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a b s t r a c t 

A novel transfer support vector machine called TSVM-GP with group probabilities is proposed for the

scenarios where plenty of labeled data in the source domain and the group probabilities of unlabeled

data in the target domain are available. TSVM-GP integrates a transfer term and group probabilities into

the support vector machine (SVM) to improve the classification accuracy. In order to reduce the high

computational complexity of TSVM-GP, the scalable version of TSVM-GP called scalable transfer support

vector machine with group probabilities (STSVM-GP) is further developed by selecting the representative

set of the training samples as the training data in the source domain. Experimental results on synthetic

datasets as well as several real-world datasets show the effectiveness of the proposed classifiers, and

especially STSVM-GP is very feasible for large scale transfer datasets.

© 2017 Published by Elsevier B.V.
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. Introduction

Learning from group probabilities [1–6] is attractive in the

cenarios where the samples are provided as groups and only

he label proportion of the samples is available. One of the most

atural applications comes in analyzing the outcomes of politi-

al elections, where the population of all voters in an electoral

istrict is known, but only the total number of votes per party

n each district is revealed. However, from an analysis of this

ata, e.g. the dependence of votes on variables such as income or

ousehold types, can show up interesting connections, and may

e used to uncover election fraud when outliers from this model

re uncovered. This case is quite different from the traditional

upervised, unsupervised and semi-supervised learning problems.

ig. 1 shows the difference among several traditional learning

lgorithms, including: supervised learning, unsupervised learning,

emi-supervised learning and learning from group probabilities.

earning from group probabilities can be regarded as an algorithm

ying somewhere between supervised learning algorithms and

emi-supervised learning algorithms. 

Various algorithms have been developed by utilizing the

roup probabilities. For example, Quadrianto et al. [2] applied

onsistent estimators which could reconstruct the correct labels
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ith high probability into a uniform convergence sense. Later,

üping [3] proposed a parametric classifier, called IC-SVM, which

ntegrated inverse calibration technology into support vector

egression (SVR). Besides, Stolpe and Morik [4] developed a clus-

ering based algorithm to learn from label proportions. Recently, Qi

t al. [6] introduced an effective model called LLPs via nonparallel

upport vector machine (LLP-NPSVM). LLP-NPSVM determined the

abel of samples according to two nonparallel hyper-planes under

he supervision of label proportion information. The current study

n learning from group probabilities often assumes that the train-

ng set is large enough to train a robust classifier [3] . However,

his assumption may not always hold. In practice, the data features

r data distributions may be different, which leads to the lack of

roup probabilities since there are not enough groups in corre-

ponding data. As a result, it may not be able to directly apply the

lassifiers learned on the learning tasks with group probabilities.

t would be helpful if the samples of relative source domains

an be transferred into the target domain. For the application of

olitical election discussed above, the vote data in previous years

ill be helpful for the learning tasks of this year. In such cases,

ransfer learning between task domains would be desirable [7–11] .

ransfer learning is motivated by the fact that people can apply

reviously learned knowledge to solve new problems. Transfer

earning builds a model for the target domain by leveraging the

abel information from another related domain (source domain),

uch as the vote data collected in other time frames or with

ther data collection setups, thus it avoids the costly process of
tor machine with group probabilities, Neurocomputing (2017), 
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Fig. 1. Difference between (among) the proposed classifiers and the often-used learning algorithms (colors encoding class labels). (a): supervised learning: labeled data are

given; (b): unsupervised learning: unlabeled data are given; (c): semi-supervised learning: labeled and unlabeled data are given; (d): learning with group probabilities: class

label proportion of unlabeled data are given.
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b  
generating labels for the samples in the target domain. Different

from conventional machine learning algorithms which assume that

the training data should have the same distribution as that of the

test data, transfer learning is able to utilize knowledge from data

which follows a different distribution. Up to now, many transfer

learning algorithms have been successfully applied in many areas,

such as speech recognition, computer vision, information retrieval

and natural language processing [12–15] . 

In this work, we construct a novel transfer learning framework

with group probabilities using labeled samples in the source

domain and the group probabilities in the target domain. Further-

more, inspired by Inverse Calibration [3] , with the ε-insensitive

loss function, a transfer support vector machine with group prob-

abilities (called TSVM-GP) is proposed. TSVM-GP can be solved

using the classical quadratic programming (QP) solver [16] . 

However, the number of samples in the source domain is

usually very large and computing the corresponding kernel matrix

using the naive QP solver is O ( n 3 ) ( n is the number of training

samples) computationally complex. All these factors heavily limit

the applicability of TSVM-GP on large scale transfer datasets.

