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Abstract- Existing location-based services have collected a large amount of 

location data, which contain users’ personal information and has serious personal

privacy leakage threats. Therefore, the preservation of individual privacy when

publishing data is receiving increasing attention. Most existing methods of 

preserving user privacy suffer a serious loss in data usability, resulting in low

usability of data. In this paper, we address this problem and present TOPF, a 

novel approach for preserving privacy in trajectory data publishing based on 

frequent path. TOPF aims to achieve better quality of trajectory data for

publishing and strike a balance between the conflicting goals of data usability and

data privacy. To the best of our knowledge, this is the first paper that uses 

frequent path to preserve data privacy. First, infrequent roads in each trajectory 

are removed, and a new way is adopted to divide trajectories into candidate 

groups. A new method for finding the most frequent path is then proposed, and

then, the representative trajectory is selected to represent all trajectories within a 

group. Experimental results show that our algorithm not only effectively 

guarantees the privacy of the user but also ensures the high usability of the data. 

KEYWORDS 
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1 INTRODUCTION 

With the rapid development of location-based services, many mobile positioning devices

have emerged, such as car navigation, GPS-enabled mobile phones, tablet PCs and position 
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sensors. As a result, major manufacturers have launched their own location-based service

applications, with which users can send their location and query content to the location server, and 

then, the location server will return the corresponding query results—for example, Google Maps 

for navigating services when travelling, Baidu glutinous rice for geo-location search services for 

nearby restaurants, and WeChat for social services that can share geo-labelling. 

These applications can be divided into two types. One is online applications based on the

real-time location provided by the user, which require the corresponding services—e.g., location-

based services (LBS), push services based on geo-real-time information and real-time monitoring 

of moving objects—to be provided. The other is offline applications, in which location service

providers or other agencies collect and analyse mobile data or publish the trajectory data to third 

parties. For example, through the excavation and analysis of trajectory data, it is possible to 

optimize traffic network and traffic management strategies and analyse user behaviour to support

business decisions. Although these two types of applications have brought great convenience to 

people’s lives [1], disclosure of their private locations to potentially untrusted LBS service 

providers poses privacy concerns. Two surveys reported in July 2010 showed that more than half 

of users who use LBS services are concerned about the disclosure of location privacy [2], and 50 

percent of U.S. residents who have a profile on a social networking site are concerned about their 

privacy [3]. The research results confirmed that location privacy is one of the key obstacles to the

success of location-dependent services [4]. Privacy in offline applications is more challenging than 

online applications because an attacker can infer the user’s location information by using the

spatial and temporal correlations in the user’s location samples. However, the trajectory formation 

is important for many applications in real life, such as business analysis, city planning, or 

transportation planning. Therefore, privacy protection in offline applications and trajectory data

publication has increasingly drawn attention from the industry and academia. 

Many approaches have been proposed for preserving privacy in trajectory data publishing, 

but most do not consider the usability of data for publishing. The result is that our privacy may be

preserved well while the trajectory data are of no value to the applications (e.g., city planning), 

leading to a significant loss of information. Since most publishing information is used for data

mining and analysis, it is necessary to focus on the hot region or frequent path. In this paper, we

address this problem by using frequent path to preserve data privacy, which has not been studied 

in previous work, so that not only can data privacy be preserved but also the usability of data can 

be increased.  

The main contributions of this paper are summarized as follows: 

• We present TOPF, a novel approach for preserving data based on frequent path. TOPF

considers not only data privacy but also the usability of data. To the best of our knowledge,

this is the first study that uses frequent path to preserve data privacy.

• TOPF removes infrequent roads and adopts a new method to divide all trajectories into

candidate groups. Trajectories in each group are similar and construct k-anonymity, which

leads to a low average error rate.
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• TOPF also employs a new approach to find the most frequent path. Concerned with the 

average error rate in each group, TOPF first uses the new approach to select the f most 

frequent trajectories and then chooses the one with the highest similarity to all other 

trajectories within the group as the representative trajectory. Hence, the frequent patterns 

are well preserved. 

• We use average error rate and standard deviation as metrics to evaluate the quality of the 

anonymized dataset of trajectories. F-measure is also employed to evaluate the frequent 

pattern discovered by TOPF. The extensive experimental results show that our method can 

effectively preserve the user’s trajectory privacy and better retain the usability of the data. 

The rest of this paper is organized as follows: Section 2 reviews related work. Section 3 

provides the problem statement. Section 4 presents our proposed approach. Section 5 reports 

experimental results. Finally, Section 6 concludes the article. For clarity, the main notations used 

in the rest of this paper are summarized in table 1. 

 

 

 

Table 1 Summary of Notations 

Notation Description 

k the anonymity threshold 

G road network 

P path 

T trajectory 

nj j
th

 node 

V, E vertex, edge 

F(P), fj sequence of frequent of path P, frequency of j
th

 road  

θ threshold to compare the frequencies of roads in paths 

δ minimal number of trajectories to construct a group 
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2 RELATED WORK 

The most widely used privacy-preserving method for data publishing is k-anonymity, 

which was first proposed by Sweeney et al. in [5]. The method requires each record to be 

indistinguishable with at least k−1 other records with respect to the quasi-identifier, i.e., each 

equivalence class contains at least k records. In [6], Gruteseter et al. first applied the k-anonymity 

method to the location service and proposed the concept of location k-anonymity, which requires 

that the space-time location point sent by a user be indistinguishable from the space-time location 

sent by k-1 other users. In [7], Abul et al. proposed a model named (k, δ)-anonymity, based on k-

anonymity, and designed an algorithm named Never Walk Alone (NWA) to achieve (k, δ)-

anonymity. They clustered the trajectory with the same period of time according to Euclidean 

distance and obtained the cluster group composed of the trajectories with similar distances. 

