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In this paper we address the flow of Maxwell fluid due to constantly moving flat
radiative surface with convective condition. The flow is under the influence of non-
uniform transverse magnetic field. The velocity and temperature distributions have
been evaluated numerically by shooting approach. The solution depends on various
interesting parameters including local Deborah number De, magnetic field parameter
M , Prandtl number Pr and Biot number Bi. We found that variation in velocity with
an increase in local Deborah number De is non-monotonic. However temperature
is a decreasing function of local Deborah number De. C 2015 Author(s). All arti-
cle content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4907927]

I. INTRODUCTION

Non-Newtonian fluid dynamics is one of the most popular research areas of modern fluid me-
chanics mainly due to its promising applications in chemical and food processing industry. Fluids
which change their viscosity or flow behavior under stress are termed as non-Newtonian. A side
from air and water, almost all the fluids occurring in industry and biomedicine are non-Newtonian.
These include polymers, blood, honey, toothpaste, paints, printer inks, egg whites, engine oil, fruit
juices, slurries, shampoos, cosmetic products and many others. Many constitutive relationships of
these fluids based on their diverse rheological behaviors exist in the literature. The power-law model
is perhaps the most widely discussed non-Newtonian fluid model that has tendency to address the
interesting shear-thinning and shear-thickening behaviors. The former is common feature of many
non-Newtonian fluids including blood, polymers and paints. However the power-law model is inca-
pable of explaining the visco-elastic effects in the flow. Two visco-elastic fluid models have been
consistently used by the researchers namely the (i) second grade model and (ii) the upper-convected
Maxwell (UCM) model. While second grade fluid model emphasizes on the normal stress differences,
the UCM model can adequately address the characteristics of fluid relaxation time. This model has
received wide acceptance in the research community due to its simplicity. Harris1 formulated the
governing equations for two-dimensional flow of Maxwell fluid for the first time. Sadeghy et al.2

described the classical Sakiadis flow problem involving Maxwell fluid through different analytical and
numerical techniques. In another paper, Sadeghy et al.3 analytically discussed the stagnation-point
flow of Maxwell fluid. Kumari and Nath4 presented an interesting study on mixed convection flow of
Maxwell fluid considering magnetic field effects. MHD flow near a stagnation-point towards a porous
stretching sheet was considered by Hayat et al.5 In recent years, various interesting boundary layer
flow problems involving Maxwell fluid are addressed (see Refs. 6–17).
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Convective heat transfer has pivotal role in several processes such as transpiration cooling pro-
cess, material drying, thermal energy storage etc. Therefore it seems reasonable to consider the convec-
tive boundary condition instead of isothermal or isoflux wall conditions. Sakiadis and Blasius flow
problems with convective boundary conditions have been explored by Bataller.18 Aziz19 provided
a similarity solution for laminar thermal boundary layer flow over a flat surface using convective
boundary condition. He found that temperature across the plate varies with the variation in convective
heating parameter. Makinde20 examined the MHD flow with heat and mass transfer past a moving
vertical plate considering convective surface boundary condition. Flow past a convectively heated
vertical plate immersed in a porous space was examined by Makinde and Aziz.21 Magyari22 derived
an analytic solution for Blasius problem with convective boundary condition. Yao et al.23 presented
the exact solutions for flow past a permeable stretching sheet in the presence of convective heating.
Recently various interesting problems dealing with the convective boundary condition are addressed
(see Refs. 24–29 and several refs. therein).

The purpose here is to examine the Sakiadis flow of electrically conducting Maxwell fluid us-
ing convective boundary condition. In accordance with Sadeghy et al.,2 the coordinate x could not
be eliminated from the dimensionless momentum equation. In this situation only local similar solu-
tion is possible. Such a solution, if exists, can be used to investigate the influence of parameters at
fixed location above the plate. The solutions are successfully computed numerically through shoot-
ing approach followed by fourth-fifth-order Runge-Kutta integration method and Newton method.
Graphical results are obtained to analyze the underlying physics of the problem.

