
A Secure Network Architecture for the Internet of
Things Based on Local Authorization Entities

Hokeun Kim, Armin Wasicek, Benjamin Mehne and Edward A. Lee
Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley

Email: hokeunkim@eecs.berkeley.edu, arminw@berkeley.edu, bmehne@eecs.berkeley.edu, eal@eecs.berkeley.edu

Abstract—Security is essential to enable the Internet of Things
(IoT). Key security measures that work well on the tradi-
tional Internet, however, do not necessarily adapt well to the
IoT. Specifically, authentication and/or authorization based on
certificates provided by certificate authorities (CAs) cannot, in
current form, scale to the expected 50 billion devices. And widely
used encryption technologies for the Internet require too much
energy for resource-constrained devices. This paper describes a
secure network architecture with key distribution mechanisms
using local, automated authorization entities. The architecture
provides security guarantees while addressing IoT-related issues
including resource constraints. For evaluation, we show that the
architecture’s overhead scales at a significantly slower rate than
widely used SSL/TLS and works well with resource-constrained
devices.

Keywords—Internet of Things; Network security; Key man-
agement; Authentication; Authorization

I. INTRODUCTION

The Internet of Things (IoT) [1] faces challenges [2] to en-

able scalable, safe and secure systems, possibly with resource

constraints. Since the IoT interacts with humans, machines

and environments, failures in the IoT can lead to very serious

consequences. This fact makes safety of the IoT particularly

important. Safety extends to security in the sense that security

guarantees (e.g., protection from intrusion or unauthorized

access) can help prevent an adversary from damaging safety.

Safety measures such as Airbus flight envelope protection [3],

which prohibits pilots from performing risky maneuvers, can

help prevent a successful intruder from doing damage.

The security of the traditional Internet has been enhanced by

well-developed security measures such as the SSL/TLS (Se-

cure Socket Layer / Transport Layer Security) protocol suites1.

However, the IoT has unique characteristics that distinguish it

from the traditional Internet, and these characteristics lead to

special requirements for a secure network architecture of the

IoT. Widely used network security measures do not adapt one-

to-one to the IoT because of these special requirements.

For example, IoT components including electric vehicles

(EVs) and EV charging infrastructure in Fig. 1 are considered

safety-critical. Unlike servers in data centers, EVs and EV

charging stations are physically accessible not only by valid

users but also by potential adversaries. This leads to the

increased number of physical points of access, thus, there

can be a higher risk of being subverted. Therefore, the secure

network architecture for the IoT must have ways to revoke

1Widely used by web servers, clients, and remote logins.

��������	
�������	
���	

��������	��
�����

�
���������	���

�
���������

��	��������	�������	 �����	�����	����	

���������������
����	������
��

��
���
	����

��	��
����������
	���

��
	���

Fig. 1. Electric vehicles (EVs) and charging infrastructure

authorization of the devices within a short amount of time to

limit the damage when they are under control of adversaries.

In addition, mobile phones or EVs can migrate from one

network to another, possibly making network connection un-

stable. There are also IoT devices with constrained resources

and the number of IoT devices is expected to grow rapidly.

Therefore, the secure network architecture should work well

with unstable connection and resource-constrained devices at

a great scale. However, with security measures such as TLS

based on certificates provided by certificate authorities, it will

be very difficult to have control over authorization of a huge

number of devices, possibly with resource constraints.

We also claim that the secure network architecture for

the IoT should be able to provide security guarantees at a

comparable level as TLS, at least for some devices, for safety.

Therefore, it is not enough to simply adapt lightweight security

solutions for wireless sensor networks (WSNs) that make

tradeoffs in terms of security guarantees.

In this paper, we propose a secure network architecture

using local, automated authorization entities to address the

IoT-related requirements while providing high-level security

guarantees. The proposed network architecture provides key

management mechanisms that scale very well and work well

with devices with resource constraints or unstable connections.

The proposed architecture can use the cryptography algorithms

that are used in TLS to provide a comparable level of security

guarantees. We also carry out experiments that evaluate the

effectiveness of our approach, and compare with TLS.

The organization of the paper is as follows: Section II

describes the security requirements for the IoT, and is followed

by a review of current network security measures in Section

III. Section IV describes the proposed approach, which is

evaluated in Section V. Section VI concludes.

II. IOT SECURITY REQUIREMENTS

This section summarizes security requirements of the secure

network architecture and key management systems for the IoT.

2016 IEEE 4th International Conference on Future Internet of Things and Cloud

978-1-5090-4052-0/16 $31.00 © 2016 IEEE

DOI 10.1109/FiCloud.2016.24

114

2016 IEEE 4th International Conference on Future Internet of Things and Cloud

978-1-5090-4052-0/16 $31.00 © 2016 IEEE

DOI 10.1109/FiCloud.2016.24

114

2016 IEEE 4th International Conference on Future Internet of Things and Cloud

978-1-5090-4052-0/16 $31.00 © 2016 IEEE

DOI 10.1109/FiCloud.2016.24

114

• Frequent authorization and authentication – Due to the

criticality of some devices in the IoT, tight authorization

and authentication will be necessary. Machines operate at

higher speeds than human beings, and physical accessibility

of devices creates more vulnerability. Dynamically varying

situations resulting from mobility may change authorization

of devices. Moreover, frequent authorization can provide

ways to limit the damage in case critical devices are

subverted.

• Automated mutual authentication – It will be prohibitive

for users to remember passwords for a large number of

devices. Thus, the IoT devices must be able to authenticate

themselves without user intervention.

• Intermittent connectivity – Mobility of devices changes

the network environment under which the devices operate,

which can lead to unstable connectivity. However, we

cannot compromise security when network connection is

unstable, thus we should be able to handle intermittent

connectivity of devices.

• Dynamic entity registration – Unlike the traditional Inter-

net, the IoT includes devices with shorter life cycles than

general computers. Mobile devices may be added to and

removed from authentication/authorization systems dynam-

ically. Therefore, adding and removing entities should be

manageable in the secure network architecture for the IoT.

• Support for scalability features – There are a variety of

approaches for network scalability, which benefit the IoT

devices, including the publish-subscribe protocols [4] such

as MQTT [5]. The security architecture should be able to

work together with these scalability features.

• Consideration for resource constraints – Some devices

in the IoT have limited resources; for example, battery-

powered devices have limited energy budget for computa-

tion/communication. Stronger security measures generally

cost more energy; however, excessive energy consumption

can harm the availability. Hence, the security measure

should be able to balance security and energy consumption.