However, that method does not generate anonymized trajectories that follow the road-network 

constraints, which increases the difficulty of future trajectory mining. Moreover, although the 

trajectories are similar in the European space theory, they may not be similar in the actual road 

network space, which will result in anonymous failure. Subsequently, Abul et al. [8] put forward 

an improved algorithm called Wait For Me (W4M), using EDR [9] instead of the Euclidean 

distance as the similarity function in the trajectory clustering process. However, the anonymized 

trajectories generated by W4M still do not follow road-network constraints. In [10], Nergiz et al. 

proposed a condensation-based grouping algorithm for trajectory k-anonymity. The method 

enforces k-anonymity by clustering trajectories based on log cost distance and then reconstructing 

trajectories by randomly selecting location samples from anonymized regions. Although the 

privacy-preserving degree of this kind of algorithm is high, it can support only simple aggregation 

analysis and cannot be applied to other applications such as behaviour pattern discovery and the 

mining of association rules. In[11], Wang et al. proposed a novel continuous query privacy-

preserving framework in road networks based on the concepts of k-anonymity and l-diversity, 

assuming that conventional preserving solutions designed in Euclidean space cannot easily be 

applied to the road network environment. They also designed two types of cloaking algorithms, 

including one for a single user and one for a batch of users; the algorithms can resist typical 

attacks and effectively preserve users’ query privacy in road networks. 

In [12], Chen et al. adopted a model named (K, C) L-privacy for trajectory data 

anonymization, which considers not only identity linkage attacks on trajectory data but also 

attribute linkage attacks via trajectory data. They also proposed an anonymization framework that 

can remove all privacy threats from a trajectory database by both local and global suppression. In 

[13], Gao et al. Proposed a personalized anonymization model to balance the trajectory privacy 

and data utility. Existing methods ignore the trajectory similarity and direction, which they think 

has a large impact on privacy. As a result, they proposed using the trajectory angle to evaluate 

trajectory similarity and direction and construct an anonymity region based on trajectory distance. 

Huo et al. [14] put forward a new idea that the background information obtained by attackers is 

more relevant to where the moving objects really visit rather than where they merely pass by. 

Thus, they proposed an approach called You Can Walk Alone (YCWA), which divides the 

location samples into two categories: pass-by points and stay points. The stay points are then 
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replaced by corresponding zones based on split map, and pass-by points are either deleted or 

unprocessed, depending on whether they are inside a zone. That method protects trajectory privacy 

only through generalization of stay points on trajectories, so the attacker can still analyse the 

movement mode of the trajectory to obtain background knowledge. Wu et al. [15] proposed the (k, 

δ, ∆)-anonymity model to avoid re-cluster attacks and presented a clustering hybrid-based 

algorithm, CH-TDP, for privacy-preserving trajectory data publishing. The method first hybridizes 

between clustering groups generated by the (k, δ, ∆)-anonymity model and the related algorithm, 

and then it adopts perturbation within each clustering group. Although it avoids suffering re-

cluster attacks effectively, the data quality of the released trajectory data has been reduced. A 

segment clustering-based privacy-preserving algorithm was proposed by Li et al. [16], which first 

divides the original database into blocks and then partitions trajectories in each block into 

segments, which are finally anonymized with a cluster-constraint strategy. The anonymization 

results of that method are diverse but not beneficial for data analysis. Zhang et al. [17] proposed a 

UGC scheme that utilizes the uniform grid, order-preserving symmetric encryption (OPSE) and a 

k-anonymity mechanism to preserve users’ location privacy. Thus, the anonymizer knows nothing 

about a user’s real location, and it can implement only simple matching and comparison 

operations. However, if a user always uses the same key to encrypt the coordinates in continuous 

queries, the security of the key will not be guaranteed. Most current practices fall into the k-

anonymity model, which suffers from many constraints according to Ni et al. [18]. As a result, 

they proposed a novel location privacy model, (s, ε)-anonymity, which features location protection 

strength and scaling of intermediate results. Users need only to set parameters s and ε to meet their 

preferential query requirements on privacy protection strength and query efficiency. Furthermore, 

they also developed a thin server solution to realize the model instead of using any trusted third 

parties’ intervention.  

Most existing works on privacy-preserving location publishing consider trajectories 

represented as sequences of coordinates and output anonymization results in the form of cloaking 

regions or centres of clusters. However, these approaches do not generate anonymized trajectories 

that follow the road network constraints. Their anonymization results preserve user privacy but are 

not beneficial for trajectory analysis on individual roads. There are few works consider trajectories 

represented by roads. Pensa et al. [19] proposed a prefix-tree based anonymization algorithm that 

guarantees k-anonymity of the published trajectories such that no trajectories with support less 

than k will be published. However, their anonymization result will be an empty set since the prefix 

tree treats trajectories with different starting points independently. This result obviously loses too 

much useful information. Gurung et al. [20] adopted a method which generates anonymized 

trajectories that follow the road-network constraints. Their method groups the similar trajectories 

into clusters and anonymizes them by using a representative trajectory. Although that method 

follows the road-network constraints, it divides the trajectories into clusters by comparing the 

similarity of roads in the trajectory, which leads to the large differences between trajectories in the 

same cluster and reduces the final data usability. 

The key challenge for trajectory data publication is how to wisely use the data without 

violating each user’s location privacy concerns. To be more effective for trajectory analysis, we 

use sequences of roads to represent trajectories. Moreover, considering that current trajectory 
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analysis is based on frequent trajectory patterns, we believe that frequent patterns should be 

retained well in trajectory data publication. From this point of view, we present a k-anonymity 

privacy protection method based on frequent path without destroying data usability. 

