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Abstract— Task switching, synchronization, and communica-
tion between processes are major problems for each real-time
operating system. Software implementation of the specific
mechanisms may lead to significant delays that can affect
deadline requirements for some applications. This paper presents
a hardware scheduler architecture integrated into the CPU struc-
ture that uses resource remapping techniques for the pipeline
registers and for the CPU working registers. We present an
original implementation of the hardware structure used for static
and dynamic scheduling of the task, unitary management of
events, access to architecture shared resources, event generation,
and a method used for assigning interrupts to tasks that insures
an efficient operation in the context of real-time control. One
assembler instruction is used for simultaneous task synchroniza-
tion with multiple event sources. This architecture allows a task
switching time of one clock cycle (with a worst case scenario
of three clock cycles for special instructions used for external
memory accesses) and a response time of only 1.5 clock cycles for
the events. Some mechanisms for improving program execution
speed are also taken in consideration.

Index Terms— Hardware scheduler, microprocessors and
microcomputers, pipeline processors, real-time and embedded
systems.

I. INTRODUCTION

THE use of the current commercial and free real-time oper-
ating systems (RTOSs) for embedded systems encounters,

in our opinion, two major problems. While the first one refers
to the interrupt handler, the second addresses the fact that
a task cannot synchronize simultaneously with events used
for synchronization, resource sharing, and communication.
Such events would be signals, semaphores, mutexes, mes-
sages, flags, and others. These problems were identified in
RTOSs that run on microcontrollers without a virtual memory
management unit and cache memory. Examples include the
following RTOSs: μITRON, μTKernel, μC/OS-II, EmbOS,
FreeRTOS, SharcOS, XMK OS, eCOS, Erika, Hartik, KeilOS,
and PortOS.

The first problem, generated especially by the interrupt
service routines on the simultaneous occurrence of many
interrupts, is the jitter. Because of it, it is difficult to calculate
the worst case execution time, an important component of
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the real-time systems. This can lead to deadline misses.
A second problem is the extension of the task’s execution time.
This extension is generated by successive calls of the RTOS
application programming interface (API) functions used to
detect the occurrence of one of the events listed above. Another
important issue is the time spent by RTOSs for task context
switching (context switching is an operation carried out by
the RTOS scheduler that requires a lot of time). Furthermore,
API function calls become time consuming, especially if
the processor requires transition from the user mode to the
supervisor mode, and vice-versa.

The current general-purpose processors are used for embed-
ded systems, but they can create problems, mainly due to
nondeterministic performance and inefficient power consump-
tion. In order to avoid these problems, conservative design
techniques may be adopted. These techniques can create
an oversized platform, enabling the proper behavior under
worst case conditions. As a consequence, the use of these
processors has limited applicability and they are unsuitable
for the embedded systems with hard real-time features and
low power consumption requirements. On the other hand,
currently, field-programmable gate array (FPGA) devices [1],
[2] at more efficient prices and with equivalent capacity in
logic gates (more than millions) are widespread [3], [4]. For
this reason, we propose a hardware support for real-time OS
functionalities [5], based on the FPGA systems.

We present a custom scheduler architecture that is a
hardware design with replication of resources [program
counter (PC), pipeline registers, and CPU general purpose
registers] as defined in [6] and [7]. Our architecture is based on
the microprocessor without interlocked pipeline stages (MIPS)
architecture that was especially adapted to support the oper-
ation of the hardware scheduler as part of the CPU itself. It
employs a set of four pipeline registers for each task, used
to hold the running instructions of the CPU. The register file
is replicated for each task. This allows a very fast context
switching, simply by remapping the active context of the task
to be executed. This architecture, called multipipeline register
architecture (MPRA) in [7], replaces the stack saving methods
with a remapping algorithm that enables the execution of the
new task starting with the next clock cycle.

The new architecture is characterized as follows: it contains
an original implementation of the hardware structure used
for static and dynamic scheduling of the tasks, it enables
unitary management of the events and interrupts, it pro-
vides access to shared resources, event generation, and also
defines a method used to attach interrupts to tasks, thus
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Fig. 1. nMPRA architecture. PC, IFID—instruction fetch instruction decode stage, ID/EX—instruction decode-execute stage, EX/MEM—execute-memory
stage, MEM/WB—memory-write back stage.

ensuring an efficient operation in the context of real-time
requirements.

The aim of the new architecture is to improve for microcon-
trollers the performances of the RTOSs. The performances are
related to the following: task switching time, response time
to external events, behavior of the interrupts, and execution
time of the synchronization interprocess communication (IPC)
primitives (events, mutexes, messages, and so on).

This paper is organized as follows. The nMPRA architecture
is presented in Section II, and the nHSE architecture, including
all RTOS facilities implemented in hardware, is presented
in Section III. Section IV presents a series of tests carried
out during the implementation of the proposed architecture.
Section V includes related work and the comparisons with
the nMPRA architecture. Finally, conclusions are drawn in
Section VI.

II. nMPRA ARCHITECTURE

We will refer to the enhanced architecture as nMPRA
(for n tasks), while the embedded scheduler will be named
hardware scheduler engine for n tasks (nHSE). The nMPRA
architecture is shown in Fig. 1.

Before starting the description of the architecture, we have
to define the following notation: an instance of the CPU will be
named semi CPU (sCPUi for task i ). Such a hardware instance
comprises its own PC register, pipeline registers, register file,
and its own control registers; it also runs the instructions
of task i(i = 0, . . . , n − 1). All sCPUi share the other
components of the processor pipeline and, except for the
sCPU0 which is the only active unit after reset, are identical.
The sCPU0 is the only one allowed to access the monitoring
and configuration registers of nMPRA (useful for scheduler
and resource monitoring).

The new nMPRA is provided with both a static and a
dynamic scheduler. The static scheduler is preemptive with
static priorities. As a novelty, the scheduler can perform fast
switching operations (specific to the MPRA architecture) at the

occurrence of an event of the following type: time, interrupt,
watchdog timer, mutex, deadline, intertask communication,
and activation of the execution. The selection of these events
can be achieved by executing a simple assembler instruction.
Each such event can be activated or deactivated via a control
register. The same feature applies to the dynamic scheduler.