• Privacy – Personal devices such as mobile phones can

easily collect and carry private information of their users.

Therefore, the security measure also needs to be able to

protect user’s privacy.

III. SECURITY MEASURES IN THE FIELD

Secure Socket Layer / Transport Layer Security (SSL/TLS),

or simply TLS [6], has been providing security for the Internet.

For authentication, TLS uses certificates, usually provided by

a certificate authority (CA). However, this cannot be the best

option for the IoT due to the overhead for CAs to manage

the huge number of certificates. To make TLS with CAs

more scalable, the Let’s Encrypt project2 launches free and

automated CAs. Nevertheless, it will be too demanding for

resource-constrained devices to carry large certificates and

perform computationally expensive asymmetric key (public

key cryptography) operations for every TLS connection.

2https://letsencrypt.org

��	

������� �������

�������������
�	���� �
����!�

������������

�
"��##��������
������������

�������	
��
	

������� �������

�����������
�$����%��%���

����������
��������#�

�����	����	

������� �������

������������
#�##������&�

���$�����

$����%���
$#����#�##������&�

������������
#�##������&�

���	 ���	

�������������
�	���� �
����!�

Fig. 2. Authentication/authorization flows of different approaches; (a) CA
(certificate authority) and Certs (certificates) (b) Kerberos (authentication
service) / TGS (ticket granting service) (c) Proposed local Auth (Authen-
tication/Authorzation entity)

Kothmayr et al. [7] propose an authentication system for

the IoT using DTLS [8], a datagram variant of TLS. The

constrained application protocol (CoAP) [9] is secured by

DTLS. This kind of approach can work better with resource-

constrained devices than TLS. However, DTLS is still based

on point-to-point connections like TLS, which makes it chal-

lenging to secure one-to-many communications common in the

IoT such as broadcasting or publish-subscribe patterns [4]. In

addition, a certificate used in TLS and DTLS contains a unique

value for an entity. This risks exposing the entity’s identity,

leading to potential threat to privacy.

Another issue with certificate-based approaches is revoca-

tion of authentication. As illustrated in Fig. 2 (a), the CA is

only involved in the issuance of certificates, and the client and

server authenticate each other using the certificates as long as

the certificates are valid. The validity period of certificates is

typically longer than several months due to the management

overhead of certificates, especially for renewal of certificates.

Therefore, it is challenging to revoke authentication of entities

using certificates. This can be potential threat to safety of

critical components in the IoT in case they are compromised.

For authentication of entities, the Kerberos authentication

system [10] issues temporary tickets through its ticket granting

service (TGS), as illustrated in Fig. 2 (b). Thus, Kerberos

provides a centralized control over the validity period of au-

thentication, addressing the challenges of revocation. However,

such systems are designed for human users, requiring user

intervention such as entering passwords. This makes it hard

to support automated mutual authentication of IoT devices.

There are extensions for Kerberos [11] that use public

key cryptography for authentication, to replace the human

intervention. Even with these extensions, however, clients with

intermittent connectivity may face authentication problems

when they are not connected to Kerberos/TGS. Although

caching tickets can address the intermittent connectivity prob-

lem, it creates another problem of allowing a compromised

client with cached tickets to authenticate with the server. This

is because a ticket is delivered to a server by a client, not by

Kerberos/TGS, as shown in Fig. 2 (b), and the server trusts

the client as long as the ticket is valid.

The authentication flows for certificate-based approaches

115115115

and the Kerberos authentication system are designed for the

Internet with general-purpose computers. Although these ap-

proaches have been successful for the traditional Internet, we

note that the authentication flows shown in Fig. 2 (a) and (b)

cannot address some of the IoT-related security and scalability

issues. Therefore, we propose a network architecture that has

the authentication/authorization flow as shown in Fig. 2 (c).
In the proposed network architecture, a local authoriza-

tion entity, Auth, assigns lightweight session keys to entities

involved in communication. The Auth entity controls the

validity period of session keys and covers authorization as

well as authentication. This is possible because Auth is aware

of communication context of registered entities, determining

whether an entity is authorized to communicate with others.

While Auth serves as a local point of authorization, it also

interacts with other Auths to control communication between

entities registered with different Auths, distributing the au-

thorization overhead locally. Potential deployment targets for

Auth include Intel’s IoT gateways3 and the SwarmBox4 from

the TerraSwarm project (https://www.terraswarm.org/).
Security measures for wireless sensor networks (WSN)

support automated authentication for resource-constrained de-

vices. Approaches using random or pairwise pre-distributed

encryption keys [12], [13] provide energy efficient solutions.

There has been a static key management approach that allows

key establishment for newly added nodes [14]. However, static

key management systems may not be proper for the safety-

critical devices running under hostile environments, due to the

increased probability of being attacked for the cryptographic

key with a long lifetime.
He et al. [15] survey dynamic key management systems for

WSN, which can address the problem with pre-distributed keys

by supporting key revocation mechanisms. These approaches

for WSN can be categorized into distributed and centralized
approaches. In distributed approaches including EDDK [16]

(Energy-efficient Distributed Deterministic Key management),

neighboring nodes collaborate to dynamically establish keys.

Such approaches can avoid a single point of failure in authen-

tication systems; however, they tend to be more vulnerable to

collusion attacks and prone to design errors.
In centralized approaches, a central trusted third party

(e.g., a base station) is responsible for key generation and

distribution for nodes. Many of these approaches have similar

authentication flows as the proposed approach’s authentication

flow in Fig. 2 (c). Huang et al. [17] propose a centralized

forward authentication approach for hierarchical and hetero-

geneous sensor networks composed of high-end and low-

end sensor nodes. Sahingoz [18] provides a key distribution

system using an unmanned aerial vehicle (UAV) as a center

of key distribution and coordination, for large scale WSNs. To

support addition and deletion of mobile sensor nodes, Erfani

et al. [19] propose a key management system that uses key

pre-distribution and post-deployment key establishment.

3http://www.intel.com/content/www/us/en/internet-of-things/gateway-
solutions.html

4https://swarmlab.eecs.berkeley.edu/projects/5378/swarmbox

The dynamic key management systems for WSN can ad-

dress some part of the IoT-related security requirements in

Section II. However, they still have limited results to cover the

great heterogeneity of devices in the IoT, from the resource-

constrained sensor nodes to the critical components that re-

quire frequent authentication and authorization for safety. The

support for the dynamic environment such as intermittent con-

nectivity and dynamic entity registration is still not sufficient.

