
Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/infoproman

Knowledge based collection selection for distributed information
retrieval

Han Baoli, Chen Ling*, Tian Xiaoxue
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

A R T I C L E I N F O

Keywords:
Collection selection
Distributed information retrieval
Knowledge base
Query expansion

A B S T R A C T

Recent years have seen a great deal of work on collection selection. Most collection selection
methods use central sample index (CSI) that consists of some documents sampled from each
collection as collection description. The limitations of these methods are the usage of ‘flat’
meaning representations that ignore structure and relationships among words in CSI, and the
calculation of query-collection similarity metric that ignore semantic distance between query
words and indexed words. In this paper, we propose a knowledge based collection selection
method (KBCS) to improve collection representation and query-collection similarity metric. KBCS
models a collection as a weighted entity set and applies a novel query-collection similarity metric
to select highly scored collections. Specifically, in the part of collection representation, context-
and structure-based measures are employed to weight the semantic distance between two entities
extracted from the sampled documents of a collection. In addition, the novel query-collection
similarity metric takes the entity weight, collection size, and other factors into account. To enrich
concepts contained in a query, DBpedia based query expansion is integrated. Finally, extensive
experiments were conducted on a large webpage dataset, and DBpedia was chosen as the graph
knowledge base. Experimental results demonstrate the effectiveness of KBCS.

1. Introduction

Distributed Information Retrieval (DIR), also known as Federated Search (FS) or Federated IR (FIR), concerns with aggregating
multiple searchable sources of information under a single interface (Crestani & Markov, 2013). DIR consists of four main phases:
collection (server/resource) description, collection selection, results merging, and results presentation. Given a query and a set of
collection descriptions, collection selection ranks available collections based on their computed scores, then determines which col-
lections to search (Callan, 2002). In a specific search circumstance, users are often interested in top-ranked search results. However,
not all collections contain information that users need. If search engine only retrieve a small number of collections and get a similar
effect to retrieve all collections, it would significantly enhance the efficiency of retrieval system. Collection selection plays an im-
portant role in reducing computational overhead and improving retrieval efficiency.

Recent years have seen a great deal of work on collection selection, which can be divided according to the mechanism to describe
a collection: dictionary-based methods (Aly, Hiemstra, & Demeester, 2013, Callan, Lu, & Croft, 1995, Gravano & Garcia-Molina,
1995, Xu & Croft, 1999, Yuwono & Lee, 1997) and sampling-based methods (Baillie, Carman, & Crestani, 2011, Kulkarni, Tigelaar,
Hiemstra, & Callan, 2012, Mendoza, Marín, Gil-Costa, & Ferrarotti, 2016, Paltoglou, Salampasis, & Satratzemi, 2011, Shokouhi, 2007,
Shokouhi, Zobel, Tahaghoghi, & Scholer, 2007, Si & Callan, 2003, Thomas & Shokouhi, 2009, Wauer, Schuster, & Schill, 2011).

http://dx.doi.org/10.1016/j.ipm.2017.10.002
Received 1 April 2017; Received in revised form 28 August 2017; Accepted 11 October 2017

* Corresponding author.
E-mail addresses: litutor@zju.edu.cn (B. Han), lingchen@cs.zju.edu.cn (L. Chen), xxtian@zju.edu.cn (X. Tian).

Information Processing and Management 54 (2018) 116–128

0306-4573/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/03064573
https://www.elsevier.com/locate/infoproman
http://dx.doi.org/10.1016/j.ipm.2017.10.002
http://dx.doi.org/10.1016/j.ipm.2017.10.002
mailto:litutor@zju.edu.cn
mailto:lingchen@cs.zju.edu.cn
mailto:xxtian@zju.edu.cn
http://dx.doi.org/10.1016/j.ipm.2017.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipm.2017.10.002&domain=pdf

Dictionary-based methods use the word statistics of all documents as collection description, and then exploit a scoring function to
reflect the similarity between a collection and a query. However, it is unfeasible to acquire the word statistics of all collections in an
uncollaborative distributed information retrieval environment. Another problem is that the scoring function based on word statistics
loses a large amount of semantic information in calculating collection score, e.g., synonym, polysemy, and the order of words. These
methods also have a low effectiveness in the environment of skewed collection sizes.

To overcome the limitation of usage in uncollaborative distributed information retrieval environment, sampling-based methods
use some documents that are sampled from a collection as collection description. With the development of text representation
technology, some sampling-based methods (Callan & Connell, 2001) begin to exploit ESA (Gabrilovich & Markovitch, 2007) and LDA
(Blei, Ng, & Jordan, 2003) to represent collection description. Compared with dictionary-based methods, sampling-based methods
can find entities or topics that reflect the semantic information of a collection and have higher accuracy of collection representation.
However, they totally ignore the structure and relationships among entities or topics.

The growing popularity of graph knowledge bases, e.g., DBpedia (Bizer et al., 2009), Yago (Hoffart, Suchanek, Berberich, &
Weikum, 2013), and Freebase (Bollacker, Evans, Paritosh, Sturge, & Taylor, 2008), has inspired the emergency of new text re-
presentation methods. To represent documents with more fine-grained semantic information, knowledge based text representation
methods (Ni et al., 2016, Schuhmacher & Ponzetto, 2014) exploit the relational knowledge and network structure encoded in graph
knowledge bases. These methods have achieved better performance than ESA and LDA.

Query expansion is also important for collection selection, which can help reduce the vocabulary mismatch problem by adding
related terms to a query and find potential related documents and collections (Carpineto & Romano, 2012). If a collection is modeled
as a weighted entity set, without query expansion, it would be hard to compute its score for a query containing few entities. There is a
vast amount of research work on knowledge based query expansion (Arguello, Elsas, Callan, & Carbonell, 2008, Dang & Croft, 2010,
Eiron & McCurley, 2003, Guisado-Gámez, Dominguez-Sal, & Larriba-Pey, 2014), which can obtain expansion terms from external
knowledge sources, e.g., Wikipedia and DBpedia. Arguello et al. (2008), Dang and Croft (2010) and Eiron and McCurley (2003) only
focus on adding entities directly connected to original query entities in a graph knowledge base. Due to the limitation in connected
entities, these entities that are actually related to original query entities but not connected in a knowledge base are excluded in
expansion terms. Guisado-Gámez et al. (2014) not only find the semantic relevant terms but also the connected entities in a
knowledge base, and thus has a better performance.

As mentioned above, collection representation, query-collection similarity metric, and query expansion are three key points in
collection selection research. In this paper, we propose knowledge based collection selection (KBCS), which covers the three key points.
KBCS explicitly models a collection as a weighted entity set. Entities are firstly extracted from the sampled documents of a collection
and the semantic distance of each pair of entities is weighted by employing semantic relation measures, including context- and
structure-based measures based on knowledge bases. Then, to identify the important entities, entities are assigned with different
weights by calculating semantic distances between an entity and all the other entities in a collection. In addition, we integrate a query
expansion method (Arguello et al., 2008) to find more related entities. Specifically, to distinguish entities in a query and avoid query
drift, the way to weight query entities is adjusted in our method. Finally, we present a novel query-collection similarity metric based
on the knowledge representation that takes sampling factor (the proportion of sampled documents in a collection), collection entity
frequency, collection entity weight, and query entity weight into account.

