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ABSTRACT 

The fundamental role of the Software Defined Networks (SDN) is to decouple the 

data plane from the control plane; thus providing a logically centralized visibility of 

the entire network to the controller. This enables the applications to innovate 

through network programmability. To establish a centralized visibility, a controller 

is required to discover a network topology of the entire SDN infrastructure. 

However, discovering a network topology is challenging due to 1) the frequent 

migration of the virtual machines in the data centers, 2) lack of authentication 

mechanisms, 3) scarcity of the SDN standards, and 4) integration of security 

mechanisms for the topology discovery.  To this end, in this paper, we present a 

comprehensive survey of the topology discovery and the associated security 

implications in SDNs. The paper provides discussions related to the possible threats 

relevant to each layer of the SDN architecture, highlights the role of the topology 

discovery in the traditional network and SDN, presents a thematic taxonomy of 

topology discovery in SDN, and provides insights into the potential threats to the 

topology discovery along with its state-of-the-art solutions in SDN. Finally, this 

paper also presents future challenges and research directions in the field of SDN 

topology discovery. 

1. Introduction 
This survey focuses on the topology discovery such as the representation of the 

interconnection between connected peers in Software Defined Networks (SDN). The 

logically centralized controller collects the topology information from the network 

devices in the data plane of the SDN architecture. Maintaining a complete and 

accurate information of the network topology is utmost important and a 

prerequisite for various network management tasks including monitoring, 

diagnosing, and resource management. The topology information helps the 

controller to have an abstract view of the entire network [1], and enables a smooth 
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and efficient network operation [2]. Moreover, the topology information is crucial for 

the core controller services in the control plane as well as the topologically 

dependent services in the application plane.  

Since a centralized abstract view of the network topology discovery holds the key 

for SDN operation, it has drawn much attention of the research community in the 

past few years [3-5]. Note that, the  centralized abstract view is based on a built-in 

topology discovery mechanism [4] and it  strengthens the control capability of the 

controller over the entire network [6]. Intuitively, this exposes the SDN wherein the 

controller becomes a single point of failure. It follows that, the security of the 

topology discovery  in protecting the controller from failure is a critical challenge  to 

address [7].  

Several threats to the security of the SDN architecture have been identified and 

discussed in the literature [8-15]. However, the most severe attacks are those 

affecting the control mechanism in SDN [8]. Once the attack succeeds in controlling 

the entire network, it can leak out the information from the network or perform 

other malicious behaviors [16]. In topology discovery, threats must be prevented as 

early as possible because they pose  threat to other services in the application plane 

[17]. Furthermore, the vulnerabilities found in the network topology would 

ultimately affect the performance of the topology-dependent services because of 

their dependencies. While various proposals for topology discovery exist [4, 18, 19], 

still these proposals are premature in making topology discovery in SDN truly 

secure and scalable. To this end, in this paper, our aim is to describe the security 

aspects of the topology discovery in detail. More importantly, we have focused on 

the topology discovery threats which affect the visibility of the network by 

exploiting different core functionalities of the controller. 

To mark distinction of this study, in the following, brief descriptions of the few 

existing studies on SDNs are provided. The survey presented in [20] covers a 

comprehensive information about SDN including definition, benefits, and 

challenges. It provides insight knowledge about the layered architecture of SDN 

and explains its role in terms of OF protocol. The survey [21] provides an ample 

information about the current programmable network architectures used in wired 

and wireless networks such as SDN, Software-Defined Radio, and Network 

Functions Virtualization (NFV). The study  in [22], surveys the security threats for 

each layer of the SDN architecture. The state-of-the-art in mitigating the security 

threats are analyzed. Finally, potential future research directions of SDN security 

are highlighted. Similarly, the work presented in [23] surveys the security attacks 

faced by the SDN along with its solutions. The survey analyzes both the security 
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attacks and their corresponding solutions. That is, the network security 

enhancement based on the SDN framework is discussed for the attack 

investigation, detection, and prevention. The survey [24] discusses how the 

Distributed Denial-of-Service (DDoS) attacks can be mitigated through SDN in 

cloud computing and how SDN can be protected from becoming a victim of DDoS 

attacks. Furthermore, the role of SDN in a broad perspective is discussed in context 

with the emerging areas such as the big data, NFV, and information-centric 

networking. The survey presented in [15] classifies the SDN-based hypervisors with 

reference to their centralized and distributed architectures. In addition, exhaustive 

information regarding network attribute abstraction and isolation feature of SDN 

hypervisors is presented along with the future research directions.  

To the best of our knowledge, this is the first comprehensive survey that 

provides insight about the topology discovery in the SDN architecture. The goal of 

this survey is to provide critical information about the topology discovery by 

describing its significance, working function, role in SDN, and security threats. 

Moreover, the proposed thematic taxonomy will assist in the classification of the 

topology discovery area into meaningful sub-groups for better and easy 

comprehension.  

The key contributions of this survey are highlighted as follows:  

— Comprehensive background knowledge of SDN: we provide information 

regarding the SDN and various threats to the SDN layered architecture. 

— In-depth information regarding topology discovery: we highlight the 

importance of the topology discovery and discuss its role in the traditional 

networks and SDN.  

— Thematic taxonomy: we devise a comprehensive thematic taxonomy to 

categorize the topology discovery into different groups i.e., objectives, 

controller platforms, dependent services, discovery entities, and controller 

services. 

— Discussion on topology discovery threats: Classification of topology discovery 

threats is presented which explains the state-of-the-art security solutions, 

attack entities, controller vulnerabilities, attack types, and occurrence of the 

threats.  

— Introduce future research directions: we provide potential research areas for 

topology discovery in SDN along with recommendations on possible solutions. 

The remainder of this paper is organized as follows: Section 2 provides an 

overview of the SDN and potential threats to each of its layers. Section 3 describes 

the importance of the topology discovery and discusses its role in SDN and 
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traditional networks. A thematic taxonomy of topology discovery is presented 

according to its discovery entities, controller platform, topology-dependent services, 

and objectives in Section 4. Section 5 provides a classification of topology discovery 

threats and solutions on the basis of the attack entities, current solutions, and 

further potential threats. Finally, Section 6 discusses and summarizes the potential 

future research areas of topology discovery with its possible solutions.  

2. Background 

2.1 Software Defined Networks (SDN) 

The widely known separation of the control plane and the forwarding data plane   

is shown in Figure 1. This architecture results in numerous benefits, including easy 

insertion of applications and services, streamlined processes, improved efficiency, 

reduced complexity, and better user experience [25]. The control plane is controlled 

by logically centralized controller instead of  the conventional control mechanisms 

present in the  Border Gateway Protocol [26] and Open Shortest Path First (OSPF) 

[27]. The centralized control assists network administrators to dynamically change 

the network traffic without re-configuring the network devices. For instance, the 

controller can dynamically change the network flow towards high bandwidth 

channels while observing high delays on low bandwidth network channels without 

affecting the network operation [18].  

In Figure 1, the SDN architecture is divided into three main layers/planes  i.e., 

infrastructure, control, and application plane [28, 29].  The infrastructure plane 

consists of all the network devices that  communicate and share information with 

each other [30]. For instance, the OF switches forward the packets towards the 

destination using rules specified by the controller.  

The controller (in the control plane) acts as the brains of the SDN, which 

manages the entire network through the logically centralized controller [31],[16]. 

Moreover, the controller has the abstract view of the network topology that assist 

different applications running on top of the controller in the application plane [32]. 

The application plane is responsible for implementing  essential network services 

(application, algorithms, protocols, etc.) through the controller [33]. With the given 

abstract network, the application plane deploys various network applications. These 

applications include load balancing [33], intrusion detection systems [34], network 

monitors [35], firewalls [36], and scheduling [37].  
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Figure 1: A general SDN layered architecture 

The controller has different interfaces in order to communicate with other planes 

and network devices such as south, north, east, and westbound API’s [38]. The most 

common API’s used in SDN are the southbound and the northbound. The 

southbound API enables communication between the infrastructure plane network 

devices and the controller. Initially, when a new packet is received by the OF switch 

from the host, it checks for the matching field between the packet header and the 

flow rules in the flow table [5, 39]. If the match is not found, a Packet_In message is 

generated by the OF switch and it is sent to the controller on the southbound API. 

The controller checks the packet header for the necessary information and replies 

back to the OF switch through a Packet_Out message. The Packet_Out message 

contains the specific rules for the respective network flows which are inserted in the 

flow table of the OF switch. When a similar type of flow (i.e., the same source and 

destination) arrives at the OF switche, it is forwarded based on the previously 

inserted flow rule in the flow table [40]. The flow chart of the Packet_In message is 

shown in Figure 2.  
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Figure 2: A flow chart for Packet-In message  

Moreover, the controller can modify the packet header information in  real-time 

by  modifying source/destination addresses and ports [41]. This characteristic of the 

controller provides flexibility and reliability to the network. Similarly, the 

northbound API connects the controller to various network applications that deploy 

algorithms and protocols to operate the SDN [42]. Unlike, the  southbound API, the  

standard northbound API is not available yet, which presents  several security 

threats [43, 44]. The eastbound and westbound API’s manage the distributed 

controllers in SDN [7]. That is, multiple controllers can be deployed in SDN to 

manage different parts of the network [45] due to different assigned functions such 

as load balancing, monitoring and task allocation. 