IV. PROPOSED APPROACH

Our proposed network architecture uses a local autho-

rization entity, which we call Auth, to handle frequent au-

thentication and authorization of devices. For scalability and

resource constraints, our approach uses symmetric keys for

authentication and authorization rather than asymmetric keys.

Before diving into the details of our approach, we clarify some

important terms used throughout this paper.

• Entity – Any device connected to the network in the IoT to

be authenticated and authorized. Each entity has a unique

identifier and cryptographic keys for secure communication.

• Auth – An entity responsible for authenticating and au-

thorizing registered entities. Auth maintains and manages

database tables to store information of entities.

• Client – An entity that initiates communication.

• Server – An entity accepting communication requests.

• Public key and Private key – The public and private

components of entity’s asymmetric key pair.

• Distribution key – A symmetric key-wrapping key used to

encrypt session keys for distribution.

• Session key – A symmetric key used to protect a single

session of communication. Since only authorized entities

receive a valid session key, an entity can prove that it is

authorized, by proving ownership of the session key. Each

session key is assigned a unique ID and validity periods.

The operations of the proposed approach can be divided into

four phases, (1) entity registration, (2) session key distribution,

(3) communication initialization, and (4) secure communi-
cation, as shown in Fig. 3. A newly added entity must be

registered with at least one Auth during the entity registration

phase. Registered entities can obtain session keys through

session key distribution. The dotted lines below the client and

server describe the time line of communication initialization

and secure communication. The following sections explain the

roles of Auth and details of each phase.

��������	��
	���

��������	�������'�
����
������������
��

����������	� ����������	�

�
�(��
�����
�����
���(���������������	�

���	�����	��	
���
���	

���	����
��	���	�
���
�����	

� �	������
�
���	��
�
�
!
���	

�"�	������	������
�
���	��
�
��
���
��

��
(�
��������

����	

�
��������������
��
�
��������������
��

Fig. 3. Overview of four phases of the proposed approach

116116116

��#�	 ���$�	 	$
��
	
��%	

����&	��%	
'���$�(

�)�����	��*	

��%	����&	�����+���	 �����+����	
�����+���	���,��	

����&	
���,	
����&	

����&	��%	
�������%	

��))*� ������	��
��
	����

+��,+�
-���.�

/0+�1�����.2�
,3*3*42*45))6�

��7*0+�
7����

��
�
084� *)���9�� ��������	�����9�51)2�

����	�����9�3���582�.�
��))1� ����
���	����������

1)�+��
1���.�

/���,���*�.2�
+3013*42:5))6�

��7084�
7����

��
�
1+:� *0�
����� ��������	�����9�582�

�	��� ���;5�*))��2.�
!�))8� !���������

��������
0��:��
�*�.�

/�1�0+�1��;;;2�
,30*3*42*45))6�

��7*0+�
7����

��
�
1+:� 1)���9�� ��������	�����9�5*)2�

����	�����9�3���5*)2.�
��)0:� ��������

������� "3
� /����)�0)�.2�
+3003*+2*45))6�

��7*0+�
7����

��
�
084� 0�9����� ��������	�����9�5�*)2�

����	�����9�3���5�82.�
���� ���� ���� ���� ���� ����

�������	
��%	��	

�������	��%	
���$�	

���,��	
�������,#	

���,	
�������,#	 �-���.�/	 �)�����	��	

.�
���$��/	
�����	���	
.����+0�/	

0*01-*� :0��8�:,�*��.�
��7*0+7���� ��
084� ��))*� +30:30)*42�*45))� 1)��	��
0*01-0�)������4�,)�.�
��7*0+7���� ��
084� ��))*� +30:30)*42�*45))� 1)��	��
0*01-1� 84��0��+�*��.�
��70847#��� ��
1+:� !�))8� +30030)*42�*-5))� 8��	��
0*01-:� 1-�4��*���,�;;;� $�:7*0+� ��
*� ��)0:� +30,30)*42�*45))� *���9�

���� ���� ���� ���� ���� ���� ����

������	��+�%	
.���+����/	

���0��	��+�%	
. �������/	

���,��	
�������,#	

���,	
�������,#	

�������	��%	�������%		�����	
'�
���$��(����+0�*	

������	����
	����
#��� �

����
���	���
�������#��� �
��7*0+7���� ��
084� /0���9�2�1)��	�6�

����
���	���
�������#��� �

!�����������������
#��� �
��70847#��� ��
1+:� /*�
���2�8��	�6�

!�����������������
#��� �

���������������
#��� � $�:7*0+� ��
� /-���9�2����96�

���� ���� ���� ���� ����

.�/	����������	��+�%	!�
��	

.
/	��##$��
�+��		���
%	!�
��	

.
/	��
,��	�������	��%	!�
��	

<%	��;5�%	���	�����2�
���;5�
����	�
�2�&���;5�&���	�	��=�

Fig. 4. Examples of Auth’s database tables

A. Auth

The Auth entity allows authentication and authorization

through distributing session keys to entities that are valid

for communication. For session key distribution, Auth stores

various information in its database. Fig. 4 illustrates examples

of database tables maintained and managed by Auth.

1) Registered entity table: The registered entity table in

Fig. 4 (a) stores entity-specific information such as an entity’s

unique name, group, public/distribution key, and conditions

for key distribution and operations. The key distribution con-

ditions determine the cipher/hash algorithm and validity period

for the distribution key. The distribution key field has the key’s

value and when it expires. The validity period or cryptoperiod

of cryptographic keys including the distribution key can be

determined depending on risk factors as recommended in [20].

Risk factors include the cryptography strength, operating en-

vironment, number of transactions, and potential threats.

In the example table Fig. 4 (a), an EV charging station

named CS003, has the shortest validity period for distribution

keys. This is because the charging station operates in an open

space, requires a relatively large number of session keys to

interact with many vehicles, and causes critical damage to

the power grid if compromised. An electric vehicle named

EV001 has a longer validity period because it interacts with

others less frequently and it is less accessible (e.g., protected

by locks/garage doors). A fuel cell storage, FC005 has an even

longer cryptoperiod, since it operates under restricted access.

The distribution key can be updated using public key

cryptography, thus, Auth stores public keys of the registered

entities as in Fig. 4 (a). The proposed approach also supports

devices incapable of public key cryptography such as the

(electric) current sensor named CS024. In this case, Auth

stores distribution key during the entity registration phase and

uses it for the entire life cycle of the device. Sections IV-B

and IV-C explain the details of this. The operational conditions

include the maximum number of total cached session keys, a

maximum number of session keys per request, and the entity’s

time precision required for time synchronization.