To summarize, our contributions are as follows:

1. Propose KBCS, which exploits the relational knowledge and network structure encoded in knowledge bases to solve the ‘flat’
meaning representation problem, and integrates a query expansion method to solve the vocabulary mismatch problem.

2. Present a query-collection similarity metric, which aggregates both context- and structure-based semantic distances between
query entities and collection entities. To improve its precision, the sampling factor, collection entity frequency, collection entity
weight, and query entity weight are incorporated into the calculation formula.

3. Conduct extensive experiments to verify the effectiveness of KBCS. On one hand, evaluation on KBCS and baselines has de-
monstrated that KBCS can get a high precision while chooses few collections. On the other hand, evaluation on query expansion
has demonstrated that enriching entities found in query terms can significantly improve KBCS's precision.

The rest of this paper is structured as follows: the next section describes related work on collection selection. Section 3 firstly gives
some definitions about collection selection and a brief introduction to KBCS's architecture, and then elaborates on KBCS's algorithm.
Section 4 describes experimental details and discusses experimental results. We conclude our work in Section 6.

2. Related work

There has been considerable research on collection selection. Collection selection algorithms can be divided into three classes:
dictionary-based methods, sampling-based methods, and classification-based methods which combine the above methods and a
number of other query- and corpus-based features in a machine learning framework. In this paper, we focus on dictionary- and
sampling-based methods, which are most related prior research work.

2.1. Dictionary-based methods

Dictionary-based collection selection methods use the word statistics of all documents in a collection as collection description.

B. Han et al. Information Processing and Management 54 (2018) 116–128

117

Then these methods calculate the similarity between a query and a collection based on word statistics. Finally, collections are ranked
and highly scored collections are selected.

CORI (Callan et al., 1995) uses the TF-IDF (Chowdhury, 2010) scoring function of INDRI (Strohman, Metzler, Turtle, & Croft,
2005) to calculate the similarity between a collection and a query, then selects highly scored collections. Xu and Croft (1999) build a
topic language model to represent the distribution of words in a collection. It organizes collections around some topics and selects
right topics for a query. The similarity between topics and a query is computed by Kullback-Leibler divergence, which is also viewed
as collection score. GGloss (Gravano & Garcia-Molina, 1995) uses a new type of vector space model to represent collection, where the
ith component reflects the weight of a word statistic feature. The cosine distance of vectors is chosen as collection score. Due to the
phenomenon that the same word in different collections has different document frequencies, CVV (Yuwono & Lee, 1997) combines
the document frequency and the variance of cue validity to calculate the similarity between a collection and a query. Taily (Aly et al.,
2013) models the score distribution of documents in each collection as a Gamma distribution and selects collections containing more
than a certain number of documents that are beyond the cut-off score.

This type of methods requires that each collection can provide its own word histograms to describe the statistics of words.
However, it is difficult to do in practice, especially in an uncollaborative environment. In addition, word histograms do not consider
any semantic information, e.g., synonym, polysemy, and the order of words, which directly lead to a bad collection representation
and similarity measure.

2.2. Sampling-based methods

Sampling-based collection selection methods use central sample index (CSI) that consists of some documents sampled from each
collection as collection description. These methods generally employ sampling algorithm, e.g., query-based sampling (Callan &
Connell, 2001), to get the CSI, and calculate the similarity between a query and a collection based on the CSI. Finally, collections are
ranked and highly scored collections are selected.

Some collection selection methods (Kulkarni et al., 2012, Paltoglou et al., 2011, Shokouhi, 2007, Shokouhi et al., 2007, Si &
Callan, 2003, Thomas & Shokouhi, 2009) utilize keyword-based similarity measures to calculate the scores of sampled documents,
and then estimate collection score. The main phases of these methods are the following: firstly, evaluate the relevance between a
query and a document. Then, group sampled documents by the collection they belong to. The scores of strongly related documents
(documents with high score) in the same group are accumulated as collection score. Finally, sort collections by score in descending
order and select top-ranked collections. The main difference between these methods is the calculation of documents’ score. ReDDE (Si
& Callan, 2003) treats all documents equally and gives them same score. FIRSTM-PR (Shokouhi et al., 2007) calculates documents’
score with BM25 similarity function and reduces the CSI size by exploiting query log information to eliminate terms. CRCS
(Shokouhi, 2007) groups documents by their ranking, and documents in a group have same score. CiSS (Paltoglou et al., 2011) and
SUSHI (Thomas & Shokouhi, 2009) calculate documents’ score with an interpolant function and a fitted curve function, respectively.
SHiRE (Kulkarni et al., 2012) uses a tree structure to estimate documents’ score.

The above-mentioned six methods have taken many factors into account, e.g., the size of a collection. However, the calculation of
document score depends only on the TF-IDF keyword estimation and the fitted function, without considering semantic information.
The TF-IDF keyword estimation is a rough similarity measure and the fitted function only simulates the distribution of document
scores, so they cannot improve the precision of similarity measure essentially.

Other collection selection methods (Baillie et al., 2011, Mendoza et al., 2016, Wauer et al., 2011) utilize semantic-based similarity
measures to calculate collection score. Wauer et al. (2011) use ESA (Gabrilovich & Markovitch, 2007) vector to represent collections
and queries, and then get collection score from cosine similarity, but it has dimension disaster problem. Baillie et al. (2011) model a
collection in a low dimensional topic space by using LDA (Blei et al., 2003) topic model, under which collections are ranked based on
the topical relevance between a collection and a query. However, LDA topic model does not consider the mutual position of the words
in a document, which would result in mismatching topics, and it is also computationally time-consuming on large data sets.
Mendoza et al. (2016) builds the vector of each collection on query term space by employing a logistic regression algorithm, and then
predicts collection score for a new query. Only from the perspective of query term, it represents the semantic information of a
collection partially. Moreover, these methods totally ignore the structure and relationships among entities, topics, and terms.

In addition, some collection selection methods (Francès, Bai, Cambazoglu, & Baeza-Yates, 2014, Kim, Callan, Culpepper, &
Moffat, 2016, Kulkarni & Callan, 2015) employ collection creation, document replication, and system workload balancing to improve
performance. However, these methods only optimize external factors rather than internal factors, e.g., collection representation and
query-collection similarity metric.

3. Methodology

3.1. Definitions

Before introducing the details of our method, some related definitions are given as follows:
Definition 1. (Collection) A collection c is a set of documents, = ⋯c d d d{ , , , }c1 2 , |c| is the total number of documents in c. A DIR system
contains many collections = ⋯C c c c{ , , , }N1 2 , N is the total number of collections.