2.2 Threats to Software Defined Networks planes 

The centralized control, network abstraction, and software-based network 

changes attract malicious users to perform attacks on SDN. Attacks can be on the 1) 

network devices in the infrastructure plane, 2) control modules in the control plane, 

3)  network devices in the application plane, or 4)  different API’s in the SDN [8]. In 

this section, we discuss and classify different attacks as illustrated in Figure 3. 

Moreover, we explain attacks performed on various interfaces of SDN. Table 1 

illustrates the existing available solutions for each attack in the SDN planes and 

interfaces.  
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2.2.1 Attacks on the SDN data plane  

There are different ways to maliciously exploit the network devices in the data 

plane wherein some of these attacks are specific to the SDN while others are 

inherited from the traditional networks. Each of these attacks is discussed below:  

(a) Malicious OF Switches: Forwarding network flows through a malicious OF 

switch  allows it to alter the network packets. In this case, the network flows 

divert and the legitimate traffic is dropped, which interrupts the 

communication between SDN devices. This can slow down the network traffic 

and may prevent the legitimate switch from receiving the traffic due to an 

excessive idle time specified for the flow entries in the flow tables. This can 

cause the network packets to be dropped [46] or generate numerous 

Packet_In messages to the controller due to mismatch at the OF switch. 

(b) Malicious hosts in the data plane: Malicious hosts can attack any switch and 

controller in the SDN by generating forged network packets [47]. In forged 

network packets, various fields (such as the IP field, the MAC field or other 

fields), can be modified to hide the identity of the attacker. In addition, a 

malicious host can generate millions of packets in the form of a Denial-of-

Service (DoS) attack to overload the memory of the OF switches [48]. 

Similarly, for every new forged packet (i.e., unique source IP address), the OF 

switches  generates the Packet_In message to the controller which can result 

in decreasing the performance of the controller [49]. 

2.2.2 Attacks on the SDN control plane  

The attacker is more interested in the control plane due to its significant 

function such as the network control, network abstraction, and support to various 

network applications. There are various types of attacks which can be performed by 

the controller as follows: 

 

(a) Malicious modules inside the controller: The integration of the core controller 

functions creates an initial setup for the SDN. For instance, the topology 

manager stores information regarding devices such as switches and hosts in 

the network [50] and uses the Link Layer Discovery Protocol (LLDP) to 

discover the interconnected links between the OF switches  [51]. An attacker 

can exploit vulnerabilities within these building blocks. As an example, , a 

recent topological poisoning attack  [52] exploits the link discovery module 

running in the controller by  generating fake links between the switches. As a 

result, the fake links  affect the functionalities of the entire network [53].  
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(b) Compromised controllers: The controllers can also be distributed  and 

exchange information  from time-to-time to update their  states [54]. The 

module for such distributed communication among controllers can be 

exploited by the attacker. . For instance, Open daylight controller uses ODL-

SDNi app for distributed communication among multiple controllers. The 

problem arises when one of the controllers is performing maliciously and 

shares wrong information among the controllers. To identify the malicious 

controller among a pool of controllers is a challenging task due to isolated 

functionality of each controller. A malicious controller disseminates incorrect 

topological updates to another controller to make the network malfunction 

[55].  

(c) Attack on management consoles: The management console allows authorized 

individuals to access the SDN. An attacker can get an unauthorized access to 

the management console through a password brute-force attack or leaking 

the password from different sources. Once the attacker gets access to the 

SDN, attacks can be generated on the controller as well as on different 

resources of the network. Usually, the access to management console is 

defined in the policy agent module of the controller. The compromised 

management console empowers the attacker to create a gateway in launching 

various other attacks on the SDN. 

2.2.3 Attacks on the SDN application plane  

The SDN application plane consists of different applications/software  [56] for 

functions such as load balancing, routing, firewall, and intrusion detection. 

Moreover, these applications/software may be used to monitor the traffic, extract 

statistical traffic features, apply authentication mechanism to different user 

domains, and diverts the traffic based on the network etc. The application 

development in the application plane is considered as a dramatic change to the SDN 

architecture [57]. A single network infrastructure can be used by multiple 

applications at the same time to fulfill their requirements. However, this is not 

possible in the traditional network where the configuration of network device needs 

update upon using different network applications. A user can easily develop  an 

application module and embed in the application plane  [58]. This allows malicious 

users to affect the entire network. There are various possible attacks in the SDN 

application plane which are briefly discussed as follows: 

(a) Unauthorized access to applications: An unauthorized access to these 

applications can help attackers bypass the security level of the controller [59, 

60]. The controller treats all applications as normal network services because 

of the absence of a trust mechanism between the application and control 
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layers. The unauthorized access to various applications can inform attackers 

about the operation of the network which further creates a chance to exploit 

various parts of the network.  

(b) Disclosure of information through the application server: Once an attacker 

gains access to the application server, the information of any application that 

is currently or previously executed in the RAM can be accessed and disclosed. 

In a traditional network, such kind of attack is called a RAM scraper attack 

[61]. In SDN, an attacker can scan the RAM processes in the application 

server to gain access to the application information through the northbound 

API. An attacker can further identify the rules of the controller for various 

network flows.  

(c) Modification of user privileges for application execution: Due to network 

virtualization, each user can treat the network with its own requirement 

provided with isolation [15, 62]. Each user is provided with specific rights to 

execute different applications according to its requirement. However, if the 

attacker accesses the application server,  the  user privileges can be changed  

to produce malfunctioning results [63].   

Threats to software Defined 

Network Layers

Data Plane Attacks

Application Plane Attacks
Control Plane Attacks

SDN interfaces Attacks

Malicious modules inside the controller

Compromised controllers

Attack on management consoles

Malicious OpenFlow Switches

Malicious hosts in data plane

Unauthorized access to applications

Disclosure of information 

Modification of user privileges 

Attack on southbound interface

Attack on northbound interface

Attack on east & westbound

 

Figure 3: Classification of attacks on SDN planes 

2.2.4 Attacks on SDN interfaces  

Note that, the southbound and northbound interfaces are used for the 

centralized controller environment while the eastbound and westbound interfaces 

are used in a distributed controller environment. These interfaces are used to send 

and receive network information which attracts attackers to eavesdrop  [47]. 

(a) Attacks on the southbound interface: Mostly, the southbound interface in SDN 

uses  the standard  OF protocol [64]. The OF protocol is allows 

communication between the OF switch and the controller. Each OF switch 

has to communicate with the controller through Packet_In message upon  

reception of new packets [65]. This makes the southbound interface more 

suitable for information extraction from the Packet_In messages. The 
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attacker can exploit the Transport Layer Security (TLS) vulnerabilities and 

to take  control over the southbound interface [66]. Subsequently, the 

attacker can create, modify, and delete the flow rules. This causes 

malfunctioning results in the network due to malicious flow entries in the 

flow table. Moreover, an attacker can generate  forged packets to the OF 

switches with a unique identity to force OF switch to generate a large 

number of Packet_In messages to overload the bandwidth channel used 

between the OF switches and the controller [67]. 

 

(b) Attacks on the northbound interface: The northbound interface is used for  

communication among  the applications of the application plane [68]. Unlike 

the southbound interface, the northbound interface does not use a  standard 

protocol because of its initial stage of  development [43, 44]. The attacker can 

use the northbound interface to interfere with the communication between 

the application and the controller. An attacker can get unauthorized access to 

the northbound interface and may delete some information which can lead to 

falsified output of the application. Similarly, the attacker can use a malicious 

application to inform the controller to disconnect other applications leading to 

a flow rule modification problem. Moreover, the malicious application can 

send numerous requests to overload the CPU as well as to occupy the 

available bandwidth of the northbound interface. Note that, proper 

authentication and encryption mechanism is not standardized for the 

northbound interface. Various APIs for the northbound interface can increase 

the security threats because of the built-in vulnerabilities. This decreases the 

trustworthiness between the controller and various applications.   

(c) Attacks on eastbound & westbound interfaces: The eastbound and westbound 

interfaces are also prone to various attacks. The information updates through 

these interfaces can be exploited by the attacker with an unauthorized access 

to the management console. The attacker can take advantage of unencrypted 

communication of data between controllers for sharing the network 

information updates [69]. An attacker can also compromise the network by 

tapping the application to eavesdrop on clear text communications between 

two controllers.  

Table 1: SDN layers/Interfaces possible attacks and existing solutions 

SDN 

Layers/Interfaces 
Possible Attacks Existing Solutions Attack Nature 

Data Plane 
Malicious switches FortNOX [22] , SDNsec [20] SDN-based attack 

Malicious hosts VAVE [21], OFGUARD [48], FlowVisor [70] TN-based attack 

Control Plane 
Malicious modules VeriCon [71], FRESCO [10], SPIRIT [72] SDN-based attack 

Compromised controllers Fleet [73] , DISCO [54], HyperFlow [74] SDN-based attack 
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SDN 

Layers/Interfaces 
Possible Attacks Existing Solutions Attack Nature 

Management consoles Sandbox-based system [75] SDN-based attack 

 

Application Plane 

Unauthorized access PermOF [76],  SDN Rootkits [77] TN-based attack 

Disclosure of information Proactive strategies and Randomization [78] TN-based attack 

Modification of user privileges OFX [79] TN-based attack 

 

SDN Interfaces 

Southbound interface threats VeriFlow [80],  HSCS architecture [81] SDN-based attack 

Northbound interface threats Dynamic Filtering [82] SDN-based attack 

Eastbound & westbound threats DRS [83] SDN-based attack 

 

3. Topology Discovery 

3.1 Importance 

The topology management is a unique feature of SDN which allows the 

controller to facilitate the applications in the application plane[84]. For instance, a 

routing application uses the network topology to route the network traffic to its 

destination [75, 85, 86]. The controller discovers a topology through [52]  a) Host 

discovery, b) Switch discovery, and c) Inter-connected links between the switches. 