2) Communication policy table: The communication policy

table in Fig. 4 (b) is used to determine the conditions of

communication between certain entities such as cipher/hash

algorithms and validity periods. A client (or communication

initiator) and a server (or connection listener) can also be

specified as a group to set a communication policy between

groups of entities. With this table, Auth has a full control

over authentication/authorization of entities, and the commu-

nication policies can be dynamically managed.

The cipher/hash algorithms used for communication can be

determined by various criteria, including security requirements

(e.g., confidentiality, integrity), available resources of entities,

and performance/costs of algorithms on entities. A session

key validity period is a tuple of two values, absolute validity
period and relative validity period. The absolute validity

period specifies how long a session key is valid after creation

and the relative validity period denotes the validity of the

session key after its first use for communication.

3) Cached session key table: Once a session key is gener-

ated, Auth stores it in the cached session key table in Fig. 4

(c). Auth assigns each session key a unique identifier, called

session key ID. When a session key is distributed to entities,

Auth updates its owners, the entities who share the session

key. The Expires on and Valid for fields of each session key

are set according to the communication policy table.

4) Scalability and robustness of Auth: The proposed secure

network architecture supports multiple Auths, making the ap-

proach more scalable. When entities registered with different

Auths want to communicate, each entity just needs to contact

with its own Auth for authorization. Auths communicate with

one another to deliver the same session key to their entities

for setting up a secure connection. This process is explained

in detail with an example in Section IV-F.

We note that Auth is a logical entity that can be imple-

mented in a variety of ways, like the controller of a software-

defined network (SDN). It is a logical entity and can be

implemented in a distributed way [21]. We expect that Auth

can also be implemented in a distributed manner, possibly with

replicas. Such Auth implementations can avoid being a single

point of failure, providing robustness against denial of service

attacks. We also note that Auth must be in a safe place where

only valid users can access, like general servers in data centers.

B. Entity Registration Phase

In the entity registration phase, Auth and a newly added

entity exchange information for session key distribution. There

are two possible options for the distribution key, updatable
distribution key and permanent distribution key, depending on

whether the distribution key can be updated using public key

cryptography. Fig. 5 shows types of exchanged data during the

entity registration, and their security requirements.

When the distribution key of the new entity is updatable,

Auth and the entity should exchange their public keys for

117117117

����	����	
��	��
�
	������	

��������	�
����
��������	�

�
��	
�����	���	
������	

���������	
�
��	
�����	���	

��	������	
�
��	
�����	���	

���	�����	
����	�����	

����������������	��
����	������������	�

�	��������
��������������	�

���
�����	
����	�����	

����������� ��!��"���������>���#$%&���
����	���#��'��� �����(���)���

��������	�

Fig. 5. Exchanged information during entity registration phase, and data
security requirements for different types of data

the secure delivery of the distribution key from Auth to the

entity. The public keys must not be tampered with during the

exchange to prevent an adversary from spoofing identity of

Auth or the new entity, although the public keys need not

to be confidential. If the distribution key of the new entity is

permanent, meaning that a single distribution key is to be used

for the entire life cycle of the entity, the distribution key must

be kept confidential, only known to Auth and the entity.

For both options, Auth and the new entity should exchange

additional information, including the new entity’s unique name

and group, and the Auth’s ID and network address or URL

(can be more than one). Data integrity must be guaranteed for

the additional information exchanged to prevent masquerading.

After the entity registration, Auth stores the entity’s informa-

tion in its registered entity table. The new entity stores Auth’s

information in its local storage. If the Auth is replicated, then

the entity stores information of Auth’s replicas as well.

As long as the specified data security requirements are

satisfied, many methods can be used for the entity registration.

An authorized person can plug a new device or use near field

communication (NFC) to securely connect to Auth or Auth’s

delegate that is connected to Auth via a secure connection, for

information exchange. For personal devices, for example, two-

factor authentication [22] can be used to guarantee authenticity

of the information from the device.

C. Session Key Distribution Phase

Auth delivers one or more session keys to an entity during

the session key distribution phase. An entity can request

multiple session keys a priori for future use. Hence, an entity

with intermittent connectivity can authenticate and authorize

itself even without direct connection to Auth. A resource-

constrained entity can save communication and computation to

obtain session keys. Session key distribution works on top of

TCP/IP to ensure reliable message delivery. Fig. 6 illustrates

the session key distribution process for two cases, depending

on whether there is an available distribution key.

When an entity already has a valid distribution key as

in Fig. 6 (a), the distribution key is used for the session

key distribution. When a TCP/IP connection is established,

Auth sends AUTH HELLO, including Auth’s information

such as its ID, and a nonce (random number) generated

by Auth. Upon receiving AUTH HELLO, the entity sends

SESSION KEY REQ, which specifies the requesting entity’s

name, communication purpose including the target of commu-

nication, the number of requested keys, and the session key’s

identifier, if necessary. The nonce from Auth and the entity’s

own nonce are appended to SESSION KEY REQ, to prevent

����������	�
��
��
��
������

�������
��������	�
�	�
����������

�������
���������	�
�	������ ��������������

•  ���	����
 �!��?"��# ��
�$�%�"@�&���"���#�%���$�'�
��#���
��	�"��(�!
)�*�	

��		

• 
�����
�������������!"�(��#�+��'�����"�%$
 �����	�
+��'�,�-�?�����&���$�'��
!�
 ��! #�@��.�!'�#�

?/@  ���"��)����������0 "���
��
���	�
��#�#�!"�(��������
���������

?1@  �0�
�����"�!)�"�#	��!'�!2�! ��$��!�
 ��(*�!����%*��
?3@  �0�"�4$�������)�*�#	����#�"��(����

?&���"��������� ��2�����0���!����"�@�

��		

��
��� �$�'�����������	�
��
���
��
���	�������
��������	�

�	�
���$%��!	��&��

����������$%��!	��&����
�������
���������	�
�	������ ��������������

• 
�����
���������������
��!"�(��#�+��'�#��
��
 �5��
($%*�!�2�����#���&��#�+��'�
� $"!�5��("�)����2��	

?/@  ��!"�(��+��'��$�'6��("�)����2��	�
��#�)�"�0����
��6����&���$"��

?1@  �0�% �'���&���$"����#�
���"��)�*�#	�!'�!2�! ��$��!�
 ��(*�!����%*��
?3@  �0�"�4$�������)�*�#	����#�"��(����

?&���"��������� ��2�����0���!����"�@�

��
��� �$�'�

Fig. 6. Two cases of session key distribution phase (a) when the distribution
key is available, and (b) when the distribution key needs to be updated.

replay attacks. The whole message is encrypted with the

distribution key after attaching MAC (message authentication

code). The entity’s unique name is also sent in plain text.