Definition 2. (Collection Selection) Given a query q, the DIR system would calculate the similarity between q and c, and then get collection

B. Han et al. Information Processing and Management 54 (2018) 116–128

118

score Rc:

=R Rel q c(,)c (1)

where Rel(q, c) is a query-collection similarity metric. = ⋯R R R R{ , , , }c c cN1 2 is the collection score list, where each collection ci in C would have
a scoreRci. Finally, the DIR system would rank collections according their scores and select top k collections.

Definition 3. (Sampled Document Set of Collection) A sampled document set sc of c is a set of documents that are sampled from c through a
certain sampling algorithm, e.g., query-based sampling, = ⋯s d d d{ , , , }c s1 2 c , where |sc| is the total number of sampled documents and sc⊂c.

Definition 4. (Entity Set of Collection) An entity set Ec of c is a set of entities that are extracted from sc, = ⋯E e e e{ , , , }c E1 2 c , where an entity
ei references to an entity in DBpedia, |Ec| is the total number of entities.

Definition 5. (Weighted Entity Set of Collection) A weighted entity set WEc of c is a set of entities that are
weighted, = ⋯WE w w w{ , , , }c e e e Ec1 2 , wherewei is the weight of ei and ei∈ Ec.

3.2. Architecture

Fig. 1 depicts the architecture of KBCS. The sampled documents of a collection and user query are inputs. KBCS builds collection
representation and adds related entities to original query through query expansion, and then the similarity between the collection
and the query is calculated. KBCS depends on the knowledge base to provide relational knowledge and network structure. No matter
what knowledge base is used, e.g., DBpedia, Yago, or Freebase, the steps of our method do not need to be changed. In order to
elaborate KBCS, DBpedia is exploited as an example.

KBCS consists of Entity linking, relation weighting, entity weighting, query expansion, and query-collection similarity metric.
Entity linking uses DBpedia spotlight (Mendes, Jakob, García-Silva, & Bizer, 2011) to process sampled documents and obtain dis-
ambiguated entities through references to entities in DBpedia. Note that the disambiguated entities are divided by their belonging
collection, i.e., the number of sets of the disambiguated entities is as same as the number of collections. Relation weighting employs
context- and structure-based measures to weight the relatedness of two entities whose distance is within two hops. Entity weighting is
to identify most important entities in a collection, which is realized by calculating the semantic distances between an entity and all
other entities in a collection. Query expansion integrates a modified DBpedia based query expansion method to add more related
entities to the original query. Query-collection similarity metric applies a new similarity metric, which take sampling factor, col-
lection entity frequency, collection entity weight, and query entity weight into account to calculate collection score.

doc

collection

Entity Linking

Relation
Weighting

Collection Score

Knowledge Bases

Similarity Metric

Entity
Weighting

online

output

query

offline

Query Expansion

collection representation

KBCS

Fig. 1. The architecture of KBCS.

B. Han et al. Information Processing and Management 54 (2018) 116–128

119

3.3. Entity linking

DBpedia is chosen as the knowledge base. There is more valuable semantic information encoded within the knowledge base, e.g.,
relational knowledge and network structure. Wikipedia1 is a multilingual, free Internet encyclopedia that allows users to edit almost
any article. It is currently the largest knowledge repository on the Web, and the English version of it contains more than 5 million
articles. DBpedia2 is a data set that extracts structured content from Wikipedia pages. DBpedia allows users to semantically query
relationships and properties associated with Wikipedia resources, and it has a broad scope of entities covering different areas of
human knowledge.

In the phase of entity linking, the DBpedia Spotlight (Mendes et al., 2011) can automatically annotate text documents with
DBpedia URIs. An entity set Ec of c is derived from sampled documents in sc through DBpedia Spotlight. For example, the following
text would be annotated seven entities. The seven original terms and their annotated DBpedia URIs are shown in Table 1. In order to
pursue simple representation of entities and eliminate redundancy, the prefix of ‘http://dbpedia.org/resource/’ would be removed for
each entities. That is to say, ‘Berlin’ would be stored as the entity of a collection rather than ‘http://dbpedia.org/resource/Berlin’.

3.4. Collection representation

Traditional collection selection methods usually use TF-IDF, ESA, and LDA to represent collections. Although they have con-
sidered word frequency and topics, they only build collection representations from the level of morpho-syntactic information and
ignore fine-grained semantic information. In order to overcome these problems, we present a collection representation approach that
exploits the relational knowledge and network structure encoded in knowledge bases to model a collection as a weighted entity set.
That is to say, the semantic information of a collection c is represented by a weighted entity set WEc.

The main difficulty of our collection representation approach is how to weight entities in a collection. If the weight of an entity is
higher, the entity is more important in a collection. To overcome the difficulty, we combine the context- and structure-based
measures to calculate the semantic distance between any two entities, and then get their weights.

3.4.1. Relation weighting
Given all collections, CSI is firstly built by sampled documents of each collection. The disambiguated entities are extracted from

sampled documents. Relation weighting can evaluate the relatedness of any two entities whose distance is limited in two hops. In
other words, the distance of any two entities {ei, ej} is the shortest path from ei to ej in a knowledge base, e.g., DBpedia. There is
sufficient evidence from previous works (Hulpus, Hayes, Karnstedt, & Greene, 2013, Navigli & Ponzetto, 2012) to demonstrate that
increasing the distance to three hops would tend to produce a time-consuming computation and introduce a lot of noise. The
relatedness finally contributes in calculating entity weight.

3.4.1.1. Context-based measure. There are some methods to measure the semantic distance between two words. Cilibrasi and Vitanyi
(2007) define a Normalized Google Distance measure, which uses two words to search related web pages through Google search
engine and gets the total number of search results. The main idea of this measure is viewing the total number of web pages that
contain both words as the semantic distance between two words. Following the idea of normalized Google distance measure,
Witten and Milne (2008), as well as Ni et al. (2016), utilize the number of links (links to other Wikipedia articles) shared by two
Wikipedia articles to calculate the semantic distance between two Wikipedia titles.

Based on the ideas of above methods, we define the context-based measure, which is based on the number of articles that both
entities share on Wikipedia. Intuitively, if two entities are relevant, it is inevitable that these two entities would share some sub-
stantive Wikipedia articles, whereas it is impossible that two irrelevant entities con-occur in lots of articles. The number of co-
occurrences on all Wikipedia articles is used to capture the semantic distance of an entity pair, which is defined as context-based

Table 1
Table of annotated DBpedia URIs (Raw Text: First documented in the 13th century, Berlin was the capital
of the Kingdom of Prussia (1701–1918), the German Empire (1871–1918), the Weimar Republic
(1919–33) and the Third Reich (1933–45). Berlin in the 1920s was the third largest municipality in the
world.).