The controller discovers the host by receiving a Packet-In message from the switch. 

The switches are discovered during the initial handshake process with the 

controller, and inter-connected links between switches are discovered through the 

OpenFlow Discovery Protocol (OFDP). However, there are vulnerabilities found in 

the core applications of the controller which are exploited to initiate topology 

poisoning attacks [87].  

If an attacker poisons the network topology information, its effect will 

immediately be visible to all its dependent applications [88]. Therefore, it is 

important to detect a topology poisoning attack at an early stage. Note that, 

detecting a fake link between the OF switches created by the topology poisoning 

attack is relatively easy than identifying the source of the attack. Mostly, attackers 

hide their identity information after they perform the attack [89]. Similarly, in a 

topology poisoning attack, the attacker creates a fake link between the OF switches 

by spoofing the LLDP packet to hide his identity [19]. The controller should be 

aware of the fake links upon their insertion in the network so that the attack can be 

prevented at an early stage.   

3.2 Topology Discovery in Traditional Networks 

Topology poisoning attacks are not new to traditional networks. The main aim of 

a topology poisoning attack is to fabricate the network topology and disturb normal 

network operations in terms of control and management [90]. If a malicious router 

advertises its routing information  to its neighbors, it will result in a falsified 

network traffic distribution based on the malicious routing information [91]. For 

instance, a network using the Routing Information Protocol (RIP) protocol allows 
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each router to send its link with an update information of their topological view to 

its neighbors [92]. The information includes a destination identifier and a cost 

metric to the destination. However, the information sent by  a  malicious  can 

update the neighbor routers link database with the wrong information and can 

affect the entire routing process [93]. Also, the malicious router may advertise for 

having the least cost path to a specific destination, thus causing the traffic to be 

diverted from other sources to a malicious destination [72, 73].   

A similar type of attacks can also be performed in the link-state protocol, i.e., 

OSPF, where every router is bound to send its link update to its neighbors in order 

to calculate the optimal path depending on the metrics [94]. In OSPF, the link 

update information sent by the router is called Link State Advertisements (LSA). A 

malicious router may send a false LSA to its neighbors defining other routers by 

forging their original information [95]. This will divert the network traffic towards 

the malicious router which may forward the packet on to a longer path, perform 

eavesdropping, modify the packet information, and drop some/all the packets in the 

network flow. Besides the wired networks, topological information can be exploited 

in the wireless networks as well. For instance, the Optimized Link State Routing 

(OLSR) is used in mobile ad-hoc networks to discover and disseminate the link-state 

information throughout the network [96]. This information helps nodes to compute 

the optimal path to the next node in the network to reach the destination.  

The OLSR determine and forward the link state information to the neighbor 

nodes by using hello and topology control messages. These messages can be falsified 

to disseminate the wrong information and results in a false topological 

development. Moreover, Bridge Protocol Data Units (BPDU’s) in the Spanning Tree 

Protocol (STP) [97] can be forged to exploit the information. Such exploitation can 

be performed by an attacker to make the malicious switch as a root bridge in the 

network and therefore gain access to the network traffic. Such type of attack is also 

called an STP mangling [98]. The STP mangling affects the topology of the network 

in terms of selecting the wrong switch as a root bridge. The root bridge has an easy 

access to the network traffic that is costly when a malicious switch is selected as a 

root bridge in the selection process.  

3.3 Topology Discovery in SDN 

The topology management is a unique characteristic of SDN as compared to 

traditional networks. Table 2 provides a comparison between a traditional network 

and an SDN topology discovery. The decoupling of the control plane from the data 

plane enables the SDN to have a logically centralized control of the network [60, 

99]. To achieve the centralized control, a controller (responsible to control the 

network centrally) should have a global visibility of the complete network [86]. A 



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

controller incorporates various core modules that  assist in executing various SDN 

applications [100]. Among the core  modules, a topology management is   creates a 

topology of the entire SDN infrastructure [4]. The topology not only facilitates the 

controller but also assists the application plane service to perform its operation 

using the network programmability [101]. The network topology is significant to 

both the control plane and the application plane because it provides an abstract 

visibility of the entire network devices.  

The OF protocol is a standard approach used for  communication between the 

controller and the OF switches on the southbound interface of the SDN [102]. The 

southbound interface carries requests and replies to both the controller and the OF 

switches. The updated network topology information is significant to the controller 

in providing efficient control and management of the network. As a result, the 

efficient topology discovery is considered to be an important characteristic for the 

controller.  Developing a topology of the network requires   switch discovery, host 

discovery, and interconnected switches’ discovery [52]. Each of these discovery 

mechanisms is briefly explained in Section 4.1. 

In the work [4], an efficient topology discovery mechanism is proposed which 

reduces the topology discovery overhead up to 40 % by minimizing Packet_Out 

messages generated from the controller. A single LLDP packet is sent to each of the 

OF switches rather than the de-facto standard of sending each LLDP packet to each 

of the ports of the OF switch. Moreover, a switch broadcasts the LLDP packet to all 

its active ports which further discovers links between the switches.  The work in 

[18]  proposes to represent network topology, find loops, and determine alternative 

paths at the time of link failure in SDN. An adjacency matrix is used to represent 

the LLDP packets corresponding to the switches in the network. This helps to find 

the loops and alternative paths at the time of link failure in SDN. Moreover, the 

work in [19] presents the security of topology discovery in SDN and shows that how 

information can be spoofed to generate fake links in the network topology. Finally, 

it also presents a countermeasure by using the Keyed-Hash Message 

Authentication Code (HMAC) authentication.  

Table 2: Comparison between a traditional network and an SDN topology discovery 

Features 
Topology Discovery in Traditional 

Networks 

Topology Discovery in 

Software Defined Networks 

Host Discovery NMAP Packet_In message 

Switch Discovery  SNMP Initial Handshaking process 

Link Discovery Various updates (RIP, OSPF, LSA, OLSR) LLDP 

Control Management Independent Controller 

Scalability No. of switches No. of OF switches 

Communication updates Switch- Switch Controller-Switch-Controller 
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4. A Thematic Taxonomy: Topology Discovery 
In this section, we provide an in-depth information about the topology discovery 

of the SDN. We devise a thematic taxonomy of the topology discovery in SDN as 

illustrated in Figure 4. The thematic taxonomy can be used to establish a 

conceptual knowledge of the topology discovery [76]. The taxonomy consists of four 

main categories including (1) Discovery Entities, (2) Controller Platform, (3) 

Topology-Dependent Services, and (4) Objective. These categories provide a clear 

understanding of the topology discovery in SDN. 

Topology Discovery

in SDN

Discovery Entities Objective

Switches

Inter-connected switch 

links

Hosts
Discover Topology on 

OpenFlow Network

Spanning Tree

Controller Platform
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Manage Topology 

Changes

Statistical Data 

Gathering

Traffic Scheduling

Resource Provisioning

 

Figure 4: A thematic taxonomy of topology discovery in SDN 

4.1 Discovery Entities 

The controller has a visibility of the entire network topology. To create a 

topology of the entire network, the controller has to discover network entities and 

inter-connected links among them. In particular, the controller has to discover three 

entities for a complete view of the network topology, i.e., a) Hosts, b) Switches, and 

c) Inter-connected links between the switches. The hosts are the physical or virtual 
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systems (virtual machines) connected to the switches that are used by users to 

execute their services. The switches are known as the OpenFlow switches that 

forward the packets from source to the destination upon receiving flow rules from 

the controller. The inter-connected links are the physical or the virtual links 

between the switches which are used to transfer the network packets. Discovery of 

these entities is significant for the topology management in updating a network 

topology view of the controller.  

4.1.1 Host Discovery 

. The host discovery helps the controller in identifying the exact location of the 

host in the network which allows for  traffic monitoring, assisting in traffic routes, 

and determining the source of the packets [103]. Generally, a host tracking function 

is available in most of the controllers, which  determines the host attached and its 

respective port of the switch [104]. The host tracking can trace the virtual machine 

migrations in the data centers, which are difficult if done manually due to their 

frequent moments. The controller maintains a host profile table for each of the hosts 

that joins the network.  

Similarly, the controller deletes the host profile table when a host leaves the 

network. To populate the empty host table, the controller uses the Packet_In 

message to generate a host profile table for each of the hosts sent by the OF switch. 

For example, a host attached to a port of the OF switch generates a request 

message. This request message is encapsulated by the OF switch in the form of 

Packet_In message and it is then sent to the controller. Based on the Packet-In 

message, a controller identifies the identity of the host.  