Upon receiving the entity’s request, Auth retrieves the dis-

tribution key using the entity’s name, checks the Auth’s nonce

and the communication policy table for the entity’s eligibility,

and sends the response if the request is valid. Auth generates

session keys before sending the response, if it is necessary. The

Auth’s response, SESSION KEY RESP includes the entity’s

nonce, communication policy and session keys, encrypted by

the distribution key. After receiving SESSION KEY RESP,

the entity checks the nonce and stores the session keys.

Fig. 6 (b) describes the case when the distribution key

should be updated, after registering a new entity or expiry of a

distribution key. In this case, public key cryptography is used

to deliver the distribution key securely. The entity’s request,

SESSION KEY REQ along with the entity’s name and the

nonces should be encrypted with Auth’s public key and signed

with the entity’s private key. When Auth receives the request, it

decrypts the request with its private key and verifies the signa-

ture using the entity’s public key. If the signature and the nonce

are valid, Auth checks the request’s eligibility and responds.

The response includes the distribution key, DistKey encrypted

with the entity’s public key and signed with Auth’s private

key. The response also contains SESSION KEY RESP, a list

of session keys and nonces, encrypted with DistKey.

D. Communication Initialization Phase

After obtaining a session key, a client can initiate com-

munication with a server. The main objective of this phase

is proving ownership of the session key, since the ownership

indicates the entity is authenticated and authorized to commu-

nicate. Although there are many different ways to prove the

ownership, we choose a simple challenge-response handshake,

where each entity shows its ability to perform cryptographic

operations on randomly generated numbers (nonces) by its

counterpart. The random nonces are used to prevent replay

118118118

-������ ��������	

��
���������
����������������
�������

•  ����������	
����������������������������� �

!��"#���$%��$&����'�$'�������(�$)$�����

��	

��
������* �
� �
�������

��$��������������+���&���%��������������

��	

��
���,�
 �
�������
• 
��	
���
�����"�$���#��&#-��(�%����$����

-� ��.�����$��������� �������'��.�/	

���	

��0��
��
���!1� ���2�������
���	 ����3���
���!1� ���2�������

�4���������+����������4�&�� �������!&���
�����	
���5���������-�$�����������+���

•  �
���	�
������2&������&#-����4���#���$%���
4��#��.�����$��������� �������'��.�/	

Fig. 7. (a) Communication initialization phase, followed by (b) secure
communication phase

�*��������

�	
����
���

��
�������������������������������������

�	
����
��� �	
����
���

�������

��
�����������������������
��������������

•  ������������	
������ !�"�#�!����������
�������
�>$���%&��%	!���'�%'�����"�(�
%)%���"�

Fig. 8. Alternative secure communication phase for publish-subscribe proto-
cols

attacks. Fig. 7 (a) shows the operations of the communication

initialization phase between the client and server.

The communication initialization phase begins with the

client’s COMM INIT REQ with SessionKeyID, a unique

identifier for the session key. Note that the client must send

the communication initialization request’s header and Session-

KeyID in clear text, with the client’s nonce and its message

authentication code (MAC) encrypted by the session key.

Upon receiving COMM INIT REQ, the server searches for

the session key using SessionKeyID in its cache. The server

finds the session key if it is already cached. Otherwise, the

server sends SESSION KEY REQ to Auth with Session-

KeyID specified to obtain the session key. After decrypting

COMM INIT REQ, the server sends COMM INIT RESP

with the client’s nonce and the server’s nonce encrypted

with the session key. The client receives COMM INIT RESP,

decrypts it, and compares the nonce in it against the nonce

generated by the client. If the two nonces match, the server is

verified to have the session key. In the same way, the client

sends COMM INIT FIN with server’s nonce encrypted, and

server verifies the client’s ownership of the session key. If

either the client or the server is unable to match nonces,

communication initialization fails.

E. Secure Communication Phase

After the client and server initialize communication, they

can exchange encrypted messages as shown in Fig. 7 (b). This

works almost the same as the TLS record layer with appli-

cation data after TLS handshake. Each message is assigned

a sequence number, starting from 0 for the first message,

to prevent reply attacks. Every message has MAC attached,

encrypted with the symmetric session key.

Our proposed approach also provides an alternative way of

secure communication phase for publish-subscribe protocols

such as MQTT, as depicted in Fig. 8. The packet for this

method of secure communication, SECURE PUB, includes

its header and SessionKeyID in clear text. Any entity with

������

�������
������

����	�

�������
�����
����
�
��

����
��

������� �����	�

����������������������������� ���������������������������	�

����
������
����
������

�
��������
������������
��
����������
��������
��

Fig. 9. An example where a client and a server that are registered with two
different Auths initialize a secure communication

the session key specified by SessionKeyID is authorized to

decrypt the encrypted messages. The sender only needs to

encrypt and send the message once for all receivers, thus, this

scales very well together with one-to-many communication

such as broadcasting and publish-subscribe patterns.

Lagutin et al. [23] introduce other various ways to secure

a publish-subscribe network architecture using certificates,

including packet level authentication (PLA). Such methods

require an entity to either carry large certificates or perform

expensive asymmetric key operations for published messages.

Compared to these approaches, our approach can significantly

reduce the overhead to secure publish-subscribe by using a

small and lightweight symmetric session key.

When the published or broadcasted data does not require

confidentiality, the TESLA [24] protocol can be used to

guarantee data integrity and authenticity for message receivers.

The proposed approach can be integrated with TESLA, in a

way that Auth establishes an authentication key for a sender

and discloses the key to receivers after key disclosure delay.

F. Scaling to Multiple Auths

The proposed approach can also support authentica-

tion/authorization between entities that are registered with

different Auths. We illustrate this with an example shown

in Fig. 9. In this example, a client registered with Auth1

communicates with a server registered with Auth2. Each entity

is authorized by its own Auth, that is, the client and the server

receive a session key from Auth1 and Auth2, respectively.

Auth1 and Auth2 are connected via a secure connection such

as SSL/TLS. They work together to distribute the same session

key for the client and server.