3 PROBLEM STATEMENT 

3.1 Trajectory Database 

In general, trajectories of moving objects are collected and stored in moving object 

databases. For a moving object
i

u , its trajectory iT  is a set of discrete locations at sampling times, 

represented as       , , , , , , ,... , ,
i i 1 1 1 2 2 2 n n n

T = ID  x  y  t x  y  t  x  y  t , where  
i

ID  is the identifier of the 

trajectory,  j j jx , y ,t  represents the moving object’s position at sampling time 
jt , and  j j jx , y ,t  

is a location sample on trajectories. To ensure the usability of data, this paper adopts data 

representation based on road networks. Each of the sampling points in the trajectory is matched to 

a road and represented by the road ID. This not only ensures the authenticity of the trajectory but 

also effectively protects the specific location of a user’s visit. Thus, the anonymized dataset is in 

the form of    { , , , }i 1 1 2 2 n nAID  r , t  (r ,t ) ... r  t , where iAID  is an anonymized object ID, 
jr is a road 

ID, and   jt  is the sampling time. In the following, we provide some definitions in our study. 

Definition 1 (Trajectory k- anonymity). Let *D  be a k-anonymized trajectory dataset to 

publish, and let 
usT  be the trajectory of user u where  *

usT D ; this should be indistinguishable 

from no less than k -1  other trajectories by its own AIDs for all time stamps. 

Definition 2 (Road network). A road network is a directed graph  ,G = V E  where V  is 

a set of vertices representing road intersections, and E  is a set of edges representing 

road segments. 

Definition 3 (Frequent road). Let k  be a threshold; we say a road is a frequent road if 

the number of moving objects along one direction on this road is no less than k . We call 

the number of moving objects the frequency of the road. 

Definition 4 (Path). Let G  be a road network; an 
j kn -n  path is a non-empty graph 

 ,p pP = V E  of the form   1 2, , ,...,p j j j kV = n n n n  and     1 ...p j j k-1 kE = n ,n , n ,n . In 

addition, 
jn and kn  represent the start and end points of a path, respectively. 

Definition 5 (Path support and Path frequency). Let P  be a path; we call the number of 

trajectories going through P  the support of path P . In addition, we use a sequence
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     ...,1 nF P = f ,  f  that represents the frequency of path P , where fj is the frequency of 

the road and   1 2 nf f ... f . 

Because it is nontrivial to provide a satisfactory definition to well reflect people’s 

common sense notions, we will illustrate Definition 5 by a concrete example. Fig. 1 

shows a road network along with 46 trajectories, which are divided into groups according 

to whether they traverse the same path. As depicted by dashed curves, there are 7 

trajectory groups ( 1G  through 7G ), containing 1, 4, 15, 7, 8, 6, and 5 trajectories, 

respectively. For ease of presentation, we use the notation vj-vk to denote a path from vj to 

vk. Hence, the paths traversed by 1G , 2G , 3G , 4G , 5G , 6G  and 7G  are denoted as 

   31 4 5 1V V V V , 1 4V V ,   34 5 1V V V ,   1 2 3 13V V V V , 

  1 2 6 13V V V V , 3 13V V  and       8 9 10 111 7 12 13V V V V V V V V , 

respectively. 

According to Definition 5, in other words,  F P is a non-decreasing sequence of the 

frequencies of all roads in P . For example, the frequencies of all roads in path 

  1 2 3 13V V V V  in Fig. 1 are 15(7+8=15), 7, 13(7+6=13) respectively, so the 

frequency of   1 2 3 13V V V V  is (7, 13, 15). 

Next, we present how to find the most frequent path. A straightforward method is to count 

the trajectories going through the path and select the one with the highest support. For example, 

there are four 1 13V -V  paths with non-zero support in Fig. 1; i.e., the paths traversed by 1G , 4G , 

5G , 7G  whose supports are 1, 7, 8, 5, respectively. Hence, the frequency relationship among the 

four paths is   1 7 4 5G <G <G <G . However, this method is only a comparison of the frequency of 

each path and cannot reflect the frequency of each road in the paths. For example, the support of 

path 1G  is 1, but the moving objects on the path   1 4 5 13V V V V  are 5(1+4=5), 

16(1+15=16), and 16(1+15=16), which are more than path 7G , whose frequency is 5 for each 

road. 

Another approach in [21] is to adopt a scalar-valued score function to calculate the path 

frequency. One possible score function is the sum of all weights of the edges along the path where 

the edge weight describes the road frequency. However, this approach suffers from two major 

drawbacks. The first drawback is that the number of path edges can significantly affect the overall 

path score. For example, it is intuitive that path   1 2 6 13V V V V  in Fig. 1 is more frequent 

than path   ...1 7 12 13V V V V . However, if we adopt the above sum-of-edge-frequency 

definition, the frequencies of all roads in   1 2 6 13V V V V
 
are 15(7+8=15), 8, 8 respectively. 

There are 7 roads in   ...1 7 12 13V V V V , and the frequency of each road is 5. Hence, the 

score of the former (15+8+8=31) is lower than that of the latter (5*7=35), which contradicts the 

intuition. The second drawback is that the resulting frequent path may contain very infrequent 
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edges because the weight of the infrequent edges can be easily offset by the weight of the frequent 

ones. For example, the frequencies of all roads in   1 4 5 13V V V V  are 5(4+1), 16(1+15), 

16(1+15), and the score is 5+16+16=37, which is the highest among all 1 13V -V  paths. However, 

it contains road 1 4V V , whose support is smallest in Fig. 1. 

A new approach is proposed in [22], which adopts an ascending frequency sequence to 

define the path frequency and considers that the size of the smallest element in the sequence 

determines the frequency of the path. For example, the frequencies of all roads in path 

  1 2 6 13V V V V  are 15(7+8), 8, 8 respectively, so the frequency of the path is (8, 8, 15). 

Similarly, the frequency of path   1 2 3 13V V V V  is (7, 13, 15). As a result, if we adopt this 

method, path   1 2 6 13V V V V  (8, 8, 15) in Fig. 1 is more frequent than path 

  1 2 3 13V V V V  (7, 13, 15), but the latter seems to be more frequent than the former.  

In this article, we use a threshold   to make the method that finds the most frequent path 

more reasonable. The value of   will be discussed in section 4.4. 