The host profile is built on the Packet-In message which contains information 

such as a) IP address, b) MAC address and c) Meta information (DPID, port 

number, and last timestamp). When a host migrates from one switch to another, its 

port and switch IDs are changed due to its new location. The controller updates the 

record for the migrated host based on Packet-In messages received from another OF 

switch. The payload information in the Packet-In message helps the controller to 

track the location of the host. Different controllers have different host tracking 

applications to discover hosts in the network [52]. For instance, the ‘hosttracker.cc’ 

is used in NOX controller, the ‘host tracker.py’ is used in Ryu controller, the 

‘DeviceManagerImpl.java’ is used in the Floodlight controller, and the 

‘OFMDeviceManager.java’ is used in the OpenIRIS controller.  

4.1.2 Switch Discovery 

Typically, OF switches communicate with the controller on the arrival of new 

packets, i.e., Packet_In messages. The controller replies with a Packet_Out message 
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to insert flow entries in the OF switches. The location of the OF switches is vital to 

the controller due to its two-way frequent communication. The controller discovers 

the location of the OF switches in its initial handshake process. 

The OF switches are discovered in the initial handshaking process by the 

controller. Once the OF switch is added to the network, the controller gets the 

existence and key properties of the OF switch. The controller records the MAC 

address, the number of ports, etc. to know the information about the OF switch. 

There is no requirement for a separate protocol to discover the location of the OF 

switch in SDN.  

4.1.3 Inter-connected link between switches 

The discovery of the inter-connected link between switches is significant to 

generate a topology by the controller in SDN. The inter-connected links determine 

the connectivity between the OF switches that helps the controller and the 

application plane services to utilize the network according to their requirements. In 

most of the times (if not all), the OFDP is used to discover the inter-connected links 

between the OF switches. The OFDP uses LLDP to advertise the capabilities and 

neighbor information of the nodes in the network [105]. The LLDP is usually used 

in the Ethernet switch, which actively sends and receives LLDP packets to each of 

its active ports. The extracted information from the LLDP packet is stored in a 

Management Information Base (MIB) in the switch.  

The collected information from different MIB’s of the switches via the SNMP 

helps to determine the network topology. When the LLDP packet is sent by the 

switch through its active ports, the Ethernet frame encapsulates the payload of 

LLDP and set the EtherType field to 0x88cc. The Ethernet frame contains the 

LLDP Data Unit (LLDPDU) that consists of a Type Length Value (TLV) structure. 

The TLV contains a switch identifier (chassis ID), Port ID, Time to live value, and 

other optional values. The OFDP uses a similar format of LLDP packet, however; it 

operates differently due to its limited API’s match-action functionality. Moreover, in 

the SDN the OF switches does not send, receive, and process the LLDP messages 

itself but rather created by the controller. The operation of the LLDP packet in the 

SDN is briefly explained below.  

  

(a) Inter-connection between OF switches: The link discovery using LLDP does not 

require any other discovery approach because both ends of the link consist the OF 

switches which support the topology discovery mechanism. The topology discovery 

determines the initial IP address and the TCP port of the controller which helps the 

OF switch to establish a connection soon after it is connected to the controller. The 



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

OF switch also has a pre-configured rules, which generates the Packet_In message 

to the controller when it is received on the ports other than the controller. Initially, 

when an OF switch establishes a connection with a controller, the controller passes 

a request message to the OF switch such as FEATURE_REQUEST_MESSAGE, 

wherein the switch responds with a FEATURE_REPLY_MESSAGE. The response 

includes the switch ID and active ports along with their respective MAC addresses. 

The controller encapsulates the LLDP packet in a Packet_Out message and sends it 

to each active port of all OF switches in the network. The destination address in the 

LLDP packet is the multicast MAC address defined in the IEEE 802.1AB standard. 

The total number of Packet_Out messages sent by the controller is equal to the 

number of active ports in the network, i.e., (Total Packet_Out message = Number of 

active ports of all the switches).  

The Packet_Out message installs the flow entries in the OF switch in order to 

route each LLDP packet to its destination port as indicated in the TLV field. The 

OF switch forwards the received LLDP packet to its corresponding port that is 

connected to another OF switch. When the neighbor of the OF switch receives the 

LLDP packet on the port other than the connected controller port, the switch 

encapsulates the LLDP packet in a Packet_In message and forwards it to the 

controller. The fields in the Packet_In message includes the switch ID and the Port 

ID on which the LLDP packet is received. The controller updates its network 

topology based on LLDP messages and by default, this process is repeated every 5 

seconds. The illustration of this process is shown in Figure 5.  
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Figure 5: The LLDP process in SDN environment 

(b) Inter-connection between the OF switch and the traditional switch: Currently, the 

adoption of SDN architecture in the current emerging networks integrates OF 

protocol with the existing traditional network technologies. This requires a new 
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mechanism to operate in a new network infrastructure without affecting the 

performance. Similarly, using both traditional and OF switches in data centers will 

create problems to identify the inter-connected link between these switches. The 

approach to finding the inter-connected link between the OF switches is not 

implemented in a hybrid switch infrastructure. The controller needs a mechanism 

for the handshake with an OF switch to identify its information and capabilities. 

However, handshake is not performed for the traditional switches. A controller in a 

hybrid switch infrastructure can identify the inter-connected links between the OF 

switch and a traditional switch which must be connected to another OF switch. This 

scenario can be considered as a non-direct connection between two OF switches. 

Simply, a controller can find the multi-hop connections between the OF switches. 

The LLDP is a single-hop discovery mechanism and it is not applicable to a multi-

hop connection. It requires a new approach for finding non-directed connections 

among the OF switches. To identify the inter-connection between two OF switches, 

both the OF switches should be in the same broadcast domain or the controller will 

not able to associate addresses to the multi-hops among  the OF switches. The 

current Open source controller such as Floodlight and Open Daylight controller 

have integrated layer 2 topology discovery protocols such as the LLDP and the 

Broadcast Domain Discovery Protocol (BDDP) to discover multi-hop links between 

OF switches and traditional switches within a  broadcast domain [106]. 

The BDDP message and the LLDP messages are identical but have different 

destination MAC address fields. The BDDP message has a broadcast address in its 

destination field while the LLDP message has a multicast address in its destination 

field. This feature allows the traditional switch to forward a BDDP message to find 

multi-hop links between the OF switches within a broadcast domain. The controller 

sends each BDDP message to each active port of the switch by encapsulating it in 

the Packet_Out message. When the Packet_Out message is sent to the OF switch, it 

installs a flow entry in the flow table indicating that the OF switch has received the 

message. Then, the OF switch forwards the message to the neighbor switches via a 

port indicated in the TLV field. If the neighbor switch is a traditional, it examines 

the destination MAC address and further floods the packet to all its active ports. 

The port connecting the controller receives the Packet_In message that incorporates 

the Meta data required to identify multi-hop links. The Packet_In message contains 

a BDDP packet which helps the controller to know indirect links between two OF 

switches such as through multi-hop links. 

4.2 Controller Platform 

The SDN has an architecture which consists of a single or multiple controllers to 

control the entire network as illustrated in Figure 6(a) and 6(b). Usually, small data 
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center networks incorporates a single controller while large data centers are 

distributed and have multiple controllers. This section explains the significance of a 

topology discovery in single and multiple controller platforms in SDN.  

4.2.1 Topology Discovery in Single Controller Platforms 

The single controller platform is used for a homogeneous network, which is a 

network of devices connected within a single physical location. The controller is 

responsible for discovering the network topology by querying the switches through 

the LLDP packets as described in Section 4.3.3. The controller communicates with 

the switches through LLDP packet after a specified time interval (i.e., after every 5 

seconds) to identify the links between the OF switches in the network. In 

discovering the network topology, the position of the controller is crucial. That is, 

the controller that is closer to the switches will result in a faster transmission of the 

LLDP packets to the OF switches as well as receiving a quick response from the OF 

switches.  
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 Figure 6(a): Single controller architecture                                     Figure 6(b): Multiple controller architectures 

4.2.2 Topology Discovery in Multiple Controller Platforms 

Large networks are employed using heterogeneous setting that includes multiple 

controllers responsible for different portions of the network. All these controllers 

coordinate through a logically centralized controller. Each controller requires 

discovery of the network topology of the assigned SDN domain. The topology 

discovery information is sent to the centralized controller and also to the 

neighboring controllers for the latest updates. However, sharing topology 

information among controllers requires a standard procedure which is not available 

till date. 
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The shared topology information is not verified during the sharing process and 

might be shared by the malicious controller. This may affect the performance of the 

other controllers such as routing, load balancing, scheduling and various other 

services. The importance of topology discovery in multiple controller platforms 

increases due to  the distributed controllers, sharing of topology updates, and 

instance (virtual machine) migration [101] among different SDN domains.    

4.3 Dependent Services 

This section discusses the topology-dependent services used in SDN. The 

logically centralized visibility of the network supports various network applications 

to efficiently perform tasks and control the network devices. We have explained 

some of the topology dependent services to highlight the significance of the topology 

discovery in SDN as shown in Table 3.  

4.3.1 Routing  

The routing application depends on the controller’s abstract view of the topology 

to provide the visibility of the entire network [107]. For instance, a routing 

application will require information about the network topology to route the 

network traffic to its destination on the shortest path [17]. However, falsified 

topological information may lead the routing application to route its network traffic 

on to a malicious route.  