Fig. 10 describes the detailed authorization process of this

example. The client sends SESSION KEY REQ to Auth1,

specifying the server as a target of communication, as ex-

plained in Section IV-C. Auth1 responds to the client’s request

with a session key, SkeyCS, and its unique ID, SKIDCS.

SKIDCS is encoded with information of the session key’s

generator, in this case, Auth1. Using SkeyCS and SKIDCS, the

client sends COMM INIT REQ to the server for initialization

of a secure communication, as explained in Section IV-D.

To continue communication initialization, the server re-

quests its own Auth, Auth2, for a session key specified

by SKIDCS. Auth2 decodes SKIDCS and finds that the

requested session key was generated Auth1. Auth2 sends

AUTH SESSION KEY REQ (a session key request between

Auths) to Auth1 specifying the session key ID, SKIDCS, via

119119119

����������	�
���

�����
�������
�������
���������������� ����!��"	�

��	�

#$�%���&
���
�������
��������'�����&
�	����$
�"	�

#$�%���&
���

�(�)��
������ �(�)*����!���

�++��
������������$
����
�

,#���&
��

�
�++��
������'	�

,	�
�,#���&
��

�
�++��
���-�
	�
�,#���&
��

����������	�
�*�

���!��
�������������
������������%%�.��
��&�/��)����$
�"	�
�*	�
�#$�%���&��*�

�������
��������'�����&
�"	�
�#$�%���&��*�

������������
������������%%�.��0�&�/��)����$
�"#��1��&���*�

������������
��������'�����&
�"#��1��&���*�

•  ����������	
��+�%%������1�&2��3�/��)���&	
•  �
���	
�����$�%���4(5.��0�&�6.�����������3��(�)�	
•  �
���	
��� �$�%���4(5.��0�&�6.�����!�����3��(�)�	
•  ��	
�� ���%%�.��0�&�6.�����������3����!���
•  ������ ����7(���$�6.�����&
��
•  ����	
���� ���1�&25.��0�&�6.���(�)����3��(�)�	
•  ����	����	���	����
.�1������3.���(�4��"�

��������3�4&��(�)�	��(�)�	����������3����!��	�
��%2�15!��&	�(%�3�6.��%�%%�.��0�&�3�%���4(5.��

•  ����	�����
.�1����������3�4&����������3����!��	�
��%2�15!��&	�(%�3�6.��1.��(��1�5.�����5���8�5.��

�(�)*�3�1.3�%����$
�	�
��3��.51�%����/�%�
��������3�4&��(�)���

�(�)����������%����&
��6.��
������
��3����!��	���3��%%���%���%��$	����$
���

Fig. 10. Details of the example authorization process of a client and a server that are registered with two different Auths (continued from Fig. 9)

a pre-established secure connection such as SSL/TLS. Auth1

replies to Auth2 with AUTH SESSION KEY RESP, which

includes SkeyCS. Auth2 delivers SkeyCS to the server, and the

server continues to set up a secure connection with the client.

V. EXPERIMENTS AND RESULTS

We compare our approach’s effectiveness against TLS with

a couple of scenarios that frequently occur in the IoT. We

view TLS as an appropriate comparison, because it is widely

used and it can support strong cryptography including the

public key cryptography for critical components in the IoT.

Although we do not conduct experiments with Kerberos, we

expect Kerberos will show a similar tendency as TLS, if

used with certificates for authentication. Fig. 11 describes the

scenarios used for our experiments. In the scenario 1, a client,

possibly mobile, is expected to interact with multiple servers

one-on-one. In the scenario 2, a publisher, possibly resource-

constrained, sends the same messages to multiple subscribers.

We assume the entities used for experiments of the proposed

approach initially do not have a valid distribution key.

We implement entities for the proposed approach and TLS

using Node.js [25], a JavaScript runtime platform. We modify

the OpenSSL library included in Node.js to enable logging

for cryptography operations. All entities for our experiments

run on the local host with different port numbers. We use

a packet sniffer, Wireshark (https://www.wireshark.org), to

capture network packets generated from our experiments.

To estimate the overall security overhead, we calculate

energy consumption caused by security computation and com-

munication. For cryptography operations (RSA-2048, AES-

128 and SHA-256), we use the energy cost measured for

a mobile device, HP Hx2790, in [26]. To estimate energy

��������		
	�	�����
	���	�������		

�������

������� �	
��
����

�	

���
��� �	

���
���
�	

���
���

�	

���
���

�	

���
���

�������

�������

�������

��������	�
	�	���������	���	�����������	

Fig. 11. Experimental scenarios for evaluation

TABLE I
ENERGY COST MODEL FOR OPERATIONS (ENERGY NUMBERS FROM [26] AND [27])

Operation Energy cost

RSA-2048
91.02 mJ per encrypt/sign operation
4.41 mJ per decrypt/verify operation

AES-128 0.19 μJ per byte encrypted/decrypted

SHA-256 0.14 μJ per byte digested

Send packet 454 μJ + 1.9 μJ × packet size (bytes)

Receive packet 356 μJ + 0.5 μJ × packet size (bytes)

consumption by wireless communication, we use the model

and coefficients introduced in [27]. Table I summarizes the

energy cost model used for our experiments.

We use the same cryptography algorithms for both ap-

proaches to ensure a comparable security guarantee level. For

TLS, we choose a cipher suite in TLS version 1.2, which uses

RSA for authentication and key exchange, AES-128-CBC for

bulk cipher, and SHA-256 for message authentication. Our

proposed approach also uses the same algorithms for the same

purposes. For asymmetric key pairs, we use X.509 certificates

with 2048-bit key and SHA-256 digest.

A. Scenario 1: A client and servers

In experimental scenario 1, a client communicates with

multiple servers. We assume these communications should

be private to the client and each server. For TLS, the client

and each server initiate a TLS connection by exchanging

certificates. For the proposed approach, the client requests

Auth for session keys to be used for communication with

servers. Using a different session key each time, the client

initializes secure communication with servers.

For evaluating overhead, we focus on the overhead of the

client because the client’s overhead increases as the number of

servers increases, while the overhead of each server remains

the same. Our observation suggests the overhead of secure

communication after initialization is almost the same for both

TLS and the proposed approach. Hence, we only measure the

overhead of communication setup/close.