Regarding the dynamic scheduler, there is a control register
for each sCPUi (except sCPU0), which allows the changing
of the task priority under the control of a dynamic scheduling
algorithm. All events attached to the task inherit the new prior-
ity. For hardware interrupts, there is no specialized controller,
but the architecture has a distributed scheme which allows
attaching the interrupts to any task. The occurrence of an
interrupt does not affect the contexts of the tasks (it does not
flush pipeline registers for the instructions from the pipeline
assembly line). In addition, during the execution, an interrupt
may be redistributed to other task by a single WRITE operation
to a register. The nMPRA was designed to respond to a
wide range of time-related events, such as the periodic time
event, watch dog timer event, and two deadline events (first is
equivalent to an alarm and the second is equivalent to a fault).
As a new architectural feature, we can indicate the presence
of the deadline type events that can help the scheduling
algorithms to meet the deadlines. In order to control access to
shared resources, nMPRA implements mutexes in hardware.
The mutexes are grouped in a mutex register file (MRF),
which is composed of a set of registers that contain the mutex
bit in the most significant bit of the register and the unique
identifier (ID) of the proprietary task stored in the lowest
priority bits. The access can be achieved by any task. The
advantage of the scheme is that a single assembler instruction
is used to acquire a mutex, faster than an API function call
within an RTOS implemented in software.

Regarding the IPC, a unit containing events registers (ERs)
is provided. These registers store the event state on the highest
position bit. The next bits hold the ID of the task that activates
the event, the following bits hold the ID of the destination
task to which the event is assigned, and, finally, the last bits
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Fig. 2. nHSE architecture. (a) sCPUi level hardware scheduler (block of nHSE). (b) Digital logic for ready state. (c) Block diagram.

are used as a message field that the programmer can employ
for any purpose. If the enabled event belongs to a highest
priority task, a context switching operation is performed in
the next clock cycle. Again, the advantage of the architecture
is that it uses a single assembler instruction to activate an
event, which is faster than the API function call within an
RTOS implemented in software. As a consequence, if priority
is high, the process of switching to the new task is very fast
(1–3 processor cycles). This method eliminates entirely the
time needed to search for a free event. If a task i is awakened
by an event, it is important to find out the source of the
event. But, searching the ER file (ERF) to find the source,
may take an unacceptable amount of time. To avoid this
problem, whenever the READ instruction is executed, the
search is performed in one processor cycle, based on the
content addressable memory (CAM) principle.

As we can see in Fig. 1, for each sCPU, there is an
independent set of pipeline registers (IF/ID, ID/EX, EX/MEM,
and MEM/WB), a PC, a register file, and a set of special
registers (which are found in nHSE). Due to the fact that
each task has its own set of pipeline registers and working
registers for general purpose, the task context switching can
be performed in a single clock cycle and the response to an
external event can be achieved after 1.5 cycles. That is why,
we can argue that the architecture is very fast, as it enables the
tasks to switch with a minimum delay of 1 or 1.5 processor
cycles and a maximum delay of three processor cycles (for
working memory instructions). The other resources are shared
by all tasks.

The run and idle counters for each sCPUi are implemented
inside the sCPU0. This allows a periodic and precise deadline
evaluation for each sCPUi. This choice takes into consider-
ation the possibility to implement in software the dynamic
scheduling algorithms on the sCPU0, always assigned with
the highest priority.

In presenting the nMPRA, we define the following: the
control registers with task level access (cr) specific to the

sCPUi, the local registers (lr_) (that are part of the private
memory space of each sCPUi), the global registers (gr_) (that
are part of the global address space of the nMPRA and can
be accessed by all sCPU), and the monitoring registers (mr_)
(that can be accessed only by the sCPU0).

III. nHSE ARCHITECTURE

The nHSE [Fig. 2(a)] is a finite state machine, which
has inputs for events, such as interrupts, deadline, watchdog
timers, timers, mutexes, messages, and self-support execution.
Furthermore, nHSE has enabling signals for static and dynamic
schedulers, and inhibits the signal generated by the execution
of load and store instructions; the outputs are the activation
signals of the sCPUs generated by the nHSE. Only one such
output signal can be active at a given moment [as seen
in Fig. 2(a), oi ≡ en_ pi pe_sC PUi ]. The block diagram
contains the ID register of the active sCPU together with
the synchronization logic, the static scheduler, the dynamic
scheduler, and the block related to the events. Each sCPU has
a unique ID, which is an integer number from 0 to n−1. For
example, if n = 4, we have four IDs 0, 1, 2, and 3. The
ID register identifies the active sCPU at the occurrence of an
event. If no event is active, the system is in idle state. The
system becomes active when an event occurs, but if the sCPU
attached clears the event, then the task will self-suspend. If the
execution must be continued, the sCPU must activate the self-
support event [Fig. 2(b) and (c)] before clearing the occurred
event.

The static scheduler is task-oriented. The priority of each
sCPUi is i , the same with the ID of the sCPUi; this means
that priorities are constant during the execution of tasks. The
static scheduler is disabled when the processor is connected
to a power supply. The dynamic scheduler is provided with
a priority register (PR) for each sC PUi, i = 1, . . . , n − 1.
Based on these registers, every sCPUi may have a priority on
a scale from 1 to n − 1, where 1 is the highest and n − 1 is
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Fig. 3. Global hardware scheduler. (a) Static scheduler. (b) and (c) Support for dynamic scheduler.

the lowest. The sCPU0 is always assigned with the highest
priority (0) and that cannot be changed. The priority of a
sCPUi can be changed dynamically by a dynamic scheduling
algorithm implemented either in software, at the sCPU0 level,
or in hardware. When the processor is connected to a power
supply, the dynamic scheduler is disabled; in this case, only the
sCPU0 remains active. The logic of events is divided among
the n sCPU. The occurrence of an event (if it is validated) is
signaled on the level of a sCPUi. If the sCPUi has the highest
priority, the scheduler will validate its execution. In this case,
either the system will be removed from its idle state, or other
sCPU of lower priority will be stopped. Further, we present
details about the generation of events and the nHSE design.

A. Hardware Static Scheduler

Nakano et al. [8] mention that hardware schedulers usually
degrade the performance of the CPU pipeline. The present
architecture has been designed taking into consideration all
these disadvantages regarding the CPU pipeline.

The hardware structure of the scheduler belonging to
each sCPUi (embedded in the logic block of the nHSE)
is shown in Fig. 2(b). The scheduler constantly moni-
tors the events that are associated to the sCPUi. Possible
events of the sCPUi are: timer interrupts (TEvi), watchdog
timer (WDEvi), two interrupts used for preventive signaling of
the deadline (D1Evi and D2Evi), attached interrupts (IntEvi),
mutexes (MutexEvi), synchronization and intertask communi-
cation events (SynEvi), and self-sustaining execution for the
current sCPUi (lr_run_sC PUi ).