Original terms DBpedia URIs

Berlin http://dbpedia.org/resource/Berlin
capital http://dbpedia.org/resource/Capital_city
Prussia http://dbpedia.org/resource/Kingdom_of_Prussia
German Empire http://dbpedia.org/resource/German_Empire
Weimar Republic http://dbpedia.org/resource/Weimar_Republic
Third Reich http://dbpedia.org/resource/Nazi_Germany
municipality http://dbpedia.org/resource/Municipalities_of_Germany

1 https://dumps.wikimedia.org/backup-index.html
2 http://wiki.dbpedia.org/Downloads2014

B. Han et al. Information Processing and Management 54 (2018) 116–128

120

http://dbpedia.org/resource/
http://dbpedia.org/resource/Berlin
http://dbpedia.org/resource/Berlin
http://dbpedia.org/resource/Capital_city
http://dbpedia.org/resource/Kingdom_of_Prussia
http://dbpedia.org/resource/German_Empire
http://dbpedia.org/resource/Weimar_Republic
http://dbpedia.org/resource/Nazi_Germany
http://dbpedia.org/resource/Municipalities_of_Germany
https://dumps.wikimedia.org/backup-index.html
http://wiki.dbpedia.org/Downloads2014

semantic distance. Therefore, the more shared articles there are, the more relevant the two entities are. The context-based measure
can be defined as follows:

= −
− ∩

−
ctxt e e

E E E E
W E E

(,) 1
log(max(,)) log()

log log(min(,))1 2
1 2 1 2

1 2 (2)

where e1 and e2 are the two entities, E1 and E2 are the respective sets of articles to e1 and e2, and W is the total number of articles in
Wikipedia.

3.4.1.2. Structure-based measure. DBpedia can be viewed as a structural knowledge graph, whose nodes are entities and edges are the
predicates that denote relationships between them. For instance, the predicate of ‘dbpediaowl: capital’ connect the entity of
‘dbpedia:Germany’ to the entity of ‘dbpedia: Berlin’ . A naïve solution to calculate the structure semantic similarity of entities would
be to use the shortest distance between them in DBpedia. However, it is unreasonable to treat each edge equally. The jointIC
(Schuhmacher & Ponzetto, 2014) exploits the number of edges, e.g., ‘dbpediaowl: capital’, and the number of entities the predicate is
pointing to, e.g., ‘dbpedia: Berlin’, to distinguish the importance of each edge. We apply the jointIC metric to weight different edges.
Formally, given an edge, edge=(Subj, Pred, Obj), where Subj and Obj are entities, Pred is the predicate between Subj and Obj. The
measure can be calculated as follows:

⎜ ⎟= ⎛
⎝

⎞
⎠

IC ω T
ω

() logPred
Pred (3)

⎜ ⎟= ⎛
⎝

⎞
⎠

IC ω ω ω
ω

() logObj Pred
Pred

Pred Obj(,) (4)

= +w edge IC ω IC ω ω() () ()jointIC Pred Obj Pred (5)

where IC(ωPred) is the information content of the predicate, which indicates that a large number of same predicate has a low
specificity. |ωPred| is the total number of same predicate, and |T| is the count of all triples in the full DBpedia graph. IC (ωObj|ωPred)
considers the specialty of the entity that the predicate is pointing to. |ω(Pred,Obj)| is the total number of the predicate connected to the
entity. The information content of the joint probability distribution is denoted as wjointIC (edge), which is the sum of the above two
information content measures.

Given the shortest path between e1 and e2, the structure-based measure is defined as the sum of each edges’ weights edge1, edge2,
…, edgek. The length of the shortest path is limited in two hops (Hulpus et al., 2013, Navigli & Ponzetto, 2012). In other words, k is
less than or equal to two. The structure-based measure is defined to be:

∑=struct e e w edge(,) ()
k

jointIC i1 2
1 (6)

If there are multiple shortest paths between e1 and e2, the one that has the maximum accumulated weight is selected.

3.4.2. Entity weighting
After calculating the semantic distances of all entity pairs by context- and structure-based measures, the two evaluation results of

relatedness can be integrated into an overall result. The linear combination of the two measures is used as the overall semantic
distance of any two entities globally. Formally,

= × + − ×sim e e λ ctxt e e λ struct e e(,) (,) (1) (,)overall 1 2 1 2 1 2 (7)

where λ is the weight parameter.
According to Borgatti (2005), the importance of entities would be quantified by the sum of relatedness of one entity to all other

entities if the relatedness of any two entities is known. Formally, for each entity extracted from sampled documents of a collection,
the sum of its overall semantic distances to all other entities is defined as the entity weight. Given the set of entities V, the weight of
an entity e is:

∑=
∈

w e
V

sim e e() 1 (,)
e V

overall j
j (8)

All entities would be assigned with weights through Eq. (8), which aims to identify entities that can reflect more relevance to the
aspects of a collection. In addition, it is a part of the composition of the query-collection similarity metric, which will be described in
Section 3.5.

We summarize the process of collection representation in Algorithm 1. Given an entity set extracted from a collection,
= …E e e e{ , , , }n1 2 , and the weight parameter λ, we perform the following steps:

Step 1: lines 1–10. For each pair of entities ei and ej in E, we firstly find the shortest path between them in DBpedia using breadth-
first search algorithm. If the length is larger than 2, the overall semantic distance between them is assigned with 0. matrix[i][j] is
used to store this value. If the length is less than or equal to 2, the context and structure semantic distance are calculated in line 7

B. Han et al. Information Processing and Management 54 (2018) 116–128

121

and line 8, respectively. Finally, the overall semantic distance is calculated in line 9 and stored in matrix[i][j].
Step 2: lines 11–20. For each entity ei, the sum of its overall semantic distances to all other entities ej (i≠ j) is calculated and
denoted as wi. Then, the wi is divided by the total number of entities in E. Finally, the entity ei and its weight are added to the
weighted entity set WE.

3.5. Query expansion

Query expansion is an important part of collection selection. In our collection selection method, collection and query are re-
presented by entities. It is a serious problem that no entity or fewer entities can be found in a query. To deal with the problem, a
DBpedia based query expansion method (Guisado-Gámez et al., 2014) is integrated into our method. Since the method is designed for
image retrieval, some adaptation work is needed. The phases of (Guisado-Gámez et al., 2014) are in the following:

Step 1: relevant article selection. Given original query θ and the its description κ, two sets of relevant titles would be found in
Wikipedia through Lucene,3 which are denoted as Rθ and Rκ, respectively.
Step 2: path analysis. According to the structure of total DBpedia graph, this phase builds two graphs for Rθ and Rκ to exclude
unrelated entities. For each entity in Rθ, it computes all shortest paths that reach all entities in Rκ. Once all paths are computed,
they are ranked in a descending order based on the score of each path. The entities that are in highly scored paths are retained.
Otherwise, the entities are removed. Formally, given a path of = → → …→P a a as1 2 , its score is:

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟

=

Score P
s

f a θ f a κ() 1 (,) (,)
i

s

i i
1 (9)

where f(x, y) is a function that counts the number of common terms between x and y, and s is the length of P.
Step 3: community search. It uses a community search algorithm to enrich the previously computed paths with semantically
strong neighbors of DBpedia entities.
Step 4: query building. It combines the original query θ, the synonyms QR of query terms, and the relevant entities QT in the
communities already found. The final query QE is defined as follows: =Q θ Q Q, ,E R T .