II. PROBLEM FORMULATION

Consider the two-dimensional flow of Maxwell fluid induced due to a plate moving with a con-
stant velocity U in its own plane as shown in the Fig. 1. The temperature at the plate is passively
adjusted through hot convection fluid of temperature Tf . Let T∞ be the temperature outside the thermal
boundary layer. The flow is subjected to transverse magnetic field of strength B(x) = B0x−1/2. The
induced magnetic field is neglected by assuming small magnetic Reynolds number. In the absence
of viscous dissipation or heat generation/absorption the boundary layer equations governing the flow
and heat transfer in Maxwell fluid can be expressed as (see Shateyi et al.13):

∂u
∂x
+

∂v

∂ y
= 0, (1)

u
∂u
∂x
+ v

∂u
∂ y
+ λ1

(
u2 ∂

2u
∂x2 + v

2 ∂
2u

∂ y2 + 2uv
∂2u
∂x∂ y

)
= ν

∂2u
∂ y2 −

σB2
0

ρ

(
u + λ1v

∂u
∂ y

)
, (2)

u
∂T
∂x
+ v

∂T
∂ y
= α

∂2T
∂ y2 −

1
ρcp

∂qr
∂ y

, (3)

in which u and v are the velocity components along the x – and y – directions respectively, ν is the
kinematic viscosity, λ1 is the fluid relaxation time, T is the local fluid temperature, α is the thermal
diffusivity of the fluid, ρ is the fluid density, cp is the specific heat and qr is the radiative heat flux
considered as qr = −(4σ∗/3k∗)∂T4/∂ y ,30 where σ∗ and k∗ are the Stephan-Boltzmann coefficient
and the mean absorption coefficient respectively. Following Raptis and Perdikis,31 the temperature
differences in the flow are assumed to be sufficiently small so that T4 may be expressed as linear
function of temperature. This is accomplished by expanding T4 about the ambient temperature T∞
and then neglecting the squares and higher-order terms to obtain T4 � 4TT∞3 − 3T∞4.

The boundary conditions are imposed as below:

u = U, v = 0, −k
∂T
∂ y
= h f (Tf − T) at y = 0,

u → 0, T → T∞ as y → ∞.
(4)
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FIG. 1. Physical configuration and coordinate system.

where h f = h/
√

x is the heat transfer coefficient. Making use of the following similarity transforma-
tions

η =


U
νx

y, u = Uf ′, v = −1
2


νU
x

( f − η f ′) , θ =
T − T∞
Tf − T∞

, (5)

the continuity Eq. (1) is automatically satisfied and Eqs. (2)–(4) reduce to the following forms

f ′′′ +
1
2

f f ′′ − De
2

(
2 f f ′f ′′ + η f ′2 f ′′ + f 2 f ′′′

)
− M2 ( f ′ − De ( f − η f ′) f ′′) = 0, (6)(

1 +
4
3

Rd
)
θ ′′ +

Pr
2

f θ ′ = 0, (7)

f (0) = 0, f ′ (0) = 1, θ ′ (0) = −Bi (1 − θ (0)) ,
f ′ (∞) → 0 θ (∞) → 0,

(8)

where De = λ1U/2x is the local Deborah number, M =

σB2

0/ρU is the magnetic field parameter,

Rd = 4σ∗T3
∞/kk∗ is the radiation parameter, Pr = ν/α is the Prandtl number and Bi = h/k

√
ν/U is

the Biot number. The quantity of industrial interest is the local Nusselt number Nux defined as below

Nux =
xqw

k(Tf − T∞) , (9)

where qw = −k(∂T/∂ y)y=0 + (qr)y=0 is the wall heat flux. Now using Eq. (5), Eq. (9) becomes

Rex−1/2Nux = −
(
1 +

4
3

Rd
)
θ ′(0). (10)

where Rex = U x/ν is a local Reynolds number.

III. NUMERICAL RESULTS AND DISCUSSION

The numerical solutions of the differential equations (6) and (7) subject to the boundary condi-
tions (8) have been achieved by using shooting approach combined with fourth-fifth-order Runge-
Kutta integration and Newton’s method. The MATLAB built in routine bvp4c is also used to for
obtaining the solutions. We compared our results with the previous study of Cortell32 in a limiting
sense and found an excellent agreement (see Table I). In Table II, we present the numerical values of
local Nusselt number −θ ′(0) for different values of embedded parameters. We found that −θ ′(0) has
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TABLE I. Computational results of −θ′(0) for different values of Pr when M =De = Rd = 0 and Bi = 1000000.

−θ′(0)
Pr Cortell32 Present

0.6 0.313519 0.31352
5.5 1.216049 1.21605
7 1.387033 1.38703
10 1.680293 1.68029
50 3.890918 3.89091
100 5.544663 5.54464

TABLE II. Numerical values of −θ′(0) for different values of De,M,Pr and Rd when Bi = 0.5.