Whenever a source generating an event/interrupt is cleared,
the current sCPUi may lose the control of the CPU. The above-
mentioned events can be validated with lr_enTi, lr_enWDi,
lr_enD1i, lr_enD2i, lr_enInti, lr_enMutexi, and lr_enSyni
signals. The only exception is lr_run_sCPUi. These signals
must be stored in a special register, named task register (TR).
The sCPUiEvi signal, which is used to signal the occurrence
of an expected event, is enabled by the mr_stopCPUi signal.
This is part of a monitoring register that is accessible only to
the sCPU0.

The sCPU0 is the only execution unit able to stop the other
sCPUi (i �= 0). For synchronization, we use a D flip-flop
that stores information about a pending event on the rising
clock of the CPU. The pending sCPUi signals imply the
handler over the current sCPUi ID (sCPUi_ID). This action
is performed by writing the value on the arbitration bus
of the scheduler, if there is no task in execution, having a
higher priority than that the sCPUi. The action is marked
by the /sC PU_Ev0 . . . /sC PU_Evi − 1 signals. A simpli-
fied block representation of the local scheduler, previously
described, is shown in [Fig. 2(c)].

Fig. 3(a) shows the general design of the static scheduler.
The schematic of scheduler shown in Fig. 3(a) contains the
sCPUi_ready functional blocks (presented previously), the
register that stores the ID of the highest priority sCPUi, and a
decoder which activates the highest priority sCPUi. The AND

gate and the D flip-flop from the schematic are activated when
there is no other active sCPUi. The en_CPU signal can be
used mainly for power saving. The activation or deactivation
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of any sCPUi specific resources can be accomplished with
en_pipe_sCPU0 through en_pipe_sCPUn-1 signals. In conclu-
sion, the proposed schematic can be used for static scheduling,
if each task runs on a sCPUi. In this case, the static priorities
are identified by the IDs of the tasks.

B. Hardware Dynamic Scheduler

Under certain conditions (for example, if a dynamic
scheduling policy is used), some scheduling algorithms can
bring performance improvement. The dynamic scheduler
shown in Fig. 3(b) and (c) provides the possibility to set
the priority for the sCPUi scheduling units, but it does not
implement any specific scheduling algorithm. This hardware
architecture can be applied to any of the solutions presented
in [8]–[15]. The solutions can include external coprocessors
or on-die implementations.

We need to emphasize that sCPU0 always has the
priority 0, which makes it the highest priority sCPU
from the system. For the rest, we use a special register
(PRIsCPUi_register) that stores the priority of the correspond-
ing sCPUi for i = 1 to n−1. The priority is decoded by the
decoder [shown in Fig. 3(b)], generating one of the signals
en_pri_sC PUi_1, . . . , en_ pri_sC PUi_n − 1. As already
mentioned, priority 0 is reserved for the sCPU0. The output of
the same register is used for selecting the MUX multiplexor
output from Fig. 3(b), which collects the prioritization scheme
result from the inputs on the right side of the figure. The
OR gates [Fig. 3(c)] allow the selection of priority for each
sCPUi (i = 1, . . . , n). The AND gate validates a certain
priority, and the D flip-flop is used for synchronization with the
system clock. The output of the multiplexor validates the value
sCPUi_ID_TS which is the ID of the sCPUi at the input of
the ID register. The same ID register was previously described
in Fig. 3(a); the hardware structure from Fig. 3(c) is used in
the same configuration for the dynamic scheduler.

The priority validation is activated by the sCPU_Evi sig-
nal only if the sCPUi expects the event. The en_CPU
can be used as a global signal, part of a monitoring reg-
ister that deactivates all sCPUi, except the sCPU0. The
pri_1, . . . , pri_n − 1 signals represent all n−1 possible
priorities. The PRIsCPUi_registers that store the priority can
be accessed as local registers for any of the sCPUi (i �= 0)
units. The access can be direct, through instructions, or, in the
supervisor mode the sCPU0 can READ/WRITE the registers.

The PRIsCPUi_registers, abbreviated PRs, are shown in
Fig. 3(b). These registers can be found in any sCPUi, except
the sCPU0. In order to use these registers, we propose the
wait Rj control instruction that waits for the occurrence of
any event marked in the Rj register (bits set to 1). The Rj
is automatically transferred to the TR register. Whenever a
sCPUi resumes execution after a wait instruction, Rj will store
the occurred events. A more efficient and faster method implies
the use of a dedicated mnemonic that stores the events as an
immediate value: wait Rj, events. The events expected by the
wait instruction are loaded in the TR register; when the task
is resumed, these events are loaded in the Rj. We enhance
this design by introducing a new register named ER that

allows reading the signals shown in Fig. 2(b). This enables the
identification of the occurred events attached to sCPUi and,
optionally, their source (without reading the TR register). The
instructions proposed for these registers are: movcr TR, Rj;
movcr Ri, TRj movcr EV, Rj; movcr Ri, EV. In a similar way,
for the PR registers we will use the following instructions:
movcr PR, Rj; movcr Rj, PR. The TR and EV registers are
control registers located in each sCPUi.

The wait instruction permits the synchronization of execu-
tion with the activation of several events. These events can
be dealt with and cleared by software control according to
the priority given by the sCPUi. The majority of the RTOSs
have many built-in mechanisms for resource sharing, intertask
communication, and synchronization, but their functionality
is restricted to functions which implement these mechanisms.
For example, an interrupt, the clearance of a semaphore, and
the arrival of a message cannot be simultaneously waited. The
solution proposed by this paper addresses this exact problem.
Therefore, we can say that the wait instruction is almost as
powerful as a software implemented RTOS.

C. Interrupt Events

The interrupts are very powerful mechanisms that allow
the implementation of periodic, aperiodic, or sporadic events
related to CPU operation. These events can be triggered
by OFF-chip or ON-chip peripherals, or the execution of a
program. According to the classical approach, the interrupt
handlers are usually uninterruptible, and have always a higher
priority than any real-time tasks.

A solution that handles interrupts as threads is presented
in [16]. It was proposed for the Sun Solaris operating system
and it is based on the unification of threads and interrupts
into a single model. The interrupts are converted into threads,
using a limited overhead. This allows a single synchronization
model in the kernel.