There are two main problems during integration. One problem is that it requires users provide original query and its description as
inputs. It is impractical to get the extended description of a query. In our work, only the original query is used to find some relevant
articles, denoted as Rθ too, and one graph is built for Rθ, where the nodes are entities in Rθ and the edges are the relations between
them in DBpedia. The main difference is that paths are enumerated between any two nodes in the graph. Then the paths are ranked
according to the score function defined in Eq. (10), which is a variant of Eq. (9).

∑′ = ⎛

⎝
⎜

⎞

⎠
⎟

=

Score P
s

f a θ() 1 (,)
i

s

i
1 (10)

The other problem is that the QE derived in Step 4 is not suitable in our method, as there are many same and redundant terms in
QE, and the final query is represented by entities rather than query terms in our method. Therefore, entities are found in the
corresponding query terms of QE, and redundant entities are removed. Then the final query denoted as ′Q E consists of two parts that
are original entities Cθ found in θ and the extended entities CE found in QR, QT, respectively. In other words, ′ =Q C C,E θ E .

However, the expanded query terms are only a supplement to original query terms in query expansion. If the new query depends
on expanded query terms too much, it would lead to significant deviation from original query intention. Therefore, it is necessary to
set different weights for expanded query terms according their relatedness with original query. To distinguishing the entities in Cθ, CE

and avoid query drift, the entities are weighted as follows:

′ =
⎧

⎨
⎩

×

− × × ⊆−
∑ ≤

w e
γ e C

γ e H H C
()

, (ϵ)

(1) , (ϵ ,)
C θ

L i
i H i i E

1

1
θ

i L i (11)

where γ is the weight parameter. When entities belong to Cθ, their weights are equal. When entities belong to CE, they are weighted
differently according to the height in the hierarchy that is built from the community search in Step 3. The first level is formed by the
entities from the computed paths. Like in (Guisado-Gámez et al., 2014), the ith level of a hierarchy of L levels (1< i≤ L) is formed by
the entities that have a link from an entity in the (i− 1)th level. Hi is the set of entities in the ith level. If extended entities are in HL,
they will have a weight equal to 0. This can remove unimportant extended entities.

3.6. Query-Collection similarity metric

The goal of collection selection is to select a small number of information collections that contain the largest number of relevant

3 http://lucene.apache.org/

B. Han et al. Information Processing and Management 54 (2018) 116–128

122

http://lucene.apache.org/

documents for a query. After the entities of a collection are weighted and query terms are expanded, collections need to be ranked by
calculating the similarity between query terms and the weighted entities of a collection.

Most existing collection selection methods use the keyword-based similarity measures to calculate the relevance between a
collection and a query. The TF-IDF measure is a typical example among them. Given ‘iPhone’ as a query, a collection would get a high
score if its indexed words contain ‘iPhone’. However, this type of measures would give a collection a low score if the collection's
indexed words do not contain ‘iPhone’ but contain ‘Apple’, ‘Phone’, etc. Actually, such a collection should be assigned with a high
score. To address this issue, query-collection similarity metric should consider the semantic distance between query words and
indexed words in a collection, which can be calculated by Eq. (7).

The semantic information of a collection is represented as a weighted entity set. However, the weight of an entity is calculated by
the combination of context- and structure-based measures without considering entity frequency. In traditional information retrieval
models, an entity is more important in a collection if it appears more in the collection but fewer in other collections. Therefore, the
entity frequency is considered as the second impact factor for query-collection similarity metric, which is defined to be:

=
∑

f e c e
e

e s(,) , (ϵ)
e s i

c
ϵi c (12)

where sc consists of documents sampled from the collection c by query-based sampling (Callan & Connell, 2001), |e| is the time that
the entity e appears in sc.

Collection size is also an important factor in evaluating the relevance between a collection and a query. Assume that there are two
collections containing the same number of relevant sampled documents for a query and the same number of sampled documents in
CSI. It is clear that the larger collection contains more relevant documents. Therefore, the collection size is considered as the third
impact factor for query-collection similarity metric. To normalize the collection size, the size of the largest collection (denoted by
|cmax|) is divided. It is calculated as shown below:

=
×

c
c s

ɛc
max c (13)

where |c| is the total number of documents in the collection c. |sc| is the number of sampled documents in c. ɛc is also called sampling
factor.

In addition to the three factors mentioned above, there are still two factors to consider: collection entity weight and query entity
weight. Given a query q and a collection c, the query-collection similarity metric is defined formally as:

∑= × ′ ×
∑ × ×

∑=

=

=
Rel q c w

w f e c sim e e

w
(,) ɛ

(,) (,)
c

i

m

i
j
n

j j overall i j

j
n

j1

1

1 (14)

where ei (1≤ i≤m) is the entity in the expanded query and ej (1≤ j≤ n) is the entity in sc. In addition, ′wi and wj are their weights,
respectively.

In summary, the process of query-collection similarity metric is shown in Algorithm 2. Given two weighted entity sets of collection
and query, the steps are as follows:

Step 1: Lines 1–13. For each entity ei in WQ and each entity ej in WE, if the length between them is larger than 2, the overall
semantic distance simoverall(ei, ej) is assigned with 0. If the length is less than or equal to 2, the context and structure semantic
distance are calculated in line 11 and line 12, respectively. Finally, the simoverall(ei, ej) is calculated in line 13.
Step 2: Lines 14–18. The collection score is calculated based on the overall semantic distance, collection entity weight, collection
entity frequency in line 14, query entity weight in line 15, and samping factor in line 17.

4. Experiments

In this section, we describe the experimental details and compare the performances of KBCS and other methods. We first describe
the dataset used in experiments, and then elaborate on experimental setup. Finally, we present experimental results and discuss
findings.

4.1. Dataset

The dataset used in experiments is ClueWeb09 Dataset Category B (CW09-CatB). It was created to support research on in-
formation retrieval and related human language technologies, which consists of about 50 million English webpages. The dataset is
used by several tracks of the TREC conference. If the dataset is divided randomly or base on chronology, the performance of collection
selection methods would be affected and experimental results would be of questionable validity (D'Souza, Thom, & Zobel, 2004,
Kulkarni & Callan, 2010). Therefore, we divide this dataset into 100 collections by applying topical clustering algorithm (Kulkarni &
Callan, 2010). The summary statistics of the dataset are shown in Table 2.