Many endeavors have been made to develop various techniques

for scaling up the QP solver. Typical techniques involve chunking

and some other complicated decomposition methods such as

sequential minimal optimization (SMO) algorithm [17] , minimum

enclosing ball (MEB) [18] , core vector machines (CVM) [19] ,

fastKDE [20] and so on. Recently, AESVM [21] is proposed as

a fast SVM training algorithm, whose implementation is found

to be much faster than many state-of-the-art kernel methods,

whereas its classification accuracy is comparable to these existing

algorithms. Based on the definition of the convex hull in the

kernel space, AESVM effectively finds the convex hull vertices of

the training data (called representative set) in the kernel space,

then uses the representative set as the training data to build a

SVM classifier. Obviously, the size of the training data is effectively

decreased and the training time is much shorter. 

In this paper, in order to scale TSVM-GP on large scale transfer

datasets, we introduce the AESVM algorithm into TSVM-GP and

develop a scalable transfer support vector machine with group

probabilities (STSVM-GP). First, the convex hull vertices of samples

(representative set) in the source domain and their corresponding

weights are computed based on the idea of AESVM algorithm.

Then, these selected samples and their weights as well as the

group probabilities of the target domain are feed into TSVM-GP to
Please cite this article as: T. Ni et al., Scalable transfer support vec
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uild a classifier. Therefore, the scalable version of TSVM-GP, i.e.,

TSVM-GP, is proposed to implement the fast training algorithm

n large scale transfer datasets. 

The contribution of this work can be summarized as the

ollowing aspects. 

(1) A novel transfer learning classifier TSVM-GP is proposed.

TSVM-GP simultaneously utilizes both the labeled samples

in the source domain and the group probabilities of the un-

labeled samples in the target domain in a transfer learn-

ing framework. The training procedure of TSVM-GP can be

equivalently transformed as a classical QP problem and it

guarantees a global optimal solution. 

(2) By using both the representative set selected from the

source domain and group probabilities of the target do-

main as the training set, the scalable classifier STSVM-GP of

TSVM-GP is developed for fast training on large scale trans-

fer datasets. It guarantees that the selected samples can re-

tain the greatest amount of information of data in the source

domain. The performance of STSVM-GP is much closed to

that of TSVM-GP but STSVM-GP consumes much less train-

ing time. 

(3) Extensive experiments on synthetic and real-world datasets

are conducted and the experimental results demonstrate

that the proposed classifiers are at least comparable to sev-

eral state-of-the-art algorithms in terms of classification ac-

curacy; moreover, STVM-GP is very feasibility for large scale

transfer datasets in terms of training time. 

The rest of this paper is organized as follows. The related

oncepts of classic learning of group probabilities: Inverse Cali-

ration and AESVM are reviewed in Section 2 . In Section 3 , the

roposed classifier TSVM-GP is proposed. In Section 4 , the pro-

osed classifier STSVM-GP is proposed. The experimental results

n synthetic and real-world datasets are reported in Section 5 .

inally, conclusions and the potential of the proposed classifiers

re given in the last section. 

. Related works

.1. Inverse Calibration (IC) 

Inverse Calibration [3] learns a classifier from group proba-

ilities based on the idea of support vector regression (SVR) and
tor machine with group probabilities, Neurocomputing (2017), 
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(

 

p  
lassifier calibration [22] . For a binary classification task described

y an unknown probability distribution P ( X, Y ) on an input space

 and a set of labels Y = {−1 , 1 } , let ( x 1 , y 1 ) , . . . , ( x n , y n ) be

rawn independently and identically distributed from P . X is fixed

y several subsets. An estimate of the conditional class probability

an be predicted by the Platt calibration [3] : 

p(y = 1 | x ) = 1 / (1 + exp (−A f (x ) + B )) , (1) 

here the parameters A and B are fitted using maximum likeli-

ood estimation from a fitting training set ( x i , y i ). Both A and B can

e optimized using gradient descent to minimize the cross-entropy

rror. The scaling function in Inverse Calibration is: 

p = σ (y ) = 

1 

1 + exp (−y ) 
, (2) 

hich can be considered as a special case of Platt calibration with

 = 1 and B = 0. Using p to imply p(y = 1 | x ) , the label ˜ y can be

redicted by 

˜ 
 = σ−1 (p) = − log ( 

1 

p 
− 1) . (3) 

In order to avoid undefined values of y, p is clipped to the inter-

al [ ε , 1- ε ], where ε is a parameter defining the minimum required

recision of the estimate. However, the optimal class probability

stimation of the single observation varies dramatically around

he average value of p . Let f (x ) = w 

T ϕ(x ) + b be the output of a

lassifier in the kernel space, where ϕ( x ) is a mapping function ϕ:

 

d → R 

D ( D > > d ) that maps the original data into a high, possible

imensional feature space. Thus, f predicts ˜ y well on average: 

 i : 
1 

| S i | 
∑ 

j∈ S i 
( w 

T ϕ( x j ) + b) ≈ ˜ y i , (4) 

here S i is the i th subset, | S i | denotes the number of samples in

ubset S i . 