The model proposed this paper, and described in Fig. 4(a),
is similar to the interrupts as threads approach. In this new
design, the interrupts are treated as events that are attached
to real-time tasks, and therefore inheriting their priority. The
system has p interrupts, and for each of them there is a global
register (INT_IDi_register) with n useful bits that store the ID
of the task to which the interrupt is associated. The activation
of the INTi interrupt [Fig. 4(a)] validates the DECODER which
activates one of the signals I NT _i0, . . . , I NT _in − 1. The
gate OR [Fig. 4(a)] can collect all interrupts from the system.
They can be attached to sCPUi if all p INT_IDi_register
(i = 0, . . . , p − 1) registers are written with the i value.
Correspondingly, no interrupt can be attached, if none of the
p INT_IDi_register (i = 0, . . . , p − 1) registers are written
with an i value. The role of the D flip-flop is to synchronize
the random appearance of the interrupt event INTi producing
IntEvi [Figs. 2(b) and 4(a)]. This is accounted on the falling
edge of the system clock.

The strong and interesting features of this design are the
following: it does not contain a specialized interrupt controller
(the interrupts inherit the tasks priority); a task can attach
none, one, several, or even all the p interrupts from the
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Fig. 4. (a) Implementation of the interrupts. (b)–(e) Implementation of the mutexes.

system; the programmer is able to establish the priority of the
interrupts attached to the same task; an interrupt attached to a
task can suspend a lower priority task; still, it cannot suspend
the execution of the task to which it is attached, or a higher
priority task; the interrupt can be a task, or can be attached
to a single task. Furthermore, all interrupts can be attached
to a single task; the interrupts do not affect the pipeline of
other sCPUi units; the architecture does not imply saving or
restoring of any context; interrupts can be nested and interrupts
priorities can be dynamic (by reattaching to another task or
by changing the priority of the tasks to which are attached).

The proposed solution has also some disadvantages, such
as the limited number of possible nested levels, restricted to
the number of sCPUs, or the lack of interrupt handler vectors.
If more interrupts are attached to one sCPU, the handling order
is assigned by the software, and this can lead to additional
delays.

D. Time Related Events

As shown in Fig. 2(b), there are three types of time related
events: 1) the periodic time events (TEvi); 2) the watch dog
timer events (WDEvi); and 3) the deadline events (D1Evi is
equivalent to an alarm and D2Evi is equivalent to a fault). For
the implementation, each sCPUi has two dedicated timers. One
of them has three comparators for TEvi, D1Evi, and D2Evi,
while the other has only one comparator used for WDEvi. If the
watchdog is not refreshed periodically, the WDEvi event can
reset (if is activated) the sCPUi. For each of the two timers,
the architecture has local registers (implemented in the local
memory of each sCPUi and accessed with normal memory
access instructions). In addition, these registers may be seen
as monitoring registers that can be accessed by sCPU0 with
normal memory access instructions. The deadline values can

be computed either with a local algorithm executed on sCPUi,
with a global one that is executed on sCPU0, or even with a
combination of the two. The architecture includes two timers
for counting the CPU cycles, when a task is being executed or
suspended. Hence, a software function can closely monitor the
execution of a task on the sCPUi. The access to these counters
can be done in the same manner as for the timers that were
previously presented.

E. Mutexes

The mutual exclusion is an important topic related to
the shared resources. The hardware support for the mutex,
proposed by our design, is shown in Fig. 4(b)–(e). For imple-
mentation, we propose the solution shown in Fig. 4(b)–(e),
which presents a set of global registers with fast access
(for example, the access can be performed in the execution
stage—EX). The MRF is composed of a set of m registers
with length of n +1 bits. It contains the mutex state in the
most significant bit, and the ID of the proprietary task in
the lowest bits. The MRF registers can be accessed from any
sCPU and therefore they are shared resources for all sCPUi.
Each sCPUi has a hardware block, as the one described in
Fig. 4(c), that generates MutexEvi events every time a blocked
mutex is released. For each sCPUi, the decision related to
the mutex taken into consideration is made based on the
lr_en_M0, . . . , lr_en_Mm − 1 signals. These signals can be
stored in local registers named enable mutex register (EMR).
There can be one or several EMRi registers, depending on the
number of mutex bits implemented in the MRF. The D flip-
flop is used for synchronization with the CPU clock, and the
information inside the element is latched on the rising edge
of the CPU clock.

As shown in Fig. 4(d), the block and release operations
of a mutex are performed in a single processor cycle, as an
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Fig. 5. ER file.

atomic operation. A test and set instruction (TAS—signals
in_tasm_wr and Address_i) read the old value of a mutex bit
from MRF (Mutex_i) and sets the Mutex_i bit. If the Mutex_i
bit is set to 1, the mutex is considered available; the last n bits
from the MRF register (Address_i signal) represent the ID of
the mutex’s owner. This is assured by the signals in_tasm_wr,
Address_i and /Mutex_i from Fig. 4(e). If the mutex bit is 0,
then this is set to 1 and the ID of the sCPUi that executes
the instruction is written into the appropriate MRF register
[Fig. 4(e)—for the MRF bits different then mutex bit]. If the
mutex read by the instruction is 1 and it is not assigned to a
task, the value read from the ID register represents the ID of
the mutex’s owner. The erase instruction brings the Mutex_i
to the value 0 using the in_clrm_wr and Address_i signals
[Fig. 4(d)].

In working with mutexes, the following instructions can
be used: tst Rd, Rs (Rs contains the mutex address and Rd
contains the value from the selected MRF register), clrm Ri
(Ri contains the address of the mutex), movmr Rd, Rs (it moves
the mutex register—Rs contains the address of the associated
mutex, and Rd contains the value from the MRF register
without affecting the value of the register), movcr EMRi, Ri
(it writes Ri in EMRi) and movcr Ri, EMRi (it writes EMRi
in Ri). These instructions can be executed on all sCPUi, and,
together with the wait instruction, assure the synchronization
and the total access to all mutexes.

F. Intertask Synchronization and Communication

Intertask synchronization and communication are two other
important aspects specific to RTOSs. A set of global registers
with fast access is used for the implementation of the event
mechanism. The ERF is composed of a set of registers of
(2n + k + 1) bits, shown in Fig. 5. These registers store
the event state on the highest position bit. The following n
bits store the ID of the source task that activated the event;
the next n bits hold the ID of the destination task to which
the event is addressed; finally, the last k bits are used as a
message field available for any purpose. The ERF can be used
with a certain behavior, when an event is activated, and with
another, when the destination task reads the event in order
to discover eventually where and what message has been sent.
As a consequence, two different instructions are used. When a
task wants to activate an event, it prepares the information that
is part of an ER and executes a wait instruction. This action
takes place without the need to specify the event address from
the ERF.