In the case of a link fabrication attack, an attacker can spoof the LLDP packet 

with a malicious switch DPID and Port ID to inject a fake link in the network 

topology. This may affect the existing legitimate shortest path towards the 

destination. For example, as shown in Figure 7, host 1 requires four hops (switches) 

to reach host 4. However, during a link fabrication attack, host 1 will send the 

LLDP packet with DPID-3 and Port ID-1 to switch 1, which further inserts DPID-1 

and ingress Port ID-1 in the metadata of the Packet_In message and informs the 

controller that there is a direct link between switch-1 and switch-3. Subsequently, 

the controller may wrongly update its topology information by assuming a direct 

link between switch 1 and switch 3. This affects the legitimate shortest path, as the 

traffic from host 1 can be sent to host 4 through the newly added fake link. As a 

result, the malicious switch 3 can eavesdrop or modify the traffic before it reaches 

the destination.   

4.3.2 Mobility Tracking 

The mobility tracking refers to a mechanism of tracking a mobile node in the 

network. Mobility tracking is generally associated with the  cellular networks [4, 

108]. The mobility tracking in SDN is achieved through a mobility management 

function running on top of the controller [109]. The mobile management function is 
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responsible for monitoring nodes’ movements. Mobility tracking depends on the 

network topology for information on the current and future location of the network 

nodes. Usually, when a network node (host) changes its position from one switch to 

another, it changes its IP address and results in a connection break down. However, 

in SDN, with the help of a mobility management function, the forwarding function 

informs the controller about the nodes’ movement which then re-calculates the 

forwarding rules and forwards it to the forwarding function to route the IP packets 

accordingly.  

As a result, it continues with the application session and makes the movement of 

the node without changing the IP address. Node mobility changes the network 

topology which is updated by the controller based on the information received from 

the forwarding function. Thus, the node movement should be sent to the controller 

and mobility tracking function on a timely basis to keep the network topology up to 

date in the SDN.  
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Figure 7: A diagram illustrating link fabrication attacks 

4.3.3 Load Balancing  

The load balancing is used to improve the utilization of resources and power by 

distributing the traffic more simply and more efficiently. The load balancer uses a 

logically centralized control of the SDN to perform traffic load balancing [110]. The 

dependency of the load balancing on the network topology is significant, which is its 

selection of the optimal server for the traffic execution. For instance, the load 

balancing application that is installed on top of the controller requires the location 

of the servers and the optimal path to access them in the network.  
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The optimal path is selected by computing augmented bandwidth of the links 

between the switches. Any modification in the network topology causes the load 

balancer to re-calculate the bandwidth for the optimal path. Thus, topology 

discovery plays a vital role in executing the load balancing properly in SDN.  

4.3.4 Topology-based Slicing  

The topology-based slicing is a mechanism of the Flow-visor in SDN that divides 

the network topology into different parts/slices [111]. The aim of slicing is to provide 

a dedicated link to each of the tenants in the multi-tenant environment. Topology-

based slicing, also known as port-based slicing, creates different slices based on the 

switch ports. Each switch part has a subset of full network topology controlled by 

the Flow-visor [112].  

The Flow-visor handles the network traffic on each of the connected links by 

adding a flow space. The slicing phenomenon reduces the controller load by focusing 

on specific OF switches of the topology. Therefore, the slicing depends on the 

locations and ports of the OF switches which are key entities of the network 

topology discovery. However, any modification in the topology will cause Flow-visor 

to re-compute the specific slice that is affected by the change in the specific domain.  

Table 3: Topology-dependent applications with its effected attacks 

Topology-

Dependent 

Applications 

Description Effected attacks 

Routing Route network traffic from source to the destination Link Fabrication 

Mobility Tracking Determine the location of the host in the network Host Location Hijacking 

Load Balancing Distribute network traffic among different servers Link Fabrication 

Topology-based Slicing Divide single network topology into sub-topologies  Link Fabrication 

 

4.4 Objective 

The key objectives which are achieved through an efficient topology discovery in 

SDN are listed as follows: 

(a) Multiple switches: The topology discovery provides an easy way to identify OF 

switches in SDN. The OF switches could be in single or multiple management 

domains, controlled by single or multiple distributed controllers [113]. The 

identification of the OF switches in the network assists in topology discovery 

and updating its topology information, respectively.  

(b) Spanning Tree: The spanning tree protocol in SDN [114] provides a loop-free 

topology. It utilizes discovery services to identify a neighbor link detection 

between OF switches. The spanning tree installs flow entries in the OF 

switches. However, without having an efficient topology discovery, the 
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spanning tree is unable to select an appropriate path to eliminate a loop from 

the network.  

(c) Managing Topology changes: The host migration, isolation of working 

domains, and insertion/deletion of the network devices in SDN can cause 

changes in the network topology. The function of topology discovery includes 

coping up with the change detected in the network. For instance, in a data 

center environment, virtual machines (hosts) often migrate from one resource 

to another, which results in a change in topology such as appearance of new 

switches and ports ID [115]. Consequently, the changes in the network 

should be sent to the controller to update the topology based on its discovery 

mechanism.  

(d) Traffic Scheduling: Often, the optimal path, i.e., the shortest path is selected 

to route the network traffic from source to the destination. The topology 

discovery assists the traffic scheduler in finding the optimal path with less 

propagation delays between different number of hops (switches) [40, 116]. 

However, incomplete information regarding the network topology may lead to 

improper traffic scheduling that causes high bandwidth delays and time 

overhead.    

(e) Robustness: The ability to tolerate the packet loss depends on the topology. If 

the topology is timely updated by the controller, the network application runs 

smoothly without causing any packet loss. The correct topology of the 

network reduces the overhead of the controller that cause to increase 

robustness of the SDN without affecting its normal operation. 

(f) Statistical Data Gathering: The OF switches  provide different levels of 

statistical information to the controller including port statistics, flow 

statistics, and other counter measurements [117]. The statistical information 

helps the controller to have an in-depth observation about the flows, network 

devices and the overall behavior of the network. However, changes in the 

network topology (due to the insertion of new hosts, flow entries, and inter-

connected links) between the OF switches can cause changes in the statistical 

data previously gathered by the controller. The controller has to update its 

database information based on the new topology of the network.  

(g) Resource Provisioning: To operate an elastic data center infrastructure 

through the SDN architecture, a proper resource provisioning mechanism is 

required to enable on-demand resources for the applications [118]. The 

resource provision depends on the network topology in order to understand 

the allocation and processing of available resources to different applications.  

The topology discovery information assists the resource provisioning module 

in selecting the right resources for the right application. 
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5. Topology Discovery Threats and Solutions  
In this section, we provide a comprehensive description of the potential threats 

to the topological discovery. The threats exploit the vulnerabilities in the controller 

by performing attacks on the network. Basically, we devise a classification of the 

topology discovery threats as illustrated in Figure 8. The classification comprises of 

three categories, such as a) Attack entity, b) Controller vulnerabilities, c) Current 

solutions, and d) Miscellaneous threats. Each of the categories is explained as 

follows.  

 

Figure 8: Classification of topology discovery threats and solutions 

5.1 Attack Entity 

Several security threats from different parts of the SDN architecture can be 

recognized through literature. In this section, we focus on the topology poisoning 

attacks.  The topology poisoning attack is generated with respect to two entities in 

the SDN architecture i.e., hosts and the OF switches. These attacks are explained 

with respect to their working operations as follows.  

 

 

Topology Discovery Threats 
and Solutions

Attack Entity

Host-based Attack

Switch-based 
Attack

Controller 
Vulnerabilities

Host Tracking 
Systems

Link Discovery 
Procedure

Current 
Solutions

SPHINX

TopoGuard

Authentication 
of LLDP 
packets

OFDPv2

Miscellaneous
Threats

Man-In-The-
Middle

Denial-of-
Services

Identity Spoofing

Repudiation



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

 5.1.1 Host-based Attacks 

The topology poisoning attack generated from the host (system connected to the 

switch) is called host location hijacking attack. In this attack, the attacker 

impersonates the target host location in the network and starts receiving traffic 

intended for the target host. The attacker exploits Host Tracking System (HTS) of 

the controller which lacks an authentication mechanism especially for the host 

mobility in SDN. The controller uses HTS to record parameters such as joining and 

mobility of the host in SDN by maintaining a host profile table. The controller uses 

Packet-In message to update the host profile table by monitoring the DPID, ingress 

Port ID, and other metadata information. However, lack of security consideration in 

HTS provides an opportunity for the attacker to temper the target host location 

information by diverting the target host traffic towards itself.  

The controller may assume that the target host has moved towards the new 

location but actually towards the attacker location. The attacker easily hijacks the 

traffic of the target host by generating a spoofed IP address of the target host using 

the Packet_In message. Upon receiving the Packet-In message, the controller 

updates the host profile table of the target host using its new location, as a result, 

affecting the topology-dependent applications including routing, load balancing, and 

various others.  

Moreover, the malicious host in SDN can spoof the legitimate LLDP packets and 

forward it to the OF switch as well. That is, the OF switch can forward the spoofed 

LLDP packet to all of its active ports, which may reach the controller and can 

update its link record of the OF switches. The malicious host can also send a 

legitimate LLDP packet to another OF switch, which may create a fake link 

between the OF switches. Therefore, the controller may route the traffic on the fake 

links that actually gets forwarded to the malicious host.  