Definition 6 (More-frequent-than). Given two path frequencies    F 1 mP f ,..., f  and

    F  ,....1 nP' f ' , f ' ,  F P'  is more frequent than  F P , denoted as    F P' F P , if one of 

the following statements holds: 

1) There exists a   q 1,...min m,n  such that   j jf ' - f , q qf - f ' >  for all

   ,...,j 1 q-1 , if q 1. 

2) There exists a   q 1,...min m,n  such that   j jf ' - f ,  
1 1

'
n m

n mf f  for 

all    ,...,j 1 q , if q 1. 

We set  = 2; according to the definition, the path   1 2 6 13V V V V (8, 8, 15) is more 

frequent than the path   1 2 3 13V V V V (7, 13, 15). Specifically, we first compare the first 

element of each sequence, which is |8-7|=1< ; we continue comparing the second element 

and find that |8-13|=5>  and 8<13. Hence, the former is more frequent than the latter. 
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V4

|G1|=1

V6

|G4|=7

|G5|=8

V2 V3

|G3|=15

|G6|=6

V7

V8
V10

V11

V12

V9

|G7|=5

|G2|=4

V5

 

Fig. 1. An illustrative example  

3.2 Privacy Attack 

Definition 7 (Identity-linked attack). If a trajectory in the trajectory database is very 

specific, such that few moving objects can match it, the adversary using some background 

knowledge may uniquely identify the data record of the target victim and, therefore, its sensitive 

attribute values[12].  

For example, consider four users who leave their homes (E, F, G, H) and head for work (D) 

in Fig. 2. The trajectories of u1, u2, u3 and u4 are (F, A, B, D), (G, A, B, D), (H, A, B, D) and (E, A, 

C, D), respectively. Since the road map can be found everywhere in the domain of privacy-

preserving location publication, it is reasonable to assume that road network information is 

available to any adversary. For example, Fig. 2. is accessible to adversary Tom. If Tom observes 

that Mary is passed by (C, D), then Tom can infer that u4 is Mary, who is the only one with 

trajectory entering (C, D). Upon knowing the anonymous ID of Mary, Bob can track Mary’s 

remaining trajectories. From this, we can see that the infrequent trajectories with high probability 

combined with certain external knowledge can be used to identify a particular individual’s 

trajectory information in the published dataset.  
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Fig. 2. An example of an identity-linked attack 

 

With adequate background knowledge, an adversary can easily perform an identify linkage 

attack and identify the user’s trajectory information. Let 
i

S  be the background knowledge used 

by adversary Å  to attack user 
i

u , where 
1 2

{ , , . . . . , }
i n

S l l l  and ( , , )
j j j j

l x y t . Given a 

trajectory data record 
j

T , according to Bayes’ theorem, the adversary may identify 
j

T  with 

confidence ( | )
j i

Pr T S : 

Pr ( , ) Pr ( | ) Pr ( )
Pr ( | ) Pr ( | )

Pr ( ) Pr ( )

i j i j j

j i i j

i i

S T S T T
T S S T

S S
  

            (1) 

The adversary need only select the one with the highest confidence as the object of attack. 

Note that the denominator is a constant. In addition, without any knowledge about how the victim 

is chosen, we set the a priori distribution of the victim to be uniform (i.e., 

f orPr ( )   1,， .1 ./ 2.
j

in NT  , where N is the number of trajectories in the database). 

Assuming that all terms of each track are independent, the probability of Pr ( | )
i j

S T  can be 

calculated as 

1

Pr ( | ) Pr ( * - * )
m

i j i Z j Z
Z

S T S l T l


                    (2) 

where m is the number of items in a trajectory, and * *
i Z j Z

S l - T l  is the difference between 

items of two trajectories. Since the Gaussian distribution is one of most common distributions for 

identity linkage attacks, we assume that the noise obeys a Gaussian distribution 2( 0, )N  . Thus, 

expression (2) can be simplified as 
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2

2
1

1
Pr ( | ) * exp{ | * - * | }

2

m

i j i Z j Z
Z

S T C S l T l
 

         (3) 

for some constant C. Hence, the goal of the adversary is to find the minimal value of 
m

2

Z
Z 1

| * * |
i j Z

S l T l


 . 

3.3 Trajectory Privacy Metric 

To evaluate user 
i

u ’s degree of privacy, we use information entropy as a metric. When the 

trajectory of 
i

u  is not protected, the degree of privacy of 
i

u is defined as 

0

2
1

H( )=- Pr ( | ) l og Pr ( | )
n

i j i j i
j

T T S T S


              (4) 

The most widely used privacy-preserving method for data publishing is k-anonymity, and we 

must cluster at least k trajectories to achieve k-anonymity. Given a set of k-1 trajectories 

1 2 1

T { , , . . . , }
ki i i i

T T T


  used to preserve the privacy of 
i

u , the privacy level is raised to 

0H( , ) ( ) ( )X

i i i i i
T T H T H T    

n 1

2 2
1 1

= - Pr ( | ) l og Pr ( | ) - Pr ( | ) l og Pr ( | )
k

j i j i i Z i i Z i
j Z

T S T S T S T S


 

    (5) 

where H ( )X

i i
T  is the degree of privacy increased by k-anonymity, and T

i Z
 is one of the 

trajectories in the k-anonymity group. 

3.4 Privacy Model 

As mentioned before, we must cluster at least k trajectories to achieve k-anonymity, 

which will inevitably produce some costs that we assume are mainly information loss (i.e., 

remove infrequent roads, translate into representative trajectory, and add dummy trajectories). 