The hardware block, shown in Fig. 6, generates automat-
ically the address (starting from 0) of the first free event.
Furthermore, this hardware block signals if all events are

Fig. 6. Hardware for automatic generation of the next free event.

active (set to value 1). After the activation of a writing event
instruction, the signal in_rdev_rd is 0, and the multiplexor is
activated with the D flip-flop outputs, as represented in the
schematic (Fig. 6). If Event_0 (value stored in ER0 on bit
2n+k) is zero, then the signal /Event_0 has the logic value 1
and the write takes place in the D flip-flop associated with
Event_0. If Event_0 is set to 0, then /Event_0 has the logic
value 1, and the write in all others D flip-flops is inhibited
(Fig. 6). The /Event_0 value (1 logic value) is stored in the
D flip-flop. This signal will pass through the multiplexor and
will activate the three state-buffers. The 0 value is then written
on the DEMUX input which activates the 0 address. If Event_0
has the logic value 1, the first D flip-flop will write 0 after
passing the multiplexor, will inhibit the three state-buffers, and
disable the address 0. Moving on to the second D flip-flop,
a logical value of 1 for the Event_0 will validate the analysis
of the Event_1. The same approach is used for all signals until
event s−1.

In case all events are active, the AND gate from the last
D flip-flop will generate a valid signal. This means that no free
event is left and, in this case, a gr_en_mem_full is generated.
The gr_en_mem_full is also used by the READ and WRITE

instructions (as shown in Fig. 7) in order to signal that the
event bits are busy. This signal is accessible through a global
register accessible to all sCPUi.

Fig. 7 shows all generic signals needed to WRITE

(in_wrev_wr, Address_i and /gr_ev_mem_full signals) the
event i corresponding to the D flip-flop and also the other
bits (bit_ij) of the ERi register. A READ operation will
automatically reset the D flip-flop that is associated with an
event, by activating the in_wrev_wr, Address_i and hit signals.
The validation of the three state-gates also allows reading the
content of the other bit_ij bits that are part of the ERi register.
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Fig. 7. READ and WRITE from ERF.

Fig. 8. sCPUi event enabling/disabling.

This event activation method eliminates entirely the time
needed to search for a free event.

The ERF registers can be accessed from any sCPUi; there-
fore, they are shared resources for all sCPUi units. Each
sCPUi has a hardware block in nHSE (as shown in Fig. 8),
which is used to generate SynEvi signals [Fig. 2(b)] every
time a waited event becomes active. With the help of the
lr_en_Evi0, . . . , lr_en_Evi s − 1 signals, each sCPUi can
decide which event is taken into consideration. These signals
are stored in the enable event register (EER) local registers.
There can be one or several EERi registers, depending on the
number of events implemented in the ERF. The D flip-flop is
used for synchronization with the CPU clock. The information
is stored on the rising edge of the CPU clock.

If a task i (sCPUi) is awakened by an event, it is important
to identify the source of that event. Searching the ERF to
find the source may take an unacceptable period of time.
To avoid this situation, whenever the READ instruction is
executed to read the ERi register from the ERF, the search
is done based on a CAM principle, as shown in Fig. 9. The
search starts with address 0 and ends on the first address for
which there is a match between the destination ID task and the
current task ID. A READ instruction can identify the match,
detect the source task of the event, and find which message
has been sent, simply by reading the contents of the ERF
register.

The inputs of the comparator blocks contain the ID
of the task that executes the instruction (this is done by

Fig. 9. ERi content read is based on a CAM principle.

activating the in_rdev_rd signal) and the destination values
Dest I D_0, . . . , Dest I D_s − 1. If there is a match, and the
event is active, the subsequent hardware gates are blocked for
all events with bigger index numbers (this approach is similar
to the one shown in Fig. 6). In Fig. 6, the in_rdev_rd signal is
used to force the multiplexor to use the value Hiti OR gr_rdi
(global register read). Except for this addendum, the schematic
view shown in Fig. 6 is working as explained previously. The
explanations related to Fig. 7 must also be followed.

For working with events, the event Ri instruction can be
used (Ri contains the source task ID, destination task ID,
and the message that is stored in the last k bits). After the
execution, Ri contains the value gr_en_mem_full that, before
the execution of the instruction, was on the lowest bit position.
If this bit has the value 1, the activation of the event fails.
clrev Ri—after the execution of the instruction, Ri holds
the content of the first ERF register for which a match is
identified. If the event bit has the logical value 0, it means
that the event is not active. The event list can be scanned
recursively until all event sources have been cleared. This is
the case for all tasks that are handling multiple events. The
following instructions: mover Rd, Rs (move ER, where Rs
contains the address of the associated event—when gr_rdi
gets activated—and Rd contains the value of the selected ERF
register—without affecting its value), movcr EERi, Ri (it writes
the Ri in the EERi) and movcr Ri, EERi (it writes the ERRi
in the Ri), are available for all sCPUi. Together with the
wait instruction, they can ensure the synchronization, access
to events, and message passing between tasks.

G. Further Considerations

After RESET, at boot time, nMPRA activates sCPU0 and
deactivates all others sCPUi. The sCPU0 contains all ini-
tialization software and the startup sequences for all others
sCPUi (i = 1, . . . , n − 1). The sCPU0 can treat all nMPRA
functionality related to the hardware interrupts that may lead
to fatal errors. The PCs for each sCPUi will be loaded with
the address of a trap loop where the control is transferred.
From this point, the program can jump to various code places
in order to execute the software and enable the functionality
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TABLE I

MEMORY REQUIREMENTS FOR REPLICATED RESOURCES

OF THE nMPRA PROCESSOR

TABLE II

WORKING MEMORY FOR SOME MICROCONTROLLER FROM

THE HIGH-PERFORMANCE CATEGORY

specific to each sCPUi. Each sCPUi can have access to both
a local code and data memory, and to an external one.