5.1.2 Switch-based Attacks 

The topology poisoning attack can also be performed through the malicious OF 

switches. The malicious OF switches spoofs the LLDP packets by creating fake links 

in the network. This type of attack is called a link fabrication attack in SDN. The 

malicious OF switches can affect a large scale of the network due to fake 

connections with many devices. The topology poisoned through malicious OF 

switches is difficult to detect due to the minimal clues in reference to the fake link 

creation   in the network. For instance, it does not require any host to create a fake 

link between the OF switches during a topological poisoning attack.  

After receiving the LLDP packet from a single OF switch, the malicious OF 

switch relays the packets to another OF switch instead of forwarding them to the 
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controller. Subsequently, upon reception of LLDP packets by the new OF switch, 

the LLDP packets are sent to the controller in the form of Packet-In message. This 

tricks the controller into believing that there exists a link between the malicious OF 

switch and the legitimate OF switch that forwarded the LLDP packet to the 

controller. Such fake link injection attracts future possible attacks such as the DoS 

attack, man-in-the-middle attack and much more. 

5.2 Controller Vulnerabilities 

This section describes the vulnerabilities in the controller that are used by the 

attacker to launch an attack.  
 

5.2.1 Host Tracking Systems 

The vulnerability discovered in the HTS attracts attackers to hijack the location 

of the hosts. As stated earlier that the host profile in the controller contains the 

DPID, ingress Port ID, and other metadata information which exhibits the 

controller with the location of the host and the connected OF switch. The key 

exploited vulnerability includes the lack of authentication mechanism that can be 

used to verify the host updates received by the controller through Packet-In 

message. All information received by the controller is considered as genuine (even if 

received from a malicious OF switch) and the host profile is updated accordingly. 

In previous versions of Floodlight and Open Daylight controllers, an empty shell 

API ‘isEntityAllowed’ is provided, which accepts all updates related to the host 

locations. The attacker simply spoofs the packet with target host identity and 

forwards it to the connected OF switch which further send it to the controller in the 

form of Packet_In message. The controller assumes a shift of position of the host 

and updates the host profile for the target host. The lack of authentication 

mechanism in HTS makes the controller update the topology with falsified host 

information and this will affect numerous services, especially routing.  

5.2.2 Link Discovery Procedure 

 The vulnerability in the link discovery procedure can also be exploited by 

fabricating the false link between the OF switches. Firstly, there is no 

authentication mechanism for the controller to ensure the origin of the LLDP 

packet. Secondly, the controller is unable to verify the traversed path used by the 

LLDP. Addressing these issues is critical in preventing the OF switches from 

inserting a fake link. Note that, the OF switches receive LLDP packets from each of 

its ports. This allows the attacker to spoof the LLDP packets to create a fake inter-

connected link between the OF switches which is known as link fabrication attack.  

This attack can be performed in two ways 1) modification of LLDP packets, and 

2) through the LLDP relay. In the case of the LLDP modification,, a fake link is 
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established between the OF switches by spoofing the DPID and the Port ID of 

legitimate OF switch. This causes the controller to update a new link between 

legitimate and malicious OF switch. The link fabrication attack generated through 

the modified LLDP packet is explained with an example shown in Figure 7.  

The host attached to switch-1 learns about the LLDP syntax from the receiving 

LLDP packet from the controller. The switch-1 then forwards it to all of its ports 

except the controller port. The host-1 sends LLDP packet to the switch-1 with 

spoofed information including DPID=3 of switch-3 and Port ID=1 of switch 3. The 

switch-1 inserts the DPID=1, and Port ID=1 in the metadata and and forwards the 

Packet-In message to the controller. The controller checks the Packet_In message 

and perceives a link between switch 3 and switch 1. The controller takes the LLDP 

source information from the TLV such as (DPID=3, Port ID=1) and the link 

information from the metadata such as (DPID=1, Port ID=1). Thus, the controller is 

updated with the wrong related to a fake link. In another type of link fabrication 

attack, the attacker simply forward one of the legitimate LLDP packets to another 

OF switch and resulting in a falsified link information received by the controller. 

The malicious OF switch requires a relay OF switch to forward the LLDP packet to 

the target OF switch. 

The relay OF switch is identified through a connection test. In addition, some 

controllers such as POX and Floodlight disables the HTS on the internal link switch 

ports, however, an attacker can still launch the attack by using a tunnel-based 

LLDP relay attack. The tunnel-based LLDP relay attack is used to launch fake 

links between multi-hop link ports having OF switches connected to the traditional 

switches. It is difficult to disable these ports in SDN due to the availability of the 

hybrid switches in the network. Thus, the link fabrication attack also opens doors to 

numerous attacks including the DoS and the man-in-the-middle attack. 

5.3 Current solutions 

We explain the state-of-the-art topological poisoning solutions in this section. 

However, the literature has very few solutions the topology poisoning attacks. We 

briefly explain the state-of-the-art solution with reference to their proposed 

methodology. Table 4 presents the comparison between the proposed solutions using 

parameters such as techniques, SDN features, attack entity, the problem addressed, 

and future work. The parameter techniques highlights the key module/application 

developed by the proposed solution. The parameter SDN features points out which 

features have been used to model the solution in SDN. The attack entity shows 

which type of attacks can be detected through the current solution. The parameter 

problem addressed points out a objective functions which has been addressed to 



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

detect the attack. Finally, the parameter future work explains future research 

directions of the current solution.  

5.3.1 SPHINX 

In [88], the work has presented several attacks which target the network 

topology and forwarding devices in SDN. It has been shown that an attack can be 

launched from malicious hosts and OF switches. A proposed solution as a SPHINX 

is presented to detect an unknown attack on network topology and the forwarding 

devices in SDN. The SPHINX provides a real-time and accurate verification 

solution of the network behavior by a) monitoring all OF messages, b) analyzing 

features set of the messages, and c) providing a fast validation of the network 

updates. The SPHINX focuses on four messages, i.e., Packet_In, stats_reply, 

features_reply, and flow_mod to get the metadata, detect network topology and 

forwarding device attacks. First, the SPHINX intercepts the OF messages 

transferred between the switch and the controller. Then, it builds the incremental 

flow graphs with new updates and validates the network behavior. These intercepts 

are important to identify the malicious behavior of the attacker.  

After getting the latest update, SPHINX increments and updates its network 

topology flow graphs and detects malicious behavior based on the tangible changes 

observed in the network topology and the data plane forwarding. Specifically, 

IP/MAC address binding, MAC/port binding, and flow statistics of the host are used 

to provide metadata for assisting SPHINX to detect malicious behaviors in the 

network topology and the data plane forwarding. The network behavior is validated 

through the SPHINX policy engine. The policy engine enables administrators to 

validate the incremental flow graphs. The constraints specified by the 

administrators is written in the policy language. However, validating the policy 

itself is not considered in the SPHINX and is left for future work. In [24], a policy-

based security is provided for an SDN. 

5.3.2 TopoGuard 

Hong et al. [52] has first time proposed an attack in the SDN architecture that 

affect the visibility of the controller by providing poisoned network topology view. 

The attack illegally modify the network visibility by hijacking the host location and 

inserting a fake link between the OF switches. These attacks disturb the operation 

of different network applications that run on top of the controller such as packet 

routing, network virtualization, and mobility tracking. A TopoGuard application is 

proposed to overcome the problem of the poisoned network topology in SDN.  

The TopoGuard application is executed in the OF controller that is composed of 

three main modules namely, port manager, host prober, and topology update 



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

checker. Each of these modules in the TopoGuard application depends on the 

Packet_In message to investigate and detect the illegal modifications in the network 

topology. The port manager provides information related to the device type 

connected to the switch. The device type contains values of host, switch, or any. The 

value any is the default value for the device type and will change to host or switch 

once the packet has been forwarded. The port manager detects the attack and 

generates an alert to the topology update checker by receiving LLDP packets from 

the host. The alerts are generated when LLDP packets traverse between internal 

link ports of the switches rather than hosts. 

Upon migration to a new location, the host probe module is responsible for 

checking whether the host’s previous location is unreachable. This is achieved by 

sending the probe packets (i.e., ICMP echo packets) the host’s previous location . If 

the echo replies are received by the host probe, it will inform the topology update 

checker to hold the update of a new host location due to a host location hijacking 

attack. Similarly, topology update checker is also responsible for checking and 

verifying the information of the host migration and new link discovery in the 

network topology. Once the host migration is detected, the topology update checker 

collects the host’s previous location from the host probe and then updates its 

topology discovery of the network. 

For the link discovery, topology update checker checks cryptographic hash value 

for the integrity of the LLDP packet. After the integrity check, the device type is 

checked from which the LLDP packet is generated. If the device found has a host 

entity, the topology update checker considers it as an attack and holds the update of 

the new discovery link in the network topology. Therefore, TopoGuard enables a 

real-time detection of the topology poisoning attacks in SDN.  

5.3.3 Authentication of LLDP Packets  

In [19], a countermeasure based mechanism is proposed to overcome the security 

problem presented in the OFDP. The OFDP lacks an authentication of LLDP 

packets that might risk the packets to be forged. The proposed method uses a 

cryptographic Message Authentication Code (MAC) in each of the LLDP packets in 

order to authenticate the packet’s integrity. The HMAC is used to compute the MAC 

code. The uniqueness of the HMAC in authenticating the LLDP packet is the use of 

a dynamic key instead of the static key. In each round of the topology discovery, a 

dynamic key is used for each LLDP packet which makes difficulty for the 

adversaries to speculate the key. Guessing the key is critical in order to compute the 

MAC value and launch a successful fake link attack.  
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The key is selected randomly for security and it is difficult for the attacker to 

guess the key especially when the key is generated with an entropy measurement. 