De M Pr Rd bvp4c Shooting Method

0 0 3 0 0.316968 0.316965
1 0.255219 0.255215

7 0 0.367517 0.367516
1 0.316968 0.316965

1 3 0 0.297051 0.297057
1 0.222182 0.222240

7 0 0.357125 0.357125
1 0.297051 0.297057

1 0 3 0 0.318896 0.318914
1 0.25415 0.254216

7 0 0.369191 0.369191
1 0.318896 0.318914

1 3 0 0.292616 0.292659
1 0.212938 0.213447

7 0 0.355770 0.355773
1 0.292616 0.292659

FIG. 2. Effect of De and M on f ′(η).

direct relationship with local Deborah number De and Prandtl number Pr while it appears to decrease
upon increasing either the magnetic field parameter M or the radiation parameter Rd. Interestingly the
behavior of De on−θ ′(0) changes as the strength of magnetic field or radiation is gradually increased.

In Fig. 2 the velocity profiles are presented with the variation of the local Deborah number De.
Here the two sets of results corresponding to M = 0 and M = 1 are given. Deborah number is defined
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FIG. 3. Effect of De and M on θ(η).

FIG. 4. Effect of Pr on θ(η).

as the fluid relaxation time to the fluid characteristic time and it is small for fluid substances. Inter-
estingly the variation of f ′ with De is non-monotonic in the absence of magnetic field. The velocity
increases with an increase in De just in small region close to the plate whereas it appears to increase
with an increase in De in the rest part of the boundary layer. This mixed behavior of De on the velocity
can be subdued by strengthening the effect of magnetic field. The decrease in f ′ is the consequence
of larger fluid viscosity associated with larger values of De. We can also observe that profiles descend
to zero value at small distances from the plate when either De or M is incremented. This indicates
that boundary layer thickness is a decreasing function of both De and M . This outcome is consistent
the results of Hsiao7 in which mixed convection flow of Maxwell fluid is considered.

Fig. 3 contains the influence of magnetic field on the temperature distribution. The resistance
associated with the Lorentz force enhances the fluid temperature. Similar pattern of temperature pro-
files is demonstrated at De = 0 and De = 1. The temperature drops within the boundary layer when
De is increased from De = 0 to De = 1.

Fig. 4 displays the variation in temperature θ as Prandtl number Pr is incremented. It is quite
obvious that Prandtl number has inverse relationship with thermal diffusivity. Due to this reason,
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FIG. 5. Effect of Bi on θ(η).

FIG. 6. Effect of Rd on θ(η).

one anticipates a thinner thermal boundary layer in bigger Prandtl number fluid. The reduction in
thermal boundary layer results in the large slope of temperature function near the plate. This result
is in agreement with Hsiao10 and Shateyi13 in which MHD flow of Maxwell fluid is reported.

In Fig. 5, we present the behavior of Biot number Bi on the thermal boundary layer. Biot number
is defined as the ratio of convection heat transfer to conduction heat transfer. An increase in Bi implies
larger temperature at the plate which creates thicker thermal boundary layer.

It is clear from Fig. 6 that temperature θ appears to increase when radiation parameter Rd is
increased. The growth in the thermal boundary layer thickness (with an augmentation in Rd) is accom-
panied with diminution in the slope of tangent to the curves near the plate.

Fig. 7 presents the local Nusselt number −θ ′(0) as a function of local Deborah number De for
different values of Prandtl number Pr and magnetic field parameter M . We notice that−θ ′(0) has linear
and direct relationship with De only in the absence of magnetic field. Whereas −θ ′(0) is inversely
proportional to De when M = 1. In Fig. 8, we found that variation in −θ ′(0) gradually reduces as the
radiation parameter Rd is incremented. Fig. 9 gives the influence of convective heating on the heat
transfer rate from the plate. We observe that −θ ′(0) increases with an increase in Biot number and
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FIG. 7. Effect of Pr and De on −θ′(0).

FIG. 8. Effect of Rd and De on −θ′(0).

approaches to a constant value as Bi → ∞. This constant value is for the constant wall temperature
case in which θ(0) = 1.

IV. CONCLUDING REMARKS

MHD flow of Maxwell fluid induced due to constantly moving flat plate is investigated numeri-
cally. The novel convective boundary condition is considered in the problem formulation. The inclu-
sion of magnetic field and radiation has significantly influenced the solutions. The main points of this
study are summarized as below:

(i) The variation in velocity field f ′with an increase in local Deborah number De is non-mono-
tonic when magnetic field effects are absent.

(ii) The thickness of thermal boundary layer is short in Maxwell fluid when compared with the
Newtonian fluid.

(iii) Local Nusselt number has inverse relationship with the magnetic field parameter M and the
radiation parameter Rd.
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FIG. 9. Effect of De and Bi on −θ′(0).

(iv) Local Nusselt number is directly/inversely proportional to the local Deborah number De in
the absence/presence of magnetic field effects.

(v) The case of constant wall temperature can be studied as special case of present work by
assuming sufficiently large Biot number.
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