IV. IMPLEMENTATION AND VALIDATION OF

THE nMPRA ARCHITECTURE

This section describes operations that were performed to
test and validate the nMPRA architecture. The architecture
has been implemented and validated on a Virtex-6 FPGA
ML605 Evaluation Kit—Xilinx. The code of the processor
was described in standard very high speed integrated circuit
hardware description language (VHDL). The nMPRA proces-
sor was implemented for a working frequency of 50 MHz. The
nMPRA architecture uses four pipeline registers (including PC
register) totaling 606 bits. The replication of these resources
to 16 tasks requires 1.18 KB of RAM.

Although nMPRA is an architecture that involves shared
resources, its implementation costs are more effective than
those of other commercial architectures. It should be noted that
such an implementation is suitable for a reasonable number
of tasks. For a large number, the frequency will significantly
decrease, due to a synthesis of logic with unreasonably high
propagation times.

Table I presents the memory requirements for possible
implementations of 8, 16, and 32 sCPUs. The values in the
table have the purpose to illustrate the memory consumption
for extreme implementation versions. Considering the data
from Tables I and II, and given that nowadays microcontrollers
use hundreds KB of RAM, we may definitely admit that
the memory requirements needed to implement the nMPRA
processor are more than acceptable. We adopted the example
of Renesas SuperH R5S72681W266FP microcontroller that
has 2.6-MB RAM for general use, without taking into account
the memory required to implement the processor and other
hardware components integrated into the chip. On the Virtex-6
FPGA ML605, the number of slice registers is 14 334 (out of
301 440: 5%) and the number of slice LUTs is 17 749 (out of
150 720: 12%) for 8 sCPU and the number of slice registers

Fig. 10. Jitter of the highest priority task highlighted in relation with the
event occurrence and execution start of the highest priority task (trigger on
falling signal).

is 27 374 (out of 301 440: 9%) and the number of slice LUTs
is 33 571 (out of 150 720: 22%) for 16 sCPU.

In order to be able to test the performance of this processor,
we developed an assembler translator. This application also
uses the VHDL files to validate the opcode of the instruc-
tions. This tool optimizes the time used by the translator in
the process of adding new instructions to the VHDL files.
In the current situation, a code may be written only in the
assembler, while the translator will generate the machine-
code as a VHDL written file. The development of a new
application was necessary due to the fact that the proposed
architecture extends the instruction set of the MIPS processor.
After testing the functionalities of this processor, traditional
MIPS compilation tools can be used to develop real-time
applications.

If data must be exchanged via the common memory area, the
monitoring of the presence of the load and store instructions
on the assembly line must be performed. Only in this case,
and during the execution of these instructions, the hardware
scheduler engine (HSE) unit is not allowed to perform context
switching operations (thus, the data consistency is ensured). In
this context, we present the following test which underlines
this situation, leading to the highest switching cycle—three
clock cycles.

The test application consists of two tasks noted as task0 and
task1. Task0 is initialized, sets an I/O pin on 1 and waits an
event (a periodic interrupt generated by a timer). When the
event occurs, task0 sets the I/O pin with the value 0 and after
some no operation (NO) instructions; it sets the pin with the
value 1, and gets back in the wait state for the timer generated
event. Task1, of less priority, is initialized and enters in a loop
which includes a sw-type instruction.

There is a high probability of engaging in the locking state,
which actually explains the jitter from Fig. 10 (a maximum
delay of 60 ns—three machine cycles). As shown in Fig. 10,
the maximum delay of the scheduler is 60 ns when MPRA
works at a frequency of 50 MHz. Frequency is recorded in
figure with 1/�t, while the period of the system clock is
�t = 20 ns. The clock from the channel 1 is clock_phase0
and is used to synchronize memory and pipeline registers;
the clock from the channel 4 is used to synchronize the HSE
scheduler (clock_phase240).
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Fig. 11. Scheduler response depending on the occurrence of an asynchronous
event.

Fig. 12. HSE scheduler and software application response to an external
asynchronous event.

Fig. 11 shows the response time of the system to an external
interrupt. In this application, the registers used to set a pin,
are periodically set or reset. Fig. 12 shows the asynchronous
external event on channel 1 of the oscilloscope. In this case,
the event is produced by pressing a button on the ML60 board.
The scheduler response, which is a result of task switching,
is indicated on channel 3 (Fig. 12) while the response of
the software application, which sets the pin, is indicated on
channel 2. At a frequency of 50 MHz, the scheduler response
to an external asynchronous event can be up to 26.7 ns,
depending on the occurrence time of the event. The internal
logic block of the HSE requires no more than 6.7 ns to
achieve the scheduling and remapping sequence of the contexts
(Fig. 12).

The response of the software application comes at ∼50 ns
after task switching. It is noteworthy that 40 ns are required
for the execution of a SW and OR instruction. Furthermore,
to monitor the application’s response, we use a registered
port type which uses an internal D flip-flop to store the
state. This D flip-flop is written on the falling edge of the
clock_ phase0 clock. This is a second reason for the delay.
In order to monitor the clock, the asynchronous interrupt
signal, and the response scheduler, we used the unregistered
ports P7, P6, and P5. This means that these ports do not
use any additional internal D flip-flops to store the state and
that they will directly generate the output associated with the
logical values that are written to the port. We used this type of
port to achieve a realistic assessment of the scheduler response

and to eliminate any delays caused by synchronization with
the system clock in writing the port.

V. RELATED WORK

This section provides a brief analysis of the results obtained
within the last two decades on accelerating the schedulers
and algorithm implementation of real-time kernel primitives
in hardware. We start with the FASTCHART project proposed
in [17] in 1991. The sources of nondeterminism in real-time
embedded systems are given by the variation of the instruction
execution cycle due to the presence of the pipeline, cache,
asynchronous external interrupts, variable execution time of
RTOS operations, based on the number of tasks and resources.
All these can be reduced by moving the RTOS operations
in hardware. This is the basic concept of FASTCHART. The
FASTCHART manages 64 tasks with eight different priorities.
There is no support for resources (mutexes, semaphores, etc.).
The implementation was done as an RISC processor, without
interrupt, pipeline, instruction, or data cache; therefore, the
instruction cycle became deterministic. FASTHARD [9] is
based on the previous FASTCHART project [17], but it is
a hardware kernel that supports general-purpose processors.
It uses a standard memory mapped address/data bus scheme.
It supports facilities, such as rendezvous, external interrupts,
periodic start of tasks, and activation and termination of
tasks, without CPU intervention. Since FASTHARD [9],
Adomat et al. [18] described a real-time unit (RTU) as
a hardware-based real-time kernel. It supports 64 tasks,
eight priority levels, periodic tasks with relative delays, binary
semaphores, event flags, watchdogs, and interrupts, and it is
managed simultaneously by three homogeneous processors
connected to a Versa Module Europa (VME) bus.

