurons in the hidden layers. Thus, for the breast cancer data, Acc = 97 . 10% is

obtained for MLP composed of 9 input neurons, 3 neurons in the hidden layer and 2 neurons in the output layer. In the

case of the RBFNN and kNN classifiers, n and k stand for the number of neurons in the network’s hidden layer and the

number of k nearest neighbors, respectively. Finally, for the GEP algorithm, the letter g denotes the number of genes in a

chromosome at which the highest accuracy is attained for this classifier. The DTREG software [29] and the Matlab Statistics

Toolbox are used in simulations. The presented values of model’s parameter for which the highest accuracy is obtained give

the possibility of creating and testing the classifiers by other researchers. 

As presented in Section 5.1 , data sets of a diversified cardinality ( P ), dimensionality ( N ) and the number of classes ( J )

are used in this study. However, in order to verify the scalability of the proposed WPNN, further research is performed.

For this purpose, the data sets with higher number of input patterns, features and classes are utilized in the simulations.
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In particular, we use the following UCI–MLR data sets: the single proton emission tomography images ( P = 267 , N = 44 ,

J = 2 ), the robot navigation ultrasound sensors readings ( P = 5456 , N = 24 , J = 4 ), and the urban land cover aerial images

( P = 168 , N = 148 , J = 9 ). WPNN tested on these data sets converges to final solution as original PNN model. The solution

time strongly depends on P , N and J of each data set but this is consistent with the nature of complex classification tasks.

The increase of a computational time is also observed in the case of the applied state-of-the-art algorithms. 

6. Conclusions 

In this paper, the weighted probabilistic neural network was proposed. The original PNN model was enriched by the

weights introduced between pattern and summation layer of the network. The analytical formula for the weighting coef-

ficients was provided with the use of the SA procedure. A 10-fold cross validation accuracy of WPNN was compared with

the accuracy of the modified PNN available in literature, the traditional PNN and the state-of-the-art algorithms in ten

benchmark data classification problems. Also, the ranking points statistics were calculated along with Friedman test which

confirmed the consistency of the comparison. The elements of novelty of this study are as follows: 

• The strict analytical formula for the weights of PNN has not been provided up to this date. In this work, we propose

such a formula. It stems from the SA procedure, therefore is interpretable and easy to implement. 

• Due to introduced weights, neither heuristic nor approximate but precise results are obtained. 

• SA procedure has not been utilized for computing the PNN’s weights so far. 

• The computation of weights is strictly embedded in the operation of PNN. Therefore, no additional iterative algorithm

which relies on the minimization of assumed error function is required. 

• From the effectiveness point of view, the proposed WPNN is not predominant in comparison to other approaches. How-

ever, our greatest attention in this study is paid to the fact of improving the prediction ability of WPNN with respect

to the modified model proposed in literature and original network. This goal is achieved in majority of classification

problems since WPNN attains higher accuracy than MPNN original PNN in seven out of ten considered tasks. Moreover,

in single data classification case, WPNN’s accuracy is only less than 0.5% lower in contrast to other PNN based methods.

This outcome makes here all the networks almost identical in terms of performance. Furthermore, if we consider the

total ranking points as the comparative statistics, WPNN stacks up much better against the other models. 

In a future work, we will focus on providing an approach for the PNN’s weights update within the training process.

Similar solution is shown for example in [32] where a backpropagation-like technique is applied to train a normalizing

neural network. It will also be interesting to compare our model with neural networks which constitute a synthesis of the

probabilistic rule based classifiers [33] . Finally it is worth to explore the performance of the proposed network in compound

problems [31,39] . 
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