Moreover, the controller can detect any attempt made by the attacker for guessing 

the key. The controller keeps track of each of the keys generated for every packet 

and verifies the authenticity of the received LLDP packet. The Chassis ID and the 

Port ID are combined to provide a necessary identifier while hashing is performed 

through a MD5 hashing function. The HMAC value is inserted in the optional TLV 

field of the LLDP packet which shows that the OFDP having HMAC can detect any 

fabrication of the LLDP packets generated by the attacker. The proposed method 

using HMAC values in the LLDP packet creates 8% of the CPU overhead which is 

lower than identifying fabricated links in the network.  

5.3.4 OFDPv2 

In [119], a simple and practical modification is performed on the existing 

topology discovery approach for reducing the control load and to increase the 

efficiency of the controller. The proposed approach modifies the de-facto standard of 

the topology discovery by introducing OFDPv2-A and OFDPv2-B. The two new 

versions have the same functionality of OFDP with significantly lesser number of 

control messages used for link identification between the OF switches. The 

reduction of control messages significantly decreases the controller load. 

In OFDPv2-A, a specified rule is inserted in the flow table of every switch. This 

is to direct the OF switch to create a copy of the received LLDP packet and forward 

it to all of its active ports.  . The forwarded message has a modified MAC address for 

each port. The LLDP packets are limited to the number of the available OF 

switches, however, the unique LLDP packet in OFDP is sent to the active ports of 

the switches that cause to increase the workload on the controller due to handling a 

large amount of the LLDP packets.  

In addition, Packet-In event handler in the controller is changed to know the source 

MAC address of the Ethernet frame in the place of Port ID TLV field of the LLDP 

payload. The OFDPv2-B operates similar to OFDPv2-A but it has no rules to handle 

the LLDP packets from the controller. An action list is added to each of the 

Packet_Out messages to inform the OF switch about forwarding the packets. The 

action list contains the forwarding logic similar to the OFDPv2-A. The key 

advantage of the OFDPv2-B is the minimum use of the OF switch memory. 

However, OFDPv2-B has a disadvantage of increased size the of Packet_Out 

messages due to the insertion of an action list for each switch. The experiments 

results proven that OFDPv2-A and OFDPv2-B reduce 40% of the CPU overload and 

control traffic overhead as compared to the de-facto standard such as OFDP.
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Table 4: A general description of state-of-the-art topology discovery 

Classification Techniques SDN Features 
 

Attack Entity Problem Addressed Future Work 

SPHINX [88] SPHINX 

controller 

application 

Incremental flow 

graphs with 

metadata 

information 

Host-based attack To detect suspicious 

changes observe in network 

topology and data plane 

Sphinx will consider flow rule 

aggregation, Proactive OpenFlow 

environment, and Mixed networks in 

the future. 

TopoGuard [52] TopoGuard 

application 

Extension of OF 

controller by 

designing topology 

update checker  

Host-based attack, 

Switch-based attack, 

Controller-based 

attack 

 

Detection of network 

topology poisoning attacks 

Design a new security framework 

which detects more vulnerabilities in 

SDN 

Authentication 

of LLDP 

packets [19]  

Hash Message 

Authentication 

Code 

Using HMAC inside 

LLDP packet in 

every topology 

discovery round 

Host-based attack Provides authentication and 

packet integrity for LLDP 

packets 

Check the impact of the proposed 

solution in another area rather than 

routing.  

OFDPv2 [119] OpenFlow 

discovery 

protocol 

Modify de-facto 

standard of 

topology discovery, 

i.e. OFDP 

Controller-based 

attack 

 

Reduce the control messages 

used to identify the links 

between switches 

The discovery of hosts in SDN 

network 
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5.4 Miscellaneous Threats 

With a successful topology poisoning attack, the chance for other security threats 

also increase. The threats such as man-in-the-middle, denial of service, identity 

spoofing, and repudiation are explained in the subsequent sections and their side 

effects on the topology discovery are presented in Table 5. 
 

5.4.1 Man-in-the-middle 

The man-in-the-middle attack is performed in SDN in various ways [120]. One of 

which is to inject a fake link in the network topology. The attacker eavesdrop the 

traffic from source to destination by using a false update by the controller. The fake 

link may force the controller to divert traffic to the attacker. It might affect the 

confidentiality as well as the integrity of the network traffic passing through the 

fake link created between the OF switches. 

To mitigate the man-in-the-middle attack in SDN a proposed solution [52] is 

presented. The proposed solution used device types such as (switch or host) to detect 

the spoofed LLDP packet, i.e., generated from the host rather than switches. 

Usually, no host participates in the legitimate LLDP propagation process. The 

LLDP packets traverse between the switches to determine a link between each 

other. The proposed solution determines whether the LLDP packet is generated 

from the host. In that case, the packet is considered as spoofed and further 

propagation of the packet in the network is stopped. The host devices are easily 

detected through the normal network traffic such as the TCP and the UDP. Once 

the device type is detected as a host, then any information regarding its topology 

update will not be considered as legitimate. Thus, the solution effectively prevents 

the man-in-the-middle attack at its early stage by finding the malicious host in 

SDN.  
 

5.4.2 Denial of service 

The controller uses the spanning tree algorithm to remove redundant ports after 

each topology update. However, an attacker can use the same feature to shut down 

the normal OF switch ports after injecting the fake links in the topology. This 

causes burden on the other links connected to the target OF switch and results in a 

DoS attack [24]. A legitimate link can be removed by sending a fake LLDP packet 

by the attacker to the OF switch having lower DPID. The attacker announces a link 

with a target switch as well. However, if the DPID of the selected OF switch by the 

attacker is lower than the target switch connected with another switch, then the 

port of the target switch connected to another switch is removed. This causes 

overhead on the selected OF switch which can cause a DoS attack due to an 

increase in the workload in the network traffic. The availability of the OF switch is 
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affected through due to numerous flow rules in the flow table generated through as 

a result of a DoS attack.  

The literature has various solutions to mitigate the DoS attacks in SDN. In [48], 

a connection migration tool is proposed to reduce data-control plane interaction   

that detects dynamic flow changes in the network traffic.  In [70], a seamless 

primary controller backup is proposed to defend the centralized network operating 

system from failure. Another DoS prevention mechanism is proposed in [121], which 

uses proactive flow rules to preserve network policy enforcement. It uses packet 

migration mechanism to defend the controller from overloading its memory due to 

numerous Packet_In messages. However, the solution fails to find the real source of 

the attack.  
 

5.4.3 Identity spoofing   

When a malicious host injects spoofed LLDP packets, the controller updates the 

false information in the host profile system. The controller thinks that the host has 

changed its position and the information is sent to its new position from where the 

LLDP is received, i.e., a malicious host. The target host remains at its position 

however; the malicious host pretends to be a legitimate (target) host. The controller 

passes the information to the malicious host hence, affecting the confidentiality and 

integrity of the data by modifying it and forwarding it to further destinations.   

To overwhelm the spoofed identity problem in SDN, a work in [52] proposes a 

solution based on the  pre-condition and post-condition of the host migration. In the 

pre-condition, once the host migrates from its position, it has to inform SDN 

controller about its previous port_shutdown. In the post-condition, the controller 

confirms that host is not reachable by sending ping messages to its previous 

location. Thus, the controller can effectively track the real location of the host and 

can determine the spoofed identity of the malicious host. 

 

5.4.4 Repudiation  

The lack of a proper authentication mechanism of LLDP packet in the controller 

may cause repudiation attacks. The repudiation attacker creates a fake link 

through injected spoofed LLDP packet and then denies it to generate by him. The 

attacker inserts the spoofed DPID and Port ID of the victim OF switch and forwards 

the packet to the controller by showing it has been come from another OF switch. 

The spoofed LLDP packet loses its confidentiality and integrity by modifying its 

original value in the packet field. 

The work presented in [88] builds an updated flow graph based on metadata of 

the Packet_In and FEATURES_REPLY messages to detect the fake links generated 

through spoofed LLDP packets. The MAC-IP binding mechanism of the proposed 
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solution is built by using the policy language engine that assists the controller to 

detect the fake links upon observing the deviation from the bindings.   

Table 5: A side effect of threats on topology discovery 

Threats Possible Reason Affect Confidentiality Integrity Availability 

Man-in-the-middle Injected fake link Change the shortest path Yes Yes No 

Denial of services Removing legitimate link Increase a workload No No  Yes 

Identity spoofing   Spoofing host identity Illegal information 

exploitation 

Yes Yes No 

Repudiation Spoofed LLDP packet Hiding the attacker 

identity 

Yes Yes No 

 

6 Future Challenges and Directions 
In this section, future research challenges and directions of topology discovery in 

SDN are presented. The research on topology discovery is still at its early stages. 

Therefore, ample opportunities exist for future work to mitigate the challenges in 

topology discovery. The following future directions will help academicians, 

industrialists, SDN vendors, and network specialists to explore novel solutions in 

making the topology discovery secure and sustainable in the SDN.  The descriptions 

with possible solutions for each future direction are given in Table 6. 