Lindh et al. [19] describe a scalable architecture for real-
time application (SARA), which can be used with RTU.
The SARA is an extensible system, which uses individ-
ual processor cards with memory and bus controller which
is interconnected with a motherboard using compact PCI.
Lee et al. [20] integrate the RTU into the δ-framework [21]
for SoC/RTOS codesign. Nordstrom et al. [22] adapt the
software core of the μC/OS-II RTOS to a single processor
version of the RTU, to improve performance, and in [23] they
add the configuration of RTU for a single processor version.

The aim of the silicon TRON (STRON) [8] is to speed
up the basic RTOS system calls and to reduce jitter in order
to provide accurate timing predictions. The development is
based on the TRON project, especially the μITRON specifi-
cation for RTOSs, whose calls and functionalities have been
implemented in a hardware core called STRON. The STRON
coprocessor contains task management, flags, semaphores and
timers, and external interrupts management. It is mapped to the
external memory and it is seen as a coprocessor. The SPRING
kernel is developed and described in [24] and has a completely
different approach to the normal scheduling of an RTOS.
The SPRING kernel uses dynamic and speculative scheduling
based on a tree search and heuristic algorithms. Considering
the execution time of tasks, deadlines, resources, and prece-
dence constraints, the scheduling algorithms build a schedule
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plan with the help of which all tasks meet their deadline with-
out ever getting blocked while waiting for resources. In [25],
a hardware implementation is described as a spring scheduling
coprocessor for the software kernel proposed in [24]. The
dynamic scheduling algorithms have a major impact on the
RTOSs overhead. To reduce the computation time of priorities
when selecting a task and to provide time independence
on the number of tasks, a dynamic scheduling coprocessor
was implemented in FPGA, as described in [26] and [27].
It was developed as a scheduling accelerator, using the advan-
tage of hardware parallelism. It can be configured for many
algorithms of which the most advanced is enhanced least
laxity first (ELLF), described in [26]. Vetromille et al. [10]
make a relevant performance test between the systems that
use a single processor, coprocessor, or an external dedicated
hardware unit for implementing the scheduler. The testing
parameters were the CPU utilization, the number of deadline
misses, and the number of context switches. The authors
also discuss additional overhead due to processor-coprocessor
communication specific to software schedulers that are imple-
mented in a separate CPU. Using the behavioral synthesis tool,
Chandra et al. [28] describe how to automatically generate
HW-RTOS from the POSIX API sources of eCos RTOS, thus
increasing the system performance as a whole. H-Kernel [29]
uses a specially designed CPU that has a set of registers for
each task and a dedicated hardware RTOS. It achieves a 60%
increase in performance for a specific application, such as
multichannel real-time audio processing. H-Kernel implements
tasks based on priority management, interrupt management,
event blocks, queues, and time management. Song et al. [29]
describe a processor-based solution which can be tailored to
achieve an improved performance by using the modern FPGA
codesign of HW/SW for a specific application. Advanced
real-time multithreaded processor architecture (ARPA-MT) is
described in [30] and uses modern FPGA technologies to
achieve a predictable and customizable processor. The proces-
sor is accompanied by two hardware coprocessors Cop0-MEC
and Cop2-OSC. The first one manages memory exceptions
and interrupts, while the second implements all standard
features of an RTOS. Orek is a real-time kernel written in
C++. In [31], the motivation, design, and performance results
obtained after porting all kernel functionality to hardware are
presented. The aim is to improve determinism and perfor-
mance. ARTESSO [32] is an RTOS implemented in hardware,
plus some specific TCP/IP modules. ARTESSO is motivated
by the fact that a high-performance embedded processor is
required if the application needs to obtain data throughput for
speeds of 100 Mb/s or more. The proposed architecture moves
the kernel, checksum calculation, memory copying, and the
TCP/IP header rearranging to hardware.

An interesting architecture is proposed in [5], one which
uses a thread interleaved pipeline, scratch path memories,
and a DRAM controller having compassable and predictable
memory performances. This architecture allows concurrent
programming, preserving at the same time their timing
proprieties. Kuacharoen et al. [11] show a configurable
hardware scheduler for real-time systems. The configurable
hardware scheduler supports three scheduling algorithms:

1) property-based; 2) rate monotonic; and 3) earliest dead-
line first. The hardware scheduler also implements a specific
controller for interrupts. It does not implement instructions,
such as mutexes, semaphores, and so on, as they are taken
over by the software part of the implementation.

Andrews et al. [33] describe hthread, which is a hard-
ware/software codesigned multithreaded RTOS kernel. This
kernel is part of a hybrid thread programming model being
developed for hybrid systems which are comprised of both a
software resident and a hardware resident concurrently exe-
cuting threads. The kernel supports up to 256 active software
threads, 256 active hardware threads, 64 blocking semaphores,
64 binary spin-lock semaphores, preemptive priority, round
robin, and FIFO scheduling algorithm. The kernel contains
a new interrupt controller named bypass interrupt scheduler
which transforms asynchronous interrupt semantics into syn-
chronous, controllable, and priority-based thread scheduling
requests. Applications access the components of the hardware
based operating system through familiar APIs, such as create,
join, and exit.

We conclude that the main reasons for implementing
RTOS, or parts of it in hardware are: reduction of mem-
ory footprint, decrease of execution overhead given by
the basic functions (scheduling and context switching) and
RTOS function call, jitter reduction or elimination, interrupts
response time improvement and the possibility to better
control their behavior (interrupts as tasks). One can also
notice that there are two trends in hardware-based RTOS
design and scheduling accelerators: a minor one, based on
the design of specialized processors: the FASTCHART [17],
H-Kernel [29], and ARPA [30] projects, and a major one, using
the coprocessors, such as FASTHARD [9], RTU [18]–[20],
[22], [23], STRON [8], δ-Framework [21], HW-eCos [28],
OReK_ CoP [31], AR-TESSO [32], hthreads [33], or schedul-
ing accelerators, such as ELLF_ SCoP [26], [27] or
Kuacharoen [11].

In the following paragraphs, we present some comparisons
between the solutions proposed in this paper and the ones
described in Section IV.