Each trajectory must spend some efforts to join a group. K-anonymity not only enhances 

privacy protection for a user who joins the group but also benefits other users within the same 

group. When publishing trajectory data, we want our privacy to be well preserved and have 

high data quality. That is, the cost must be low, and the degree of privacy must be high. As a 

result, the ultimate goal of this article is to minimize the cost-benefit ratio (CBR); that is, 
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,

1

mi n  

( , )
i i

N

i
i

NV T

i i
i

V

H T T









                            (6) 

s. t .  
i

V R                               (7) 

1 2
{ , , . . . }

i n
T T T T                            (8) 

 

 where 
i

V  is the cost of user 
i

u  to join a group.  

TOPF adopts k-anonymity to preserve trajectory privacy, which ensures that each group 

contains at least k trajectories; the greater the number of trajectories, the greater the degree of 

privacy and the greater the denominator of formula (6). Now let us assume a minimal 

denominator; that is, the number of trajectories is k. We then need only prove that the 

molecule is small – that is, the quality of data after preserving is high. The extensive 

experimental results show that our method retains high usability of the data.  

4. OUR APPROACH 

Most existing privacy-preserving approaches for trajectory data publishing methods mainly 

transform the trajectory anonymous problem into a trajectory clustering constraint problem to 

protect user privacy. First, the trajectory data are clustered according to the similarity in those 

methods. The generated clustering groups are then transformed into corresponding anonymous 

groups by using the constraint operations. The most related work was proposed by Gurung et al. 

[20]. They first compared the similarity between the trajectory and representative trajectory of 

each cluster and then added the trajectory to the cluster with the highest similarity. Finally, they 

added the dummy trajectories to the cluster to guarantee k-anonymity. However, if only some 

roads in the trajectory are similar, there is no way to tell whether the users’ trajectories are 

associated in time and space. Moreover, that approach leads to large differences between 

trajectories in the same cluster and reduces the final data quality. 

Since the most publishing information is used for data mining and analysis, it is necessary 

to focus on the hot region or frequent path. In this paper, we propose a novel method based on 
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frequent paths that not only presents a new way of trajectory division but also protects frequent 

patterns in trajectories. The method will be described in the following subsections.  

4.1 An Overview of TOPF Anonymization 

 First, we must select a proper way to represent trajectories. Our method anonymizes the 

trajectories that follow road-network constraints, which generalizes the request point to the road 

where the request point is located. To represent the user’s moving direction, we represent the 

trajectory by road IDs. 

Next, we will present our TOPF algorithm. TOPF consists of three main steps: (1) data 

preprocessing (i.e., remove infrequent roads), (2) finding candidate groups, and (3) selecting the 

representative trajectory. 

An attacker can easily acquire all trajectory information by observing and analysing some 

infrequent roads in the trajectory and performing an identity linkage attack on infrequent 

trajectories. Our algorithm first processes all trajectories by removing records associated with 

infrequent roads (i.e., roads with less than k objects) in the obtained database (line 1). The first 

step is relatively straightforward; therefore, the following discussion will focus on step 2 and step 

3. 

We then construct partial trajectories for the remaining objects. This paper argues that if the 

users request the same destination at the same location, their trajectories must be similar or 

relevant in time and space. We use the hash table to determine whether there exist trajectories with 

the same start point and end points and, if so, place them into the same entry (lines 2-10). The 

entry consists of two parts. One stores the start and end points of the trajectory, and the other holds 

the trajectories corresponding to these start and end points. 

If the number of trajectories in the entry is greater than the anonymization threshold k, 

these trajectories themselves form a group (lines 13-14). For the remaining trajectories, we place 

them in a list (lines 15-16) sorted in ascending order of their length (line 20) and compare them 

with existing groups. If a trajectory contains a sub-trajectory whose start and end points already 

exist in a group, the FindGroup (Algorithm 2) algorithm adds this trajectory to a suitable group 

(lines 22-23). Otherwise, a new cluster is created for this trajectory (lines 24-25). 

Finally, there is a grouping adjustment phase that handles groups containing less than k 

trajectories. We check whether the number of trajectories in a group is less than  ; if the group 

contains less than   ( <k ) trajectories, we directly remove it (lines 29-30). Otherwise, we use 

SelectRep (Algorithm 3) to select a representative trajectory for each group, and then, we add 

dummy trajectories to the group by increasing the support of the representative trajectory to k

(lines 32-33). Finally, we translate representative trajectories into output format (line 36). 

The algorithms for finding candidate groups and selecting representative trajectories will be 

elaborated in the following subsections. 
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ALGORITHM 1: TOPF Anonymization (Trj, k) 

Input: Trj is a set of trajectories that consist of road IDs, and k is the threshold of anonymization 

Output: Trajectories after the anonymization 

01. Delete roads that are infrequent 

02. Create a hashtable Mtrj 

03. for each trj in Trjs do 

04.     if the start and end points of trj is one of Mtrj’s key k1 then 

05.         list = Mtrj.get(k1) 

06.         list.add(trj) 

07.     else 

08.         Put(start and end points, trj) into Mtrj 

09.     end if 

10. end for 

11. for entryset in Mtrj do  

12.     trjs = entryset.getValue 

13.     if trjs.size ≥ k then 

14.         create a new group for trjs 

15.     else 

16.         add trjs into Ltrjs 

17.      end if  

18. end for 

19. Add each group into groups 

20. Sort the trjs in Ltrjs by length in ascending order 

21. for trj in Ltrjs do 

22.     if sub-trjs are in group which in groups then 
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23.         FinfGroup(trj, groups) 

24.     else 

25.         Create a new group 

26.     end if  

27. end for 

28. for each group in groups do   

29.     if group.size   then 

30.         remove group 

31.     else 

32.         SelectRep(group) 

33.         set group.size = k 

34.     end if 

35.  end for 

36. Translate representative trajectories into output format  

4.2 Finding Candidate Groups 

The essential idea of Algorithm 2 is to find a candidate group for a new trajectory that 

cannot be added to a certain group directly. First, we resolve this new trajectory into several 

nodes. The algorithm compares these nodes with start and end points in the groups to see whether 

the node set converts both the start and end points of a trajectory cluster (i.e., this new trajectory 

contains a sub-trajectory with the same start and end points as other trajectories in the group) 

(lines 2-3). If only one sub-trajectory is found, it will be simply added to the corresponding group 

(lines 6-7). 