In order to fully verify the effectiveness of our method, the evaluation queries (WT09: 1–50) and their corresponding relevant
documents are chosen and summarized in Table 3.

B. Han et al. Information Processing and Management 54 (2018) 116–128

123

4.2. Experimental setup

To simulate a distributed information retrieval environment, each collection is converted to a Lucene index that serves as a search
engine. Collection selection decides which search engines to retrieve. Then for each query, top n documents are returned from each
search engine and merged directly. Finally, the top n documents in merged list are shown to users.

A CSI is created for the dataset by using query-based sampling algorithm (Callan & Connell, 2001). An initial query is extracted
randomly from the titles of Wikipedia articles. In each round of sampling, the top five documents returned from each collection are
built in CSI. As a result, the sampled size of each collection is 400 documents.

In the environment of uncooperative distributed information retrieval, the statistics of each collection are transparent to retrieval
proxy server. It is necessary to estimate the size of each collection (the number of documents) used in KBCS (e.g., Eq. (12)). The
capture-history method (Shokouhi, Zobel, Scholer, & Tahaghoghi, 2006), which is a classical and effective estimation algorithm, is
utilized to capture the collection size.

Since the vast majority of sampling based methods are superior to dictionary based methods, and our method is also a sampling
based method, ReDDE (Si & Callan, 2003) and CRCS (Shokouhi, 2007) are selected as baselines. Since CRCS(e) is significantly better
than CRCS(l), CRCS(e) is chose, which is denoted as CRCS in the following for simplicity. Another state-of-the-art method called
Rank-S is chose as one baseline. Rank-S is one of the SHiRE (Kulkarni et al., 2012) algorithms, which showed the best performance. In
experiments, the optimal parameters of each method are set according to the original paper. In ReDDE, ratio is 0.003. In CRCS(e), α
and β are 1.2 and 2.8, respectively. In Rank-S, B is 50.

Based on the above mentioned baselines, KBCS (sim) and KBCS are compared with them. Specifically, KBCS (sim) contains query-
collection similarity metric without query expansion. KBCS contains not only query-collection similarity metric but also query ex-
pansion.

For the comparative analysis of different collection selection methods, the evaluation metric of P@n is employed to measure the
average search accuracy of all queries. The greater value of P@n means the higher accuracy of search results. In an information
retrieval system, per page usually presents 10 results. If the first page contains few related results for a query, it would affect the
satisfaction degree of users. Therefore, we choose P@10 as the evaluation metric.

4.3. Results and discussion

4.3.1. The impact of parameters
The KBCS method contains two parameters, which are λ in Eq. (7) and γ in Eq. (11), respectively. The parameter λ denotes the

impact of context-based semantic distance in overall semantic distance between entities. The parameter γ denotes the impact of
entities in original query. To get the optimal value of λ, experiments are conducted on KBCS(sim), in which the weight of ′wi in Eq.
(14) is set equally according to the number of entities found in query terms. After the optimal value of λ is got, experiments are
conducted on KBCS to determine the optimal value of γ.

In the experiment, we increase the value of λ from 0 to 1 with a fixed step of 0.1. The precision of KBCS(sim) is shown in Fig. 2.
The experimental results show that when =λ 0.4, the precision of KBCS(sim) is maximized, which reflects that the structure-based
semantic distance is more important in calculating the overall semantic distance. Therefore, the value of λ is set to 0.4.

In order to determine the optimal value of γ, we firstly set the value of λ to 0.4 and then compare the precision of KBCS under
different values of γ (from 0 to 1, with a fixed step of 0.1). The experimental results are shown in Fig. 3. When γ≤ 0.6, the precision
of KBCS increases consistently and reaches the maximum (γ=0.6). It indicates that the weight of entities in original query has a
greater impact on query-collection similarity metric. Therefore, the value of γ is set to 0.6.

4.3.2. Comparison with other methods
There are two sets of experiments to verify the effectiveness of our method. One set compares KBCS with baselines, including

ReDDE, CRCS and Rank-S, to demonstrate KBCS's performance. The other set compares KBCS with KBCS(sim) to evaluate the

Table 2
Statistics about the dataset and collections.

DataSet(Collections) Documents (K) Avg Doc Len Collection

Min Docs (K) Max Docs (K) AVG Docs (K)

CW09-CatB(100) 50,220 918 3 9542 502

Table 3
Statistics about the query set (In the entries of the form WT=Web Track).

QuerySet(Queries) Avg Qry Len Avg Rel Docs / Qry

WT09:1–50(50) 2.1 262.3

B. Han et al. Information Processing and Management 54 (2018) 116–128

124

contribution of query expansion.
The performances of these methods are shown in Table 4. The mean of precision is recorded for each method under different

numbers of selected collections (i.e., k). Furthermore, to statistically measure the significance of performance difference, pairwise t-

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P@
10

The value of parameter λ

KBCS(sim)

Fig. 2. The precision of KBCS(sim) under different values of λ when it selects 5 collections.

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P@
10

The value of parameter γ

KBCS(qe)

Fig. 3. The precision of KBCS under different values of γ when it selects 5 collections.

Table 4
Precision (P@10) comparison for ReDDE, CRCS, Rank-S, KBCS(sim) and KBCS under different numbers of selected collections (1≤ k≤ 10). * indicates whether KBCS
is statistically superior to the compared method.

K Methods

ReDDE CRCS Rank-S KBCS(sim) KBCS

1 0.176* 0.212* 0.263* 0.332* 0.340
2 0.236* 0.212* 0.272* 0.344* 0.368
3 0.244* 0.208* 0.316* 0.348* 0.380
4 0.244* 0.236* 0.316* 0.340* 0.370
5 0.244* 0.252* 0.357* 0.360* 0.420
6 0.252* 0.252* 0.365* 0.380* 0.400
7 0.276* 0.252* 0.353* 0.376* 0.394
8 0.300* 0.260* 0.348* 0.400* 0.422
9 0.336* 0.248* 0.357* 0.408* 0.414
10 0.356* 0.232* 0.361* 0.404* 0.420

B. Han et al. Information Processing and Management 54 (2018) 116–128

125

tests at 95% significance level are conducted between the results of these methods.

4.3.2.1. Compare KBCS with baselines. The experimental results show that KBCS has a clear advantage while baselines have similar
performance. KBCS achieves an average improvement of 46% on precision. Although there is no significant difference between
ReDDE and CRCS, ReDDE performs better than CRCS in the condition of selecting more than 2 collections. Since the topical clustering
algorithm applied to partition collections results in skewed sizes of collections, larger collections usually have a higher number of
relevant documents. ReDDE prefers to select larger collections, which in this case would perform better. Unlike ReDDE, CRCS
differentiates the scores of different documents, which is not biased, i.e., not giving larger collections higher scores. Therefore, CRCS
performs poorer in this case, and it is significantly worse than others when k≥ 8. Rank-S shows stronger effectiveness than ReDDE
and CRCS. However, it does not achieve stable performance improvement when k≥ 5. This might be because some relevant
documents are lower-ranked, which would result in less contribution to their own collections scores.