Inverse Calibration formulates optimization problem is as

ollowing: 

in 

w ,b 

1 

2 

‖ 

w ‖ 

2 + C 

m ∑ 

i =1 

( ξi + ξi 
∗
) , 

 . t . ∀ 

m 

i =1 : 
1 

| S i | 
∑ 

j∈ S i 
(w 

T ϕ( x j ) + b) ≥ ˜ y i − ε i − ξi , 

 

m 

i =1 : 
1 

| S i | 
∑ 

j∈ S i 
(w 

T ϕ( x j ) + b) ≤ ˜ y i + ε i + ξ ∗
i , 

i ≥ 0 , ξ ∗
i ≥ 0 . (5) 

here m is the number of groups. It is well known that the above

ptimization problem in Eq. (5) can be efficiently solved in its

ual form, which is: 

in 

α,α∗

1 

2 

m ∑ 

i, j=1 

( αi − α∗
i 
)( α j − α∗

j 
) 

| S i | 
∣∣S j ∣∣

∑ 

i ′ ∈ S i , j ′ ∈ S j 
k ( x i ′ , x j ′ ) 

+ 

m ∑ 

i =1 

( αi ( ε i − ˜ y i ) + α∗
i ( ε i + 

˜ y i )) , 

 . t . 

m ∑ 

i =1 

( αi − α∗
i ) = 0 , (6) 

 

m 

i =1 : 0 ≤ αi , α
∗
i ≤ C. 

here the inner product k (x , x ′ ) = ϕ (x ) T ϕ( x ′ ) is the kernel

unction. 
Please cite this article as: T. Ni et al., Scalable transfer support vec
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.2. Fast SVM training using approximate extreme points (AESVM) 

The basic idea of SVM is trying to offer a hyperplane that

epresents the largest separation (or margin) between two classes.

eometrically, the maximum-margin hyperplane is equivalent to

ompute the nearest samples between the convex hulls of two

lasses [23,24] . Based on the definition of convex hull in the kernel

pace, AESVM [21] selects the convex hull vertices of the positive

nd negative training samples (called the representative set) sep-

rately as the inputs to a SVM classifier. One of the advantages of

ESVM is that its solution has been theoretically proved close to

he original solution within a small approximation bound. 

Given a dataset X = { x 1 , x 2 , . . . , x n } ∈ R 

d and the corresponding

lass label set Y = { y 1 , y 2 , . . . , y n } , where y i = 1 or −1 ( i = 1, . . . , n ).

he constrained optimization problem of the AESVM model can be

escribed as follows: 

in 

w ,b 
F AESV M 

(w , b) = 

1 

2 

w 

T w + 

C 

M 

M ∑ 

i =1 

βi l(w , b, ϕ( x i )) , (7) 

here l(w , b, ϕ( x i )) = max { 0 , 1 − y i ( w 

T ϕ( x i ) + b) } , x i ∈ X 

∗. X 

∗ is

he representative set of the training set with M samples obtained

y AESVM. The vector β = [ β1 , β2 , . . . , βM 

] T is the weight vector

f representative samples. 

It is noted that the process of representative set X 

∗ determi-

ation is executed on the positive and negative class separately.

irstly, the samples belonging to each class are divided into several

ubsets X q based on the certain segregation strategy. Then, the

epresentative set X 

∗
q and the weight vector βq are computed

n each subset. Finally, the representative set X 

∗ is obtained by

ombining all the sets of X 

∗
q together. Here, we briefly discuss how

o determine the representative set X 

∗
q with its weight vector βq 

n each subset X q . Firstly, the initialized representative set X 

∗
q is

omputed by using the support vector data description (SVDD)