However, the operation becomes complex if two sub-trajectories are involved. This 

scenario can be divided into three different cases. First, one sub-trajectory includes the other one. 

The longer sub-trajectory is added to the group with a dummy ID, and the shorter one is ignored 

(lines 10-11). Second, these two sub-trajectories intersect each other. Both will be added to the 

corresponding group and assigned dummy IDs. Third, these two sub-trajectories do not intersect. 

In this situation, we also add the sub-trajectories to corresponding groups and assign them dummy 

IDs, the same operation as in the second case (line 14). 
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What is more, if more than two sub-trajectories are involved, we can also address this 

situation by using a similar scheme as in the above two sub-trajectory cases. This method protects 

the authenticity of frequent path data. 

To illustrate this, we use the example in Fig. 3. Suppose 1t  and 2t are two new 

trajectories that must be inserted into suitable groups; 1g , 2g  and 3g  are existing groups that 

each contain trajectories with the same start point and end point. For example, in group g1, the 

start point and end point of 1 5trj ,... , trj  are all 2n  and 4n , respectively. These two trajectories 

cannot be added directly to any of the above three groups ( 1g , 2g  and 3g ). Trajectory t1 contains 

nodes n4 and n6 (i.e., 3g ) and only 3g  is contained in this trajectory. Thus, we simply extract this 

sub-trajectory (with 4n  and 6n as start and end points, respectively) and add it into 3g . For 2t , 

we can find three candidate groups—namely, 1g , 2g  and 3g . The paths traversed by 1g , 2g , 3g  

are 2 3 4n -n -n , 2 3n -n , 4 5 6n -n -n , respectively. It is obvious that 2g  is included by 3g . Hence, 

we add sub-trajectory 2 3 4n -n -n  and sub-trajectory 4 5 6n -n -n  into 1g  and 2g  with different 

dummy IDs, respectively. 

n1 n2 n3 n4 n5 n6 n7

n4 n5 n6n1

n2n4
trj1
…

trj5

n2n3
trj6
…

trj15

n4n6
trj6
…

trj15

t1

t2

g1

g2

g3

 

Fig. 3 An illustrative example 

ALGORITHM 2: FindGroup (trj, groups) 

Input: trj is a trajectory that must be added into a candidate group, and groups is a set of groups 

Output: candidateG is a set of candidate groups  

01. for group in groups do 

02.     if trj contains group then 

03.         candidate.add(group) 
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04.     end if  

05. end for 

06.  if candidateG.size ==1 then 

07.     put trj into group in candidate 

08.  else 

09.     for goup in candidateG do 

10.             if group_i contains group_j then 

11.                 candidateG.remove(group_j) 

12.            end if 

13.     end for 

14.     Divide trj and put it into groups in candidateG respectively and give different IDs 

15. end if 

4.3 Selecting Representative Trajectory 

There are two key requirements when selecting a representative trajectory. First, the 

frequency of the representative trajectory should be high. Second, the representative trajectory 

should have the highest average similarity (Equations (9) and (10)) with trajectories in the group, 

to ensure a low error rate.   

In a group, we sort the trajectories in descending order of their frequent relationships (line 

1) and select the top f most frequent trajectories (line 2); we then compare these m trajectories 

with other trajectories within the group and select the one with the highest average similarity as 

the group representation (lines 3-5). The average similarity function is as follows: 




)

| ( ) ( ) |
( , )

| ( |

a b
a b

b

Strj Strj
sim trj trj

Strj
                             (9) 




1

1
 = ( , )

rep

N

rj

j

avgS sim trj trj
N

                                (10) 

Suppose there are N  roads in a group, and 
jtrj  represents trajectory j  in the group. Let

   aS trj  denote the set of IDs in trajectory atrj . In Equation 1, sim then computes the percentage 
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of common roads included in atrj  and btrj . avgS is defined as the average similarity among 

the representative trajectory and other trajectories in the group. A high avgS  indicates that the 

representative trajectory is similar to the other trajectories in the group. 

ALGORITHM 3: selectRep (group) 

Input: group consists of start and end points and a set of trajectories 

Output: trj, which is the representative trajectory of group  

01. Sort the trajectory by frequency 

02. Select the top f trajectories 

03. for trj in top do 

04.     Find the trj with biggest similarity 

05. end for 

06. Return trj 

 

 

4.4 Selection of Threshold 

Threshold selection is a critical task that affects anonymization accuracy. In this 

subsection, we will discuss how to determine the threshold   for selecting the most 

frequent path and the threshold   for grouping the adjustment phase. 

The threshold   determines whether a path is the most frequent in a group. If a low 

threshold is used, the most frequent path may be determined by the size of a small element in 

the sequence. For example, let   be 1; according to Definition 6, path A (10, 11, 12) is said to 

be more frequent than path B (8, 20, 25), while path B seems to be more frequent. Moreover, a 

low threshold also leads to a low diversity in the most f frequent trajectories, which will increase 

the average error rate. If a high threshold is chosen, even some trajectories containing low 

frequencies can rise to the top of the group. For example, let   be 10; path C (2,20,25) is said to 

be more frequent than path D (10,11,12), while path C contains a road with the lowest frequency. 

However, the greater the value of  , the greater the tolerance of the frequency relationship and 
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the higher the diversity of the trajectory. Thus, the average error rate will be reduced. To reach a 

balance, we define the threshold   as shown in Equation (11). 

4

k
=                                     (11) 

This threshold is derived according to k; a larger k yields a higher threshold  , 

because k determines the smallest element in the frequency sequence.  

After grouping all trajectories, a group may contain less than k trajectories. For such 

groups, the threshold   is used to determine whether to remove the groups or add dummy 

trajectories into them. To minimize error, we define the threshold   as shown in Equation 

(12). 