6.1 Multiple SDN Domains 

Practically, the SDNs are created by the network operators in the enterprise 

according to their network requirements. Mostly, the enterprise have different 

domains which are controlled by each controller resulting in a multiple SDN 

domains environments. However, small-scale data center network may require a 

single SDN domain while a large-scale data center network (carrier networks) may 

require several SDN domains that are controlled by the logically centralized 

controller. The division of SDN domains varies on the requirements that includes 

physical locations, traffic monitoring, load balancing, and various others.  

However, interconnecting multiple SDN domains and sharing the network 

topology updates in the topology discovery can be a very challenging task. These 

interconnections require a standard protocol to efficiently share and secure the 

control information between the SDN devices. Moreover, the standard protocol must 

be able to consider various important aspects of the topology discovery including for 

instance a) how the network topologies in various SDN domains are connected, b) 

how one controller communicates with its neighbor controller, c) what will be the 

form of information format to share among the controllers, d) how to get the 

controller addresses, and e) which policies and procedures have to be adopted for 

the communication. The work presented in [23] proposed AutoSlice virtualized layer 

for the SDN architecture to separate multiple SDN domains on the shared network 



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

physical resources. This could enable efficient sharing of topology discovery 

information among the controllers placed in multiple SDN domains.  

6.2 Topology Discovery through OF switches 

Currently, the topology discovery function is executed by the controller and the 

SDN infrastructure is a single point of failure. The applications in these topologies 

can be affected by the malicious attacks on the controller. One way to overwhelm 

this issue is to shift the responsibility of a topology discovery to the OF switches. 

This reduces the liability on the controller and protects the topology discovery 

function at the time the controller is attacked. The OF switches can send the LLDP 

packets to their ports after a specified time interval to determine the links between 

their neighbor OF switches. The LLDP packet should contain the switch ID and an 

output port number to identify the origin of the LLDP packet. The OF switch should 

update the controller on every new link detected to inform the controller for the 

latest updates. Therefore, the topology discovery cost will be independent of the 

number of controllers in the SDN. However, discovering a network topology for each 

controller domain is costly in terms of the LLDP messages used in communication 

between controllers and the OF switches, network bandwidth consumption, and the 

time overhead.  

The above complications can be minimized through the dependable and simpler 

topology discovery mechanisms in SDN. For instance, the use of the OF switch-

based topology discovery can decrease the controller cost linearly because a single 

discovery mechanism will work for all the controllers in the network. Moreover, the 

OF switches can increase the priority values for the LLDP packets in the flow tables 

to transfer the packets on time even in the heavily loaded network links. This will 

assist the controller to have more consideration towards the other core 

functionalities. 

6.3 Identification of fake links 

The injection of a fake link in the network topology will critically damage the 

controller visibility and affect the network services to produce false results. To 

determine whether the link is fake or legitimate, the controller has to be intelligent 

enough to decide the legitimacy of the link in network topology within a specified 

time. However, currently, a proper mechanism is lacking essential features to 

distinguish between legitimate and fake links. 

A potential solution to this issue is to access the history information generated 

by the OF switch to identify any involvement of a malicious activity. Another 

solution is to check the traffic flow on the newly inserted link as most of the fake 

links are created to overload the resources i.e., OF switches by flooding the link 

with packets. Also, selecting the optimal feature of the network traffic plays a vital 

part in the detection of a fake link. Therefore, utilizing a machine learning 
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technique can make the management of the topology discovery more secure with 

minimum risks.   

6.4 Frequent migration 

Mostly, in medium and large data center networks, the SDN architecture is 

implemented for different purposes.  The topology discovery is more sophisticated in 

these data center networks due to the frequent migration of the virtual instances in 

a virtualized network environment for numerous cloud users [71, 122]. This 

overloads the controller which requires to frequently update the network instances 

in order to have a clear and fair network visibility of the network. This opens the 

opportunity for the malicious node to connect with other network nodes and create 

fake links.   

An intelligent mechanism based on statistical probability is required to track the 

network nodes behavior to assist in determining the malicious activities that affect 

the topology discovery mechanism. One way is to use the entropy measurement 

technique to determine the uncertainty in SDN after the attack [24].  For instance, 

the attacker injects the fake links in the network which creates uncertainty in the 

network due to incorrect network topology. The entropy can be used to determine 

the locations where the fake links are inserted by calculating the uncertainty in the 

network. It can support forensics mechanism in reaching the real source of the 

attack [74, 123]. As a result, the topology discovery will be performed efficiently by 

focusing on the visibility rather than the security parameters. 

6.5 Topology discovery information safety 

The internal state information of the controller is recorded in the Network 

Information Base (NIB). The NIB is a separate module in the controller that stores 

the critical states of the controller. These states can be used to regenerate the 

events at a specific time as required. Similarly, the topology discovery information 

is saved in the NIB module of the controller. Nowadays, the controller has become a 

key focus of attacks due to its core management functions and logically centralized 

control. The controller can be attacked through various channels to produce a false 

output. The decision of the malicious controller cannot be trusted and can lead to an 

incorrect decision. Similarly, during the attack on the controller, the NIB states can 

be affected, which might destroy the topology states stored in the NIB. As a result, 

the controller in the next iteration of the topology discovery updates its record 

without having the information from the previous topology discovery iteration. This 

may cause the controller to update with the malicious information injected by the 

attacker after exploiting the records of topology discovery state in the NIB.  

To circumvent the aforementioned issue, a controller should forward a copy of its 

topology discovery states to its neighbor controller. The neighbor controller can re-

generate the topology discovery states whenever the topology discovery states are 
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affected by an attack. Alternatively, having a strong authentication mechanism will 

prevent the attackers from exploiting the core management modules of the 

controller. The work presented in [54] proposed an extendable control plane, i.e., 

DISCO in order to deliver end-to-end network services using a distributed controller 

environment. It enables highly manageable control channels for sharing aggregated 

network information among the controllers. Thus, it can traverse topology discovery 

information among the controllers in controlled environment.  

6.6 Controller upgrade 

The controller must be periodically upgraded by adding features, fixing bugs to 

improve its performance. This is important due to frequent change in the network 

infrastructure in the dynamic virtualized environment. Currently, the SDN lacks 

the effective techniques to assist the controller in upgrading without affecting the 

current operation of the network. In existing controller up gradation techniques, the 

controller is restarted or the old states of the controller are recorded and then 

replayed in the upgraded controller to recover its previous states. Similarly, the 

situation is same for the topology discovery states. Upon upgrading the controller 

for its new assignments, the previous topology discovery states are lost. This incurs 

overhead of re-executing the topology discovery right from the start to acquire the 

network visibility of the network.  

One of the possible solutions is to save the topology discovery state in the 

neighbor controller [15]. After the controller is upgraded, the operation of the 

topology discovery is resumed from the last recorded status. However, when the 

network topology changes during the upgrades, the records will be inadequate in 

the respective topology. To minimize this issue, the controller should be upgraded at 

the time when the chance for the topological change in the network is minimum. 

Table 6: A description of future challenges and directions of topology discovery with its possible solutions 

Future Directions Description Possible Solutions 

Multiple SDN domain 
The SDN controllers controlling different domains create 

complication in sharing topology discovery information 

— Standard protocol 

 

Topology discovery 

through OF switches 

Reduce less burden on the controller due to topology 

discovery 

— Use OF switches for Topology 

discovery 

Identification of fake links To know about the status of the link 
— Check OF switch history record 

— Verify traffic flow on the link 

Frequent migration 
Topology discovery mechanism becomes sophisticated due 

to frequent migration of instances 

— Statistical probability 

— Entropy measurement 

Safety of topology 

discovery information 

The topology discovery states can be exploited by the 

attackers 

— Strong authentication mechanism 

— Redundant topology discovery states 

Upgradation of the 

controller 

The topology discovery should be consistent at the time of 

the controller up gradation 
— Redundant topology discovery states 
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7 Conclusion 
The network visibility at the logically centralized controller is a unique 

characteristic of SDN. Despite the network visibility of the controller, network 

topologies are poisoned by attackers through the exploitation of vulnerabilities 

found in the controller functions. This can happen due to lack of security measures 

in the design of SDN. A substantial work is in development to build a secure and 

sustainable method to discover the network topologies by the SDN controller. 

However, research on the area of topology discovery security is still in its early 

stages. Efficient secure topology discovery mechanisms remain a distant goal for 

SDN in the future.  

To meet the network visibility requirements, this work presented a 

comprehensive outline of the topology discovery and its implications towards a 

secure SDN. We explained the SDN layered architecture by discussing the security 

threats in each of the planes. In addition, we devised a thematic taxonomy of the 

topology discovery by reporting the discovery entities, controller platforms, 

topology-dependent services, and objectives. Comprehensive information is provided 

related to topology discovery threats by classifying them into four main categories 

including attack entities, current solutions, and miscellaneous threats.  

Distinguished features of the current solutions have been explained along with 

their working mechanisms. Attack entities used to perform topological attacks are 

highlighted and discussed. Moreover, vulnerabilities found in the controller 

functions that can be exploited in poisoning the network are explained. Various 

types of topology poisoning attacks are presented which we believe may open 

ventures for further research in this field.  
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