Rationally triangulable automorphisms

James K. Deveney and David R. Finston
Department of Mathematical Sciences, Virginia Commonwealth University, 1015 W. Main St., Richmond, VA 23284, USA
Communicated by C.A. Weibel
Received 13 February 1990

Abstract

Deveney, J.K. and D.R. Finston, Rationally triangulable automorphisms, Journal of Pure and Applied Algebra 72 (1991) 1-4. This paper provides a necessary and sufficient condition for the rational triangulability of actions of the algebraic group G_{a} on affine space. The criterion is used to demonstrate the rational triangulability of all G_{a} actions on $A^{3}(k)$, as well as to prove, for arbitrary n, that all G_{a} actions are stably rationally triangulable.

1. Introduction

A rational action of an algebraic group G, defined over the characteristic zero, algebraically-closed field k, on the affine space $A^{n}(k)$, is said to be triangulable if coordinates x_{1}, \ldots, x_{n} can be chosen so that the induced automorphism on the coordinate ring has the form $x_{i} \mapsto \alpha_{i} x_{i}+F_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ with α_{i} in the multiplicative group of k. The action is said to be linear if there is a coordinate system on which it is effected by a linear change of variables, and tame if it lies in the group generated by the triangular and linear automorphisms.

It is known that the automorphism group of $A^{2}(k)$ is the amalgamated free product of the groups of linear and triangular automorphisms, but it remains unknown whether these subgroups generate the automorphism group if $n \geq 3$. Bass, in [1], and Popov, in [4], have given examples of actions of the additive group of k, denoted G_{a}, on $A^{3}(k)$ which are neither linearizable nor triangulable. The structure theory of amalgamated products thus shows that the automorphism group cannot have this structure for $n \geq 3$.

Two approximations to tameness are the notions of stable tameness and rational triangulability. An action of G on $A^{n}(k)$ is stably tame provided its extension to $A^{n+m}(k)$ by fixing the last m coordinates is tame, and rationally
triangulable if there are generators y_{1}, \ldots, y_{n} of the field of rational functions so that each of the subfields $k\left(y_{1}, \ldots, y_{i}\right)$ is invariant under the group of k automorphisms of the rational function field induced by G. In [6], Smith showed that the examples of Popov are stably tame. It was asked in [1] whether every rational action of a unipotent group on affine space is rationally triangulable.

This paper provides a necessary and sufficient condition for the rational triangulability of actions of the additive group of k on affine space. The criterion can be used to demonstrate the rational triangulability of all G_{a} actions on $A^{3}(k)$, in particular those of [1] and [4], as well as to prove, for arbitrary n, that all $\boldsymbol{G}_{\mathrm{a}}$ actions are stably rationally triangulable (indeed they are rationally triangulable in the extension of the action to $A_{n+1}(k)$).

2. Generation of pureiy transcendental extensions

We begin with a general result on pure transcendental extensions of degree one of an arbitrary field of characteristic zero.

Theorem 2.1. Let K be a field of characteristic zero, not necessarily algebraically closed, and $K(z)$ a simple transcendental extension. An element $w \in K(z)$ satisfies $K(w)=K(z)$ if and only if there is an automorphism f of $K(z)$ fixing K and sending w to $w+c$ for some nonzero $c \in K$.

Proof. If $K(z)=K(w)$, then $f(w)=w+1$ is the desired automorphism. Conversely suppose that f is a K-automorphism of $K(z)$ mapping w to $w+c$ for some nonzero c in K. Then the group $\langle f\rangle$ of K-automorphisms generated by f is infinite, translates w, and leaves $K(w)$ invariant.

Since f fixes K and moves $w, K(z)$ is a finite-dimensional, separable extension of $K(w)$; in particular, only finitely many places of $K(w)$ over K ramify in $K(z)$. Since $K(w)$ is $\langle f\rangle$-invariant, those places are permuted by the $\langle f\rangle$ action and therefore an infinite subgroup H of $\langle f\rangle$ fixes them.

Let $h \in H$ with $h(w)=w+a$, for some $0 \neq a \in K$, and let \mathscr{P} be a ramified place. Then $h \mathscr{P}=\mathscr{P}$ and $\mathscr{P}(w)=(h \mathscr{P})(w)=\mathscr{P}(w+a)=\mathscr{P}(w)+a$. Since $a \neq 0$, $\mathscr{P}(w)=\infty$. Thus the only places which ramify are the poles of w.

Let $[K(z): K(w)]=n$ and let \bar{K} be an algebraic closure of K. Then $[\bar{K}(z): \bar{K}(w)]=n$ and again ramification can occur only at the places of $\bar{K}(w)$ which are poles of w. The remainder of the proof follows as in [8, p. 232]. Namely, with G (resp. g) denoting the genus of $\bar{K}(z)$ (resp. $\bar{K}(w)$), \mathscr{D} the different, and $d^{0}(\mathscr{D})$ its degree, the Hurwitz-Zeuthen formula $2 G-2-n(2 g-$ $2)=d^{0}(\mathscr{D})$ yields $d^{0}(\mathscr{D})=2 n-2$, since $G=g=0$. But the concentration of the ramification at the poles of w implies that $d^{0}(\mathscr{D}) \leq n-1$. Thus, $n=1$.

The theorem clearly does not hold in positive characteristic p. One simply takes $w=z^{p}$ and $g(z)=z+1$.

The following result shows that rationaily trianguiable actions of G_{a} have a particularly simple form.