=
2

k
                                     (12) 

The basic idea of this threshold is to induce less error when inserting or deleting few 

trajectories. Specifically, if the total number of trajectories in a group is greater than k/2, 

adding less than k/2 trajectories will introduce less error than moving the whole group. In the 

other case, if a group has less than or equal to k/2 trajectories, removing the group will 

introduce less error by adding more than k/2 dummy trajectories.  

4.5 Complexity Analysis 

As mentioned before, TOPF consists of three main steps: (1) data preprocessing (i.e., 

removing infrequent roads), (2) finding candidate groups, and (3) selecting a representative 

trajectory. 

To remove infrequent roads from the original dataset, we must scan the roads that are 

contained in all trajectories just once. Suppose there are n  trajectories in the original dataset and 

the maximal number of roads in the trajectory is l . Given a constant number l  , the total number 

of such roads is n l . The complexity of the first step is  O n . 

For the second step, the major cost is the search for candidate groups. We must scan 

existing groups to find all suitable groups. Suppose there are cl  trajectories per group; then, the 

number of groups can be estimated as cn / l . Therefore, the time to find the candidate group is 

 cO n / l —that is,   O n . 

The third step is to select the representative trajectory, and we must scan trajectories in 

each group. The average number of trajectories per group is cl ; therefore, the time complexity is 
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 cO l . Since cl  is proportional to n , the time complexity of selecting a representative 

trajectory is   O n . In summary, the time complexity of TOPF is      O n  + O n  + O n , which is 

  O n  

5. EXPERIMENT 

To verify the accuracy of our method, we compared the TOPF with three methods: (1) 

ICBA described in [20]; (2) Prefix, proposed by [19]; and (3) NWA [7], which is a conventional 

algorithm whose result does not follow the road network constraints. To facilitate comparison 

with the other methods, we match the points in the result generated by the NWA to each road. 

 We use the generator by Brinkhoff [23] to generate datasets based on a map of Gutenburg 

in Germany. To ensure the accuracy of the experiment, we repeat each experiment five times. 

The experiment is evaluated based on three criteria: 

(a)  Average error rate as given by Equation (13). Suppose the number of roads is N  and 

jr  represents road j . Let 
jr

ori  and 
jr

ano  denote 
jr ‘s original frequency and frequency after 

the trajectories have been anonymized, respectively. 

  
1 1

| |1 1 j j

j

N N -r r

j

j= j= r

ano ori
E E

N N ori
                              (13) 

(b) Standard deviation as given by Equation (14). The error function E is defined as the 

average difference between anorj and orirj in Equation (13) (i.e., Ej). A low standard deviation 

indicates that the anonymization quality of each road is similar and close to the average error rate. 




  2

1

1
( )

N

N

j

j

E E                                     (14) 

(c) Number of frequent patterns after anonymization. We use the widely adopted F-

measure as defined by Equation (15), where rP  and aP  denote the sets of trajectories in the data 

mining results and anonymization results, respectively; mN  denotes the number of trajectories in 

the anonymization results that match those in the data mining results, and rN  and aN  denote 

the total number of trajectories in the data mining results and anonymization results, respectively. 

The equation is shown below: 
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                           (15) 

m

r

N
Precision =

N
， m

a

N
Recall =

N
 

 

The algorithm is implemented in Java language, and all experiments were run on a PC with 

a 2.4 GHZ Intel Core i5-6200U processor, 8 GB of RAM, and the Windows 10 platform. 

The parameters used are as follows: 

1) The anonymity threshold k is set to 2, 4, 6, 8 and 10. 

2) The number of moving objects is set to 5K, 25K, 50K, 75K and 100K. 

5.1 Effect of Data Sizes 

We now compare the performance of our TOPF with ICBA, Prefix and NWA by varying 

the number of moving objects (i.e., number of trajectories) from 5K to 100K. Fig. 4 (a) shows the 

average error rate of the overall anonymization results obtained from the four approaches. The x 

and y axes represent the number of objects and average error rate, respectively. It is unsurprising 

to see that TOPF yields less error than the other three algorithms in all cases. When the number of 

moving objects is small (e.g., 5K), the anonymization results obtained from all algorithms have 

relatively high average error rates because the number of objects on each road is small, and even a 

small change to an object trajectory by the anonymization process will have a great impact on the 

average error rate. As the number of moving objects increases from 5K to 100K, the average error 

rate caused by TOPF continues decreasing and is far less than that of Prefix and NWA at all times. 

This is because Prefix and NWA do not group the similar trajectories effectively. ICBA is better 

than Prefix and NWA; however, the error rate of ICBA is still higher than that of TOPF. This is 

because TOPF protects frequent trajectories better, and the trajectories in a group are more similar. 

Fig. 4 (b) shows the standard deviation of four algorithms. A low deviation indicates that 

the anonymization quality of each road is similar and close to the average error rare. TOPF 

generates much lower standard deviations in most cases. When the number of moving objects is 

small (i.e., 5K), the standard deviation generated by the other three algorithms is lower than that 

by TOPF. That is, the error rate of each road in the anonymization results generated by the other 

three algorithms is similar and very high because the average error rates are close to 90% when the 

number of objects is small. This is why the standard deviation generated by Prefix is lowest when 

the number of moving objects is small (i.e., 5K, 25K). With increasing data size, the standard 

deviation caused by TOPF decreases, which indicates not only that the anonymization result of 

TOPF has the lowest error rate but also that each road has similarly good quality. 
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(a) Average error rate 

 

 (b) Standard deviation 

Fig. 4. Effect of data sizes 
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5.2 Effect of Parameter k 

This set of experiments reflects the performance of four algorithms regarding different 

values of k. Fig. 5 (a) shows the average error rate of the anonymization results obtained from 

TOPF, ICBA, Prefix and NWA. The x and y axes represent the value of k and average error rate, 

respectively. We can observe that the average error rates of all approaches increase when k 

increases. The possible reason for this behaviour is that a larger k increases the number of deleted 

roads and dummy trajectories, which leads to an increase in the average error rate. It is obvious 

that TOPF has a much lower average error rate than that of the other three methods in all cases. 