The first comparison, as shown in Table III, is based on
resource replication criteria, task communication speed and
hardware or hardware–software implementation. Although it
may seem like a simple solution, the nMPRA is the only
unit ensuring the replication of the pipeline registers with
functional effects on task switching speed. The ARPA-MT
architecture alone carries out the IF and ID replication of the
pipeline registers for each instanced task. However, it enters
into competition for the last three pipeline levels—EX, MA,
and RB. Although the solution of replicating the file containing
the registers is an expensive hardware solution, it is also a new
convergent factor toward reaching a switching speed between
1 and 3 machine cycles, reality which can only be met at
the nMPRA. As can be clearly seen in Table III, even for a
50-MHz frequency processor, the switching speed of tasks is
60 ns. At the same time, the nMPRA is simply a hardware
implementation, unlike the other implementations which are
a hardware–software combination, inferentially leading to a
longer switching time interval. It is noteworthy that hthreads
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TABLE III

PROCESSOR AND RTOS ARCHITECTURE

TABLE IV

COMPARING SCHEDULERS

architecture allows the concurrent execution of hardware tasks
and a software task.

The second comparison is based on the characteristics of
the schedulers and is described in Table IV. The compared
solutions refer to hardware-implemented static and dynamic
schedulers, except for the hthreads. The nMPRA is the only
one having the scheduler implemented at processor level
and being able to gather the scheduling information directly
from the hardware, without affecting a possible bus com-
munication as is the case with the other solutions taken
into consideration. All solutions propose static scheduling
algorithms. Since scheduling performs the hardware switch
toward the highest priority thread, we can admit that nMPRA
is the fastest (it switches from one task to another with
a delay of 1–3 machine cycles). As far as the implemen-
tation of dynamic scheduling algorithms is concerned, the

TABLE V

COMPARING INTERRUPT CONTROLLERS

ARPA-MT [30] and Kuacharoen et al. [11] solutions are more
advanced, as they are hardware implemented. At present,
the nMPRA does not have a hardware-implemented dynamic
algorithm, as it is prepared to support dynamic priorities
using the dynamic scheduler. As we have already indicated
in Section III-B, we can implement some of the solutions
proposed in the specialized literature. The scheduler activity
is allocated and implemented to the nMPRA through the
hardware. As for the other solutions, scheduler activation is
attributed to the co-processor, requiring bus transfer cycles
and even software intervention.

The third comparison refers to the interrupt system and is
presented in Table V. We have found the concept of interrupt
of threads in [11] and [33]. As for ARPA-MT [30], there
is no explicit reference to interrupt management. In [11],
the interrupt controller is briefly described, indicating that it
supports eight interrupt levels. Each interrupt can be associated
with a task, delegated to manage the associated levels of
interrupts. Each interrupt may be set up as a fast interrupt
(the interrupt handler suspends the current task) or a slow
interrupt (handling task is inserted at the end of the priority
line). Unlike the other implementations, the nMPRA interrupt
system is completely allocated, so that an interrupt could be
attached to one task only, while a task could have attached
more interrupts (even all of them). A major advantage of the
nMPRA is represented by the idea that it does neither affect
the pipeline, NOR does it require register saving. In addition,
interrupts are dealt in a unitary manner, just as the other events
in the system.

The last comparison is shown in Table VI and refers to
the implementation of the synchronization and communication
primitives among tasks. The nMPRA is the only architecture,
among the ones already presented, which implements these
primitives in hardware. If an event occurs, like the ones
described in Section III-F, and if it is associated with a
task of a higher priority than the current task, then the task
switch occurs with a delay of 1–3 cycles. The nMPRA may
simultaneously synchronize with all supported events, using
only one wait instruction. Any of the expected events which
activate first shall initiate the task when it becomes the highest
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TABLE VI

COMPARING MECHANISMS FOR TASKS SYNCHRONIZATION

AND COMMUNICATION

priority task. As a conclusion, we can state that nMPRA does
not implement queues for task states NOR task control block
structures.

VI. CONCLUSION

This paper extends the basic idea presented in [6] and [7],
defining original new functionalities for the nMPRA and nHSE
architectures. The scheduler architecture has been defined
with support for events (timer, watchdog timer, deadline,
interrupt, mutex, and event). Two scheduling structures have
been proposed: a static one, in which the ID and the task
priority are equal to 0, as the highest priority, and n−1, as the
lowest, and a dynamic one where the priority and ID are not
necessarily the same. Here, the priority can be programmed
inside each sCPU unit. This allows the implementation of
scheduling algorithms with dynamic priorities.

This paper proposes an innovative solution for the interrupt
mechanism. In this context, the interrupts inherit the priority
and the behavior of the tasks to which they are attached.
By using this approach, the behavior of an interrupt is more
predictable in the context of a real time application (a task can
be interrupted only by the interrupts that are attached to higher
priority tasks). The proposed architecture has some interesting
and powerful features described in Section III-C.

A set of mutexes implemented in hardware have been
included in the architecture so as to restrict the access to the
shared resources of the sCPUs. The mutex access is done in
a single CPU cycle and it is atomic. The proposed solution
allows a task that is waiting on a hardware mutex to auto-
suspend itself until the mutex is freed without any overhead
from the software or from RTOS. A set of events implemented
as an ERF has been included in the architecture, in order to
be used as part of an integrated intertask communication and
synchronization mechanism. The ERF is also regarded as a
shared resource for all sCPUi. The access for setting an event
does not use as reference the event address (there are no search
operations to find a free event).

As presented in Section III-A, the wait instruction is very
powerful since it allows synchronization with several events.
These events can be treated and cleared under software control,
following a given priority which is imposed by the sCPU
tasks.

Finally, we can conclude that the proposed nMPRA archi-
tecture is a very powerful one mainly because of the following
aspects.

1) The switch between tasks is done usually in one clock
cycle and in maximum three clock cycles when the CPU
works with the global memory [7].

2) The system’s reaction to an external event will not
exceed 1.5 clock cycles if the event is attached to a
higher priority task than the current task.

3) The pipeline is not reset; there is no need for context sav-
ing/restoration. Subroutine calls are accelerated through
automatic parameter copying and register set remapping.

4) Internal high speed memory-based stack.
5) Powerful instructions for resource sharing, synchroniza-

tion, and intertask communication.
As future work, we intend to create specific bench tests
(currently, the existing bench tests cannot run on the proposed
architecture because we introduced new instructions to use the
nHSE) for new architecture in order to compare it with regular
processors. Furthermore, we intend to apply the concepts
presented in this paper on the advanced RISC machines
(ARM) Cortex M architectures.
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