Another finding in the result is that KBCS can achieve a high precision while choosing few collections. This characteristic of KBCS
can substantially reduce network resource consumption. Since P@10 does not change greatly when k≥ 5, it is reasonable for KBCS to
select fewer collections than the other three methods. With the increase of k, the precision of CRCS and Rank-S increases slowly or
even decreases. Although the precision of ReDDE increases continuously and stably (due to its preference to larger collections), its
performance cannot exceed KBCS.

In summary, the advantages of our method are as follows: first, all entities in sampled documents are weighted to represent the

Algorithm 1
Collection representation.

Input: an entity set extracted from a collection, = …E e e e{ , , , }n1 2 , the weight parameter λ
Output: a weighted entity set = …WE e w e w e w{ : , : , , : }n n1 1 2 2

1. initialize the set of weighted entities = ∅WE , the weight matrix = …matrix n n[][] [0, 0, , 0]
2. for all ei∈ E, ej∈ E, i≤ j do
3. l← the length of shorted path between ei and ej
4. if l>2 then
5. matrix[i][j]← 0
6. else
7. ctxt(ei, ej)← use Eq. (2)
8. struct(ei, ej)← use Eq. (6)
9. simoverall(ei, ej)← use Eq. (7)
10. matrix[i][j]← simoverall(ei, ej)
11. for all ei∈ E do
12. wi← 0
13. for all ej∈ E do
14. if i≤ j then
15. ← +w w matrix i j[][]i i
16. else
17. ← +w w matrix j i[][]i i
18. wi←wi/n
19. add ei and wi to WE
20. return WE

Algorithm 2
Query-collection similarity metric.

Input: a weighted entity set of collection WE, and a weighted entity set of query WQ
Output: the collection score
1. initialize the collection score, =score 0
2. for all ei∈WQ, i≤m do
3. sum← 0
4. temp← 0
5. for all ej∈WE, i≤ n do
6. ← +sum sum wj

7. l← the length of shorted path between ei and ej
8. if l>2 then
9. simoverall(ei, ej)← 0
10. else
11. ctxt(ei, ej)← use Eq. (2)
12. struct(ei, ej)← use Eq. (6)
13. simoverall(ei, ej)← use Eq. (7)
14. ← + × ×temp temp w f c e sim e e(,) (,)j j overall i j

15. ← ′ ×temp w temp sum/i
16. ← +score score temp
17. score← score× ɛc
18. return score

B. Han et al. Information Processing and Management 54 (2018) 116–128

126

semantic information of a collection, and the entities related to the query would have a greater contribution to collection score.
While, ReDDE and CRCS only estimate collection score by a number of top-ranked documents returned from CSI without considering
the impact of other lower-ranked documents. Although Rank-S takes lower-ranked documents into account, it dampens or even
ignores their votes to collections scores. Second, our method is more fine-grained on the query-collection similarity metric that
calculates the semantic distance between query entities and collection entities, while the other three methods calculate only from the
perspective of relevant documents.

4.3.2.2. Compare KBCS with KBCS(sim). To evaluate the effectiveness of query expansion on collection selection, KBCS is compared
with KBCS(sim). As is shown in Table 4, KBCS performs better than KBCS(sim) in all conditions of k. Compared with KBCS(sim), the
precision of KBCS is improved by an average of 6%. It indicates that query expansion is critical to collection selection. This is because
query would contain rich entities through query expansion, and collections that contain more entities related with query entities
would get a higher score. The results suggest that except collection representation and query-collection similarity metric, query
expansion is a promising way to further improve the performance of collection selection.

5. Conclusions and future work

In this paper, we present KBCS that represents collection as a weighted entity set based on context- and structure-based measures,
and ranks collections according to a query-collection similarity metric that considers sampling factor, collection entity frequency,
collection entity weight, and query entity weight. Context and structure semantic information encoded in DBpedia is exploited, and a
DBpedia based query expansion method is also integrated to enrich entities found in query terms. We evaluate KBCS on a large
dataset of CW09-CatB that is partitioned into topical collections, and experimental results demonstrate the effectiveness of KBCS.

In the future, we will take other semantic measures (e.g., content-based measure) to weight the entities in CSI accurately, and
combine documents score and entities weight to improve the query-collection similarity metric. Furthermore, we will apply context-
and structure-based measures to estimate the quality of expanded entities to improve the performance of community search in query
expansion, on which the weights assigned to expanded entities can be optimized.

Acknowledgments

This work was funded by China Knowledge Centre for Engineering Sciences and Technology (No. CKCEST-2014-1-5), the National
Natural Science Foundation of China (No. 61332017), the Science and Technology Department of Zhejiang Province (No.
2015C33002).

References

Aly, R., Hiemstra, D., & Demeester, T. (2013). Taily: Shard selection using the tail of score distributions. Proceedings of the 36th international ACM SIGIR conference on
research and development in information retrieval (pp. 673–682). .

Arguello, J., Elsas, J. L., Callan, J., & Carbonell, J. G. (2008). Document representation and query expansion models for blog recommendation. Proceedings of
international AAAI conference on web and social media. 2008. Proceedings of international AAAI conference on web and social media (pp. 1–). .

Baillie, M., Carman, M., & Crestani, F. (2011). A multi-collection latent topic model for federated search. Information Retrieval, 14, 390–412.
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., et al. (2009). DBpedia-A crystallization point for the web of data. Web Semantics: Science,

Services and Agents on the World Wide Web, 7, 154–165.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A collaboratively created graph database for structuring human knowledge. Proceedings

of the 2008 ACM SIGMOD international conference on management of data (pp. 1247–1250). .
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27, 55–71.
Callan, J. (2002). Distributed information retrieval. Advances in information retrieval. Springer127–150.
Callan, J., & Connell, M. (2001). Query-based sampling of text databases. ACM Transactions on Information Systems, 19, 97–130.
Callan, J. P., Lu, Z., & Croft, W. B. (1995). Searching distributed collections with inference networks. Proceedings of the 18th international ACM SIGIR conference on

research and development in information retrieval (pp. 21–28). .
Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 44, 1.
Chowdhury, G. (2010). Introduction to modern information retrieval. Facet publishing.
Cilibrasi, R. L., & Vitanyi, P. M. (2007). The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19.
Crestani, F., & Markov, I. (2013). Distributed information retrieval and applications. Proceedings of European conference on information retrieval (pp. 865–868). .
Dang, V., & Croft, B. W. (2010). Query reformulation using anchor text. Proceedings of the 3rd ACM international conference on web search and data mining (pp. 41–50). .
D'Souza, D., Thom, J. A., & Zobel, J. (2004). Collection selection for managed distributed document databases. Information Processing and Management, 40, 527–546.
Eiron, N., & McCurley, K. S. (2003). Analysis of anchor text for web search. Proceedings of the 26th international ACM SIGIR conference on research and development in