Table II shows the experimental results for scenario 1

at three different scales, with 16, 32 and 64 servers. We

note that difference in the network data sizes between two

120120120

TABLE II
SCENARIO 1 RESULTS FOR CLIENT SETUP/CLOSE (PROP.: PROPOSED, ENC:

ENCRYPTIONS, DEC: DECRYPTIONS, TX: TRANSMITTED, RX: RECEIVED)

Scale 16 servers 32 servers 64 servers
Approaches TLS Prop. TLS Prop. TLS Prop.

RSA-2048 (enc/dec) 32/32 2/2 64/64 2/2 128/128 2/2

AES-128 (bytes) 5,120 3,744 10,240 7,392 20,480 14,688

SHA-256 (bytes) 188,976 1,957 377,952 3,349 755,904 6,133

Packets (Tx/Rx) 159/145 135/120 332/300 263/232 650/587 511/449

Tx bytes 56,168 11,031 113,120 21,143 222,502 40,735

Rx bytes 66,808 9,453 134,176 17,805 263,956 34,023

approaches can be due to the fact that TLS is a full-fledged

protocol with a variety of features, while our approach is

still a prototype. Nevertheless, we can see that the number

of RSA operations (encryptions/decryptions) for the proposed

approach remains constant even with more servers. As seen

in Table I, RSA operations cost the most energy. Thus, it

indicates our approach scales better than TLS with more

private communications with servers.

B. Scenario 2: A publisher and subscribers

A publisher entity publishes encrypted messages to its

subscribers in scenario 2. We assume only valid subscribers

should be able to decrypt the published messages. Under this

assumption, TLS cannot use the message broker of publish-

subscribe protocols such as MQTT [5] if the broker is not a

subscriber. Therefore, for TLS, we use one-on-one connections

between the publisher and subscribers.

For the proposed approach, we can use our secure communi-

cation for publishing in Fig. 8, because a MQTT broker cannot

see the message without a valid session key. Hence, we carry

out experiments in two ways, the proposed approach based

on one-on-one communication (marked Proposed or Prop.),
and the proposed approach with the MQTT broker (marked

Proposed+Broker or Brk.). We use an open source MQTT

broker, Mosquitto (http://mosquitto.org), for experiments.

As in the scenario 1, we focus on the publisher whose

overhead scales with more subscribers. Table III shows the

overhead measured for publisher setup at three different scales,

with 16, 32 and 64 subscribers. Similar to the scenario 1

results, the proposed approach uses a constant number of RSA

operations. When the proposed approach is used with a broker,

it uses the same number of packets even when there are more

subscribers. We also measure overhead for publishing a 256-

byte payload for each approach and each scale, as shown in

Table IV. We observe the overhead for the proposed approach

with a broker remains constant while that of TLS and the

proposed without a broker grows linearly.

C. Energy Cost and Scalability Analysis

With the experimental results and the energy cost model in

Table I, we can estimate the overall overhead of each scenario

in terms of the energy cost. The estimated overhead in terms

of energy consumption is shown in Fig. 12. From the result of

scenario 1 for the client setup and close in Fig. 12 (a), we note

that the estimated energy consumption of our approach is only

TABLE III
SCENARIO 2 RESULTS FOR PUBLISHER SETUP (BRK.: PROPOSED+BROKER)

Scale 16 subscribers 32 subscribers 64 subscribers
Approaches TLS Prop. Brk. TLS Prop. Brk. TLS Prop. Brk.

RSA-2048 (enc/dec) 0/49 2/2 2/2 0/97 2/2 2/2 0/193 2/2 2/2

AES-128 (bytes) 22,016 3,424 128 44,032 6,496 128 88,064 12,416 128

SHA-256 (bytes) 179,921 1,556 601 359,153 2,372 601 717,617 3,865 601

Packets (Tx/Rx) 96/96 87/88 11/12 192/192 167/168 11/12 384/384 327/328 11/12

Tx bytes 64,064 6,903 1,184 128,128 12,887 1,184 256,256 24,855 1,184

Rx bytes 51,536 8,557 1,373 103,072 15,981 1,373 206,144 30,829 1,373

TABLE IV
SCENARIO 2 RESULTS FOR PUBLISHING A 256-BYTE MESSAGE

Scale 16 subscribers 32 subscribers 64 subscribers
Approaches TLS Prop. Brk. TLS Prop. Brk. TLS Prop. Brk.

AES-128 (bytes) 5,120 304 304 10,240 304 304 20,480 304 304

SHA-256 (bytes) 4,832 264 264 9,648 264 264 19,280 264 264

Packets (Tx/Rx) 16/16 16/16 1/1 32/32 32/32 1/1 64/64 64/64 1/1

Tx bytes 6,096 6,064 398 12,192 12,128 398 24,384 24,256 398

Rx bytes 896 896 56 1,792 1,792 56 3,584 3,584 56

9.62% of TLS for 16 servers. The difference becomes more

significant when there are more servers. For 64 servers, the

proposed approach is expected to use only 5.09% of energy,

compared to TLS. Thus, we estimate that the overhead of the

proposed approach grows much more slowly than TLS as the

number of servers increases.

The result for scenario 2 for publisher setup in Fig. 12 (b)

shows that the setup overhead of the proposed approach scales

at a significantly slower rate than TLS, and with the broker, the

overhead stays constant. From Fig. 12 (c), we can see that the

overhead for publishing a message in scenario 2 grows linearly

for both TLS and the proposed approach based on one-one-on

communication. However, it is also shown that the proposed

approach’s overhead for publishing messages can be constant

when it works together with the MQTT message broker.

����

����

����

�������

������

������

���

���

���

�	�
��	
�	
�������	

����
������	
�

��
�

��
�

��
�

����

���

����

������

�
��

����

���

��

���

�	�
��	
�	
�	
����
���	

����

������	
�

������	
�
������	��

���	

���	

���	

�����

�����

�����

�����

�����

�����

������

�
�
�

�����

���

��

���

���
��	��	
��
����
���	

����

������	
�

������	
�
������	��

�� ����� ����� ����� ����� ������ ������ ����������	
	���
	

�� ���� ����� ����� ���������	
	���
	

�� ��� ��� ��� ��� ���� ��������	
	���
	

Fig. 12. Estimated energy consumption for (a) scenario 1, client setup/close
(b) scenario 2, publisher setup (c) scenario 2, publishing a 256-byte message

121121121

TABLE V
HOW THE PROPOSED APPROACH ADDRESSES IOT-RELATED SECURITY

REQUIREMENTS INTRODUCED IN SECTION II

IoT Security Requirements Proposed Approach
Frequent authentication and
authorization