This is because TOPF effectively groups similar trajectories and carefully selects representative 

trajectories, which minimizes the overall error rate. 

We also measure the standard deviation of the anonymization results obtained from the 

four approaches. As shown in Fig. 5 (b), the anonymization result generated by TOPF has a much 

lower standard deviation than that by ICBA and NWA, which indicates that our anonymization 

result on each road has similarly good quality. It is interesting to note that Prefix has a lower 

standard deviation with large k. This is because Prefix must remove more infrequent trajectories 

for larger k, and its average error rate is close to 90%, where a low standard deviation indicates 

that each road has a very high error rate and is close to the average error rate. 

 

 

(a) Average error rate  
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(b) Standard deviation 

Fig. 5. Effect of parameter k 

 

Moreover, we also apply the Wilcoxon signed-rank test and sign test to test all cases of 

TOPF, ICBA, Prefix and NWA. We vary the number of moving objects from 5K to 100K and 

vary the value of k from 2 to 10. The result is shown in Table 2, from which we can see that all P-

values are less than 0.05; hence, our TOPF is much better than the other three methods. 

 

Table 2 Wilcoxon signed-rank test and sign test 

Comparison Wilcoxon signed-rank 

test 

Sign test 

 P P 
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TOPF vs ICBA 1.2290E-05 5.9605E-08 

TOPF vs Prefix 1.2290E-05 5.9605E-08 

TOPF vs NWA 4.5739E-05 1.5497E-06 

 

5.3 Preservation of Frequent Pattern 

In general, the more frequent patterns are preserved, the better the anonymization result is. 

To measure this, we evaluate the quality of anonymization results by comparing the anonymized 

trajectories obtained from TOPF, ICBA, Prefix and NWA with frequent patterns discovered from 

original datasets using the PrefixSpan [24] data mining method. To make the experiment more 

obvious, we need a large k and set it as 10. When we use the PrefixSpan algorithm, each 

transaction corresponds to an original trajectory. Each item corresponds to a road ID in the 

trajectory. Moreover, the minimal support threshold corresponds to the anonymization parameter 

k. We use the widely adopted F-measure, which has been defined in Equation (7). 

Fig. 6 (a) shows the F-measure values of the TOPF method and the other three methods; 

the x and y axes represent the number of moving objects and F-measure values, respectively. It is 

obvious that TOPF yields much higher F-measure values than Prefix and NWA in all cases, which 

indicates that TOPF preserves more frequent patterns. We can also observe that ICBA starts with a 

low F-measure value, then the F-measure values increase rapidly and are close to that of TOPF as 

the number of objects increases. However, as the number of objects continues to increase, the F-

measure value of ICBA decreases rapidly and is much less than that of TOPF. This is because the 

ICBA method removes frequent trajectories when selecting a representative trajectory due to the 

difference of trajectories in a cluster, while our TOPF method selects the representative trajectory 

with high frequency and ensures the highest similarity within a group, which preserves the 

frequent pattern well. 

Since we remove several trajectories and add dummy trajectories during the 

anonymization, it is unrealistic to expect to receive a perfect F-measure value. Therefore, we add 

the trajectories with at least 50% road segments matching a frequent pattern in the original data 

mining results to Nm for computing the F-measure. As shown in Fig. 6 (b), we can see that the F-

measure values are several times higher than those in Fig. 6 (b). Moreover, the F-measure values 

of TOPF increase drastically with increasing number of moving objects, which indicates that our 

method preserves partial frequent pattern information very well. 
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We also apply the Wilcoxon signed-rank test and sign test to test all results obtained by the 

four approaches using F-measure and F-measure for 50% match. The result is shown in Table 3, 

from which we can see all P-values are less than 0.05; hence, our TOPF is much better than the 

other three methods. 

 

 

(a) Exact Match 

 

 

(b) Partial Match 
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Fig. 6. F-measure 

 

 

 

Table 3 Wilcoxon signed-rank test and sign test 

Comparison Wilcoxon signed-rank 

test 

Sign test 

 P P 

TOPF vs ICBA 0.0039 0.0215 

TOPF vs Prefix 0.0020 0.0020 

TOPF vs NWA 0.0020 0.0020 

 

6. CONCLUSION 

It is becoming increasingly important to preserve individual privacy when publishing 

trajectory data. How to widely use the data without violating user location privacy concerns has 

attracted the attention of scholars. 

Most previous works examining the preservation of privacy in trajectory data publishing 

suffer a serious loss in data usability. We address this problem by focusing on the high usability of 

data and present TOPF, a novel approach for preserving privacy in trajectory data publishing that 
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uses frequent path to strike a balance between the conflicting goals of data usability and data 

privacy. 

TOPF not only can provide data privacy protection in data publishing but also can ensure 

the high usability of the data. This is because TOPF first removes all infrequent roads, which 

avoids identity linkage and guarantees that each road has k-anonymity. TOPF then adopts a new 

way to divide trajectories into candidate groups and proposes a new method for finding the most 

frequent path, and then, we select a representative trajectory to represent all trajectories within the 

group. We evaluate TOPF in terms of average error rate, standard deviation and F-measure values, 

and we conduct an experiment comparing TOPF with ICBA, Prefix and NWA. The result 

demonstrates that our approach is superior to the others. 

In future work, the proposed method can be extended in the following two aspects: (1) how 

to update the parameters θ, δ in this article to obtain a better result; (2) how to optimize the 

grouping method to reduce the error rate and preserve a more frequent pattern. Moreover, how to 

make this algorithm more efficient is also worth considering. 
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