informaion retrieval (pp. 459–460). .
Francès, G., Bai, X., Cambazoglu, B. B., & Baeza-Yates, R. (2014). Improving the efficiency of multi-site web search engines. Proceedings of the 7th ACM international

conference on web search and data mining (pp. 3–12). .
Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit semantic analysis. Proceedings of the 20th international joint

conference on artificial intelligence (pp. 1606–1611). .
Gravano, L., & Garcia-Molina, H. (1995). Generalizing GlOSS to vector-space databases and broker hierarchies. Proceedings of the 21th international conference on very

large data bases (pp. 78–89). .
Guisado-Gámez, J., Dominguez-Sal, D., & Larriba-Pey, J.-L. (2014). Massive query expansion by exploiting graph knowledge bases for image retrieval. Proceedings of

international conference on multimedia retrieval (pp. 33). .
Hoffart, J., Suchanek, F. M., Berberich, K., & Weikum, G. (2013). YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence,

194, 28–61.
Hulpus, I., Hayes, C., Karnstedt, M., & Greene, D. (2013). Unsupervised graph-based topic labelling using dbpedia. Proceedings of the 6th ACM international conference on

web search and data mining (pp. 465–474). .

B. Han et al. Information Processing and Management 54 (2018) 116–128

127

http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0001
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0001
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0002
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0002
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0003
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0004
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0004
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0005
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0006
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0006
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0007
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0008
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0009
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0010
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0010
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0011
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0012
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0013
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0014
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0015
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0016
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0017
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0017
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0018
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0018
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0019
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0019
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0020
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0020
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0021
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0021
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0022
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0022
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0023
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0023

Kim, Y., Callan, J., Culpepper, J. S., & Moffat, A. (2016). Load-balancing in distributed selective search. Proceedings of the 39th international ACM SIGIR conference on
research and development in information retrieval (pp. 905–908). .

Kulkarni, A., & Callan, J. (2010). Document allocation policies for selective searching of distributed indexes. Proceedings of the 19th ACM international conference on
information and knowledge management (pp. 449–458). .

Kulkarni, A., & Callan, J. (2015). Selective search: Efficient and effective search of large textual collections. ACM Transactions on Information Systems, 33, 17.
Kulkarni, A., Tigelaar, A. S., Hiemstra, D., & Callan, J. (2012). Shard ranking and cutoff estimation for topically partitioned collections. Proceedings of the 21st ACM

international conference on information and knowledge management (pp. 555–564). .
Mendes, P. N., Jakob, M., García-Silva, A., & Bizer, C. (2011). DBpedia spotlight: Shedding light on the web of documents. Proceedings of the 7th international conference

on semantic systems (pp. 1–8). .
Mendoza, M., Marín, M., Gil-Costa, V., & Ferrarotti, F. (2016). Reducing hardware hit by queries in web search engines. Information Processing and Management, 52,

1031–1052.
Navigli, R., & Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial

Intelligence, 193, 217–250.
Ni, Y., Xu, Q. K., Cao, F., Mass, Y., Sheinwald, D., & Zhu, H. J. (2016). Semantic documents relatedness using concept graph representation. Proceedings of the 9th ACM

international conference on web search and data mining (pp. 635–644). .
Paltoglou, G., Salampasis, M., & Satratzemi, M. (2011). Modeling information sources as integrals for effective and efficient source selection. Information Processing and

Management, 47, 18–36.
Schuhmacher, M., & Ponzetto, S. P. (2014). Knowledge-based graph document modeling. Proceedings of the 7th ACM international conference on web search and data

mining (pp. 543–552). .
Shokouhi, M. (2007). Central-rank-based collection selection in uncooperative distributed information retrieval. Proceedings of the European conference on information

retrieval (pp. 160–172). .
Shokouhi, M., Zobel, J., Scholer, F., & Tahaghoghi, S. M. (2006). Capturing collection size for distributed non-cooperative retrieval. Proceedings of the 29th international

ACM SIGIR conference on research and development in information retrieval (pp. 316–323). .
Shokouhi, M., Zobel, J., Tahaghoghi, S., & Scholer, F. (2007). Using query logs to establish vocabularies in distributed information retrieval. Information Processing and

Management, 43, 169–180.
Si, L., & Callan, J. (2003). Relevant document distribution estimation method for resource selection. Proceedings of the 26th international acm sigir conference on research

and development in informaion retrieval (pp. 298–305). .
Strohman, T., Metzler, D., Turtle, H., & Croft, W. B. (2005). Indri: A language model-based search engine for complex queries. Proceedings of international conference on

intelligent analysis (pp. 2–6). .
Thomas, P., & Shokouhi, M. (2009). SUSHI: Scoring scaled samples for server selection. Proceedings of the 32nd International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 419–426). .
Wauer, M., Schuster, D., & Schill, A. (2011). Integrating explicit semantic analysis for ontology-based resource selection. Proceedings of the 13th International Conference

on Information Integration and Web-based Applications and Services (pp. 519–522). .
Witten, I., & Milne, D. (2008). An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. Proceeding of AAAI Workshop on Wikipedia and

Artificial Intelligence (pp. 25–30). .
Xu, J., & Croft, W. B. (1999). Cluster-based language models for distributed retrieval. Proceedings of the 22nd International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 254–261). .
Yuwono, B., & Lee, D. L. (1997). Server ranking for distributed text retrieval systems on the internet. Proceedings of international conference on database systems for

advanced applications (pp. 41–49). .

B. Han et al. Information Processing and Management 54 (2018) 116–128

128

http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0024
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0024
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0025
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0025
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0026
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0027
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0027
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0028
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0028
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0029
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0029
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0030
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0030
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0031
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0031
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0032
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0032
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0033
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0033
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0034
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0034
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0035
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0035
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0036
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0036
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0037
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0037
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0038
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0038
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0039
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0039
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0040
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0040
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0041
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0041
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0042
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0042
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0043
http://refhub.elsevier.com/S0306-4573(17)30241-8/sbref0043

	Knowledge based collection selection for distributed information retrieval
	Introduction
	Related work
	Dictionary-based methods
	Sampling-based methods

	Methodology
	Definitions
	Architecture
	Entity linking
	Collection representation
	Relation weighting
	Context-based measure
	Structure-based measure
	Entity weighting

	Query expansion
	Query-Collection similarity metric

	Experiments
	Dataset
	Experimental setup
	Results and discussion
	The impact of parameters
	Comparison with other methods
	Compare KBCS with baselines
	Compare KBCS with KBCS(sim)

	Conclusions and future work
	Acknowledgments
	References