Auth controls every secure communi-
cation, and it can enforce short key
validity periods of session keys

Automated mutual authentica-
tion

Auth provides fully automated authen-
tication; no human intervention is re-
quired except for entity registration

Intermittent connectivity Auth allows use of cached session keys
Support for scalability features Session keys can be shared by more

than two entities for one-to-many com-
munication (e.g., publish-subscribe)

Consideration for resource
constraints

Small and lightweight symmetric ses-
sion keys are used for authentication;
Auth allows various cryptographic al-
gorithms for resource-constrained de-
vices, including the ones that cannot
afford public key cryptography

Privacy No unique identifier is needed for au-
thentication, thanks to the use of tem-
porary session keys

Dynamic entity registration An entity can be seamlessly regis-
tered/unregistered with Auth, without
interrupting other entities

VI. CONCLUSION

In this paper, we propose a secure network architecture to

address IoT-related security requirements, as summarized in

Table V. The proposed approach supports frequent, automated

authentication and authorization by using a local authorization

entity called Auth. Auth authorizes registered entities through

session key distribution. By caching the session keys and al-

lowing a variety of cryptographic algorithms, even the entities

with intermittent connectivity or resource constraints can be

authorized effectively. For authentication and authorization,

an entity only needs to use temporary session keys provided

by Auth. Thus, it does not have to risk exposing its identity

by using its unique value such as a certificate, maintaining

its privacy. Through experiments, we show our approach has

significantly better scalability than SSL/TLS for the scenarios

common in the IoT, while providing a comparable level of

security as SSL/TLS.

ACKNOWLEDGMENT

This work was supported in part by the TerraSwarm Re-

search Center, one of six centers supported by the STAR-

net phase of the Focus Center Research Program (FCRP) a

Semiconductor Research Corporation program sponsored by

MARCO and DARPA. This research was in part supported by

an FP7 Marie Curie IOF Action within under the funding ID

PIOF-GA-2012-326604 (MODESEC).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, Sep. 2012.

[3] P. Traverse, I. Lacaze, and J. Souyris, “Airbus Fly-By-Wire: A total
approach to dependability,” in Building the Inform. Soc., ser. IFIP Intl.
Federation for Inform. Process. Springer, 2004, no. 156, pp. 191–212.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[5] A. Banks and R. Gupta, “MQTT version 3.1.1,” OASIS Standard,
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html, Oct 2014.

[6] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol
version 1.2,” RFC 5246, IETF, Aug. 2008.

[7] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, and G. Carle, “DTLS based
security and two-way authentication for the Internet of Things,” Ad Hoc
Networks, vol. 11, no. 8, pp. 2710–2723, Nov. 2013.

[8] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2,” RFC 6347, IETF, Jan. 2012.

[9] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” RFC 7252, IETF, Jun. 2014.

[10] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos network
authentication service (V5),” RFC 4120, IETF, Jul. 2005.

[11] L. Zhu and B. Tung, “Public key cryptography for initial authentication
in Kerberos (PKINIT),” RFC 4556, IETF, Jun. 2006.

[12] W. Du, J. Deng, Y. Han, S. Chen, and P. Varshney, “A key management
scheme for wireless sensor networks using deployment knowledge,” in
INFOCOM 2004. Twenty-third Annu. Joint Conf. of the IEEE Comput.
and Commun. Societies, vol. 1, Mar. 2004, p. 597.

[13] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili,
“A pairwise key predistribution scheme for wireless sensor networks,”
ACM Trans. Inf. Syst. Secur., vol. 8, no. 2, pp. 228–258, May 2005.

[14] F. Gandino, B. Montrucchio, and M. Rebaudengo, “Key management
for static wireless sensor networks with node adding,” IEEE Trans. on
Industrial Informatics, vol. 10, no. 2, pp. 1133–1143, May 2014.

[15] X. He, M. Niedermeier, and H. de Meer, “Dynamic key management in
wireless sensor networks: A survey,” Journal of Network and Computer
Applications, vol. 36, no. 2, pp. 611–622, Mar. 2013.

[16] X. Zhang, J. He, and Q. Wei, “EDDK: Energy-efficient distributed
deterministic key management for wireless sensor networks,” EURASIP
Journal on Wirel. Commun. Netw., vol. 2011, pp. 12:1–12:11, Jan. 2011.

[17] J.-Y. Huang, I.-E. Liao, and H.-W. Tang, “A forward authentication
key management scheme for heterogeneous sensor networks,” EURASIP
Journal on Wirel. Commun. Netw., vol. 2011, pp. 6:1–6:10, Jan. 2011.

[18] O. K. Sahingoz, “Large scale wireless sensor networks with multi-level
dynamic key management scheme,” Journal of Systems Architecture,
vol. 59, no. 9, pp. 801–807, Oct. 2013.

[19] S. H. Erfani, H. H. Javadi, and A. M. Rahmani, “A dynamic key
management scheme for dynamic wireless sensor networks,” Security
and Communication Networks, vol. 8, no. 6, pp. 1040–1049, Apr. 2015.

[20] E. Barker, “Recommendation for key management – Part 1: General,”
NIST Special Publication 800-57: Part 1 (Revision 4), Jan. 2016.
[Online]. Available: http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4

[21] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” in Proc. of the 2nd ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 7–12.

[22] F. Aloul, S. Zahidi, and W. El-Hajj, “Two factor authentication using
mobile phones,” in IEEE/ACS Intl. Conf. on Computer Systems and
Applications, 2009. AICCSA 2009, May 2009, pp. 641–644.

[23] D. Lagutin, K. Visala, A. Zahemszky, T. Burbridge, and G. Marias,
“Roles and security in a publish/subscribe network architecture,” in 2010
IEEE Symp. on Comput. and Commun. (ISCC), Jun. 2010, pp. 68–74.

[24] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The TESLA broadcast
authentication protocol,” RSA CryptoBytes, Jul. 2005.

[25] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build high-
performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80–83, 2010.

[26] H. Rifà-Pous and J. Herrera-Joancomartı́, “Computational and energy
costs of cryptographic algorithms on handheld devices,” Future Internet,
vol. 3, no. 1, pp. 31–48, Feb. 2011.

[27] L. Feeney and M. Nilsson, “Investigating the energy consumption of
a wireless network interface in an ad hoc networking environment,” in
Proc. of IEEE INFOCOM 2001. 20th Annual Joint Conf. of the IEEE
Comput. and Commun. Societies., vol. 3, 2001, pp. 1548–1557.

122122122