Theorem 2.2. If $G=G_{a}$, acting rationally and nontrivially on $A^{\prime \prime}(k)$, is rationally triangulable, then $k\left(x_{1}, \ldots, x_{n}\right)=k\left(z_{1}, \ldots, z_{n}\right)$ where $k\left(z_{1}, \ldots, z_{n-1}\right)$ is fixed by G, and for all $\sigma \in G, \sigma\left(z_{n}\right)=z_{n}+t_{\sigma}$ for $t_{\sigma} \in k\left(z_{1}, \ldots, z_{n-1}\right)$.

Proof. Let y_{1}, \ldots, y_{n} generate $k\left(x_{1}, \ldots, x_{n}\right)$ with the fields $k\left(y_{1}, \ldots, y_{i}\right)$ invariant under the given G_{a} action. By Rosenlicht's cross-section theorem, $k\left(y_{1}, y_{2}\right)=K^{G}(w)$ where K^{G} is the fixed field of G in its restriction to $k\left(y_{1}, y_{2}\right)$, and w is transcendental over k [2, 1.152]. By the generalized Luroth theorem [3], $K^{G}=k\left(z_{1}\right)$. Thus $k\left(x_{1}, \ldots, x_{n}\right)=k\left(z_{1}\right)\left(w_{1}, y_{3}, \ldots, y_{n}\right)$. By induction, it follows that $k\left(y_{1}, \ldots, y_{n}\right)=k\left(z_{1}, \ldots, z_{n-1}\right)\left(w_{n}\right)$ and that $k\left(z_{1}, \ldots, z_{n-1}\right)$ is fixed by G.

Since G acts rationally and nontrivially on $k\left[x_{1}, \ldots, x_{n}\right]$, there is a finitedimensional generating subspace V on which the action can be represented by unipotent matrices, and an element $w \in V$ for which $\sigma(w)=w+t_{\sigma}$ for all $\sigma \in G$. It follows from Theorem 2.1 that $k\left(z_{1}, \ldots, z_{n-1}\right)\left(w_{n}\right)=k\left(z_{1}, \ldots, z_{n}\right)(w)$.

3. Rationally and stably rationally íriangular actions

A rational action of an algebraic group G on an affine domain A over k has a unique extension to an action on the field of fractions K. The subfield of K fixed elementwise by the extended action will be denoted K^{G}.

Theorem 3.1. Every rational action of G_{a} on $k\left[x_{1}, \ldots, x_{n}\right]$ is stably rationa!ly triangulable. An action is rationally triangulable if and only if $k\left(x_{1}, \ldots, x_{n}\right)^{G_{a}}$ is a pure transcendental extension of k.

Proof. Let $k^{(n)}=k\left(x_{1}, \ldots, x_{n}\right)$ and $F=k^{(n) G_{\mathrm{a}}}$. Then $k^{(n)}=F(w)$ and G_{a} acts as translations on w. The second assertion is therefore obvious. However, $F(w)$ is a pure transcendental extension of k, and so therefore is $F\left(x_{n+1}\right)$ for a new variable x_{n+1}. The action of G_{a}, extended to $k^{(n)}\left(x_{n+1}\right)$ by fixing this variable, is therefore rationally triangulable.

Corollary 3.2. Every rational G_{a} action on $k\left[x_{1}, x_{2}, x_{3}\right]$ is rationally trianguiable.
Proof. According to Castlenuovo's theorem, a unirational field of transcendence degree 2 over ar algebraically-closed field of characteristic zero is pure transcendental. This applied to F of the previous theorem yields the result.

A finite-dimensional linear representation of G_{a} in $\mathrm{GL}(V)$ induces an action on the affine space spec $S(V)$, where $S(V)$ is the symmetric algebra of V. Such ar
action is called a linear G_{a} action. Alternatively, a nilpotent endomorphism of V extends to a locally nilpotent derivation of $S(V)$, which can be exponentiated to yield a one-parameter group of automorphisms of $S(V)$ isomorphic to G_{a}. Indeed, all linear G_{a} actions arise in this way. If δ is such a derivation and $f \in S(V)$ one of its constants, then $t \mapsto \exp (t f \delta)$ is a G_{a} action since $f \delta$ is at least locally nilpotent on $S(V)$. The examples of Bass [1] and Popov [4] are precisely of this form, and so will be called Popov G_{a} actions.

Corollary 3.3. All Popov G_{a} actions are rationally triangulable.

Proof. The Jordan normal form of a nilpotent endomorphism of V shows that a linear G_{a} action is triangulable (a fortiori rationally so). As such the fixed field is pure transcendental over k. However, the fixed field of a Popov action is identical to that of the linear action from which it was derived.

References

[1] H. Bass, A non-triangular action of G_{a} on \boldsymbol{A}^{3}, J. Pure Appl. Algebra 33 (1984) 1-5.
[2] H. Matsumura. On algebraic groups of birational transformations, Rendiconti Accademia Nazionale dei Lincei. Classe di Scienze Fis. Mat., e Naturale 34 (1963) 151-155.
[3] M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967) ©5-91.
[4] V. Popov, On actions of G_{a} on A^{n}, in: Algebraic Groups (Utrecht, 1986), Lecture Notes in Mathematics 1271 (Springer, Berlin, 1987).
[5] C. Seshadri, On a theorem of Weitzenboch in invariant theory, J. Math. Kyoto Univ. 1 (1961) 403-409.
[6] M. Smith. Stably tame automerphisms, J. Pure Appl. Algebra 58 (1989) 209-212.
[7] L. Tar. An algorithm for explicit generators of the invariants of the basic $\boldsymbol{G}_{\mathrm{a}}$ actions, Comm. Algeora 17 (1989) 565-572.
[8] W. Vasconcelos, Derivations of commutative Noetherian rings, Math. Z. 112 (1969) 229-233.