25] algorithm. Secondly, according to the descending order of dis-

ance between samples and the center of the SVDD in the kernel

pace, each sample x i ( x i ∈ X q and x i / ∈ X 

∗
q ) is checked whether it is

 representative sample by using the following form: 

max 
 i ∈ X q and x i / ∈ X ∗q 

f (ϕ( x i ) , X 

∗
q ) ≤ ˜ ε , 

 . t . 0 ≤ μi,t ≤ 1 , 

| X ∗q | ∑ 

t=1 

μi,t = 1 and x t ∈ X 

∗
q , (8) 

here f (ϕ( x i ) , X 

∗
q ) = min 

μit 

‖ ϕ( x i ) −
∑ | X ∗q | 

t=1 
μi,t ϕ( x t ) ‖ 2 , and | X 

∗
q | de-

otes the number of samples in X 

∗
q . For a given tolerance param-

ter ˜ ε , if the value f (ϕ( x i ) , X 

∗
q ) is greater than ˜ ε , then the sample

 i can be accepted as a representative sample of the subset X q in

he kernel space. Then the representative set X 

∗
q can be scaled up

s X 

∗
q = X 

∗
q ∪ { x i } . Thus, any sample x i ( x i ∈ X q and x i / ∈ X 

∗
q ) in the

ernel space can be formulated as: 

( x i ) = 

∑ 

x i ∈ X q 
γi,t ϕ( x t ) + τi , (9) 

here γi,t = { μi,t for x t ∈ X 

∗
q and x i ∈ X q , and 0 otherwise } and

 τi ‖ 2 ≤ ˜ ε . 
Finally, the element β t in the weight vector β can be deter-

ined as follows: 

t = 

N ∑ 

i =1 

γi,t . (10) 

. Transfer support vector machine with group probabilities 

TSVM-GP) 

In this section, we give a detailed description of the pro-

osed transfer support vector machine with group probabilities
tor machine with group probabilities, Neurocomputing (2017), 

http://dx.doi.org/10.1016/j.neucom.2017.08.049
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Fig. 2. Framework of TSVM-GP. 
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(TSVM-GP), and describe the framework of TSVM-GP in Fig. 2 . As

shown in Fig. 2 , there are two major information sources available

for the TSVM-GP learning, the labeled samples in the source

domain and the unlabeled samples with group probabilities in

the target domain. For simplicity, we consider binary classification

problems. We denote a source domain D s as D s = ( x i , y i ) i =1 , ... ,n 

based on the joint distribution P s , x i is the input vector and

y i ∈ {−1 , 1 } is the corresponding label. Similarly, a target domain

D t is denoted as D t = ( x i ) i = 1,…, d according to the joint distribution

P t . Suppose p k = | { i ∈ S k : y i = 1 }| / | S k | be the estimate of the

conditional class probability P (Y = 1 | S k ) . Let P s ( x s ) and P t ( x t , ),

P s ( y s | x s ) and P t ( y t | x t ) be the marginal distribution and the condi-

tional distributions of D s and D t , respectively. In general, P s � = P t ,

P s ( x s ) � = P t ( x t , ) and P s ( y s | x s ) � = P t ( y t | x t ). Our goal is to predict the

labels of the inputs in the target domain D t . 

The framework of TSVM-GP can be formulated as the following

optimization problem: 

min 

f s , f c ∈ H K 

1 

2 

‖ 

f s ‖ 

2 
K + C s 

n ∑ 

i =1 

l s ( f s , y i ) + 

1 

2 

‖ 

f t ‖ 

2 
K 

+ C t 

d ∑ 

i =1 

l t ( f t , y i ) + λd( f t , f s ) , (11)

where f s and f t are the decision functions in the source domain

and target domain, respectively. ‖ f s ‖ 2 K 
and ‖ f t ‖ 2 K 

are the structure

risk terms controlling the complexity of the classifier in the

source domain and the target domain, respectively. Moreover ‖ f ‖ 2 
indicates the 2-norm of function f. C s and C t are the regularization

coefficients in the source domain and the target domain, respec-

tively. The function l () is a convex non-negative loss function.

The function d () is used to quantify the diversity between two

domains. The λ is the trade-off parameter. 

The optimization criterion in Eq. (11) contains three terms.

The first term ( 1 2 ‖ f s ‖ 2 K 
+ C s 

∑ n 
i =1 l s ( f s , y i ) ) refers to the knowledge

learning from the data in the source domain. The second term

( 1 2 ‖ f t ‖ 2 K + C t 
∑ d 

i =1 l t ( f t , y i ) ) refers to the knowledge learning from

the data in the source domain. The third term ( λd ( f t , f s )) is the

regularizer term that guarantees good generalization performance

by minimizing the difference between the two domains. So TSVM-

GP deals with the classification problem as accurately as possible

both in the source domain and the target domain. 

Following the common strategy in SVM, a possible classification

hyperplane in TSVM-GP can be represented by w 

T ϕ(x ) + b = 0 .
Please cite this article as: T. Ni et al., Scalable transfer support vec
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n further, a simple quadratic distance measure, i.e., d( f t , f s ) =
λ
2 ‖ w t − w s ‖ 2 , is used to quantify the diversity between domains.

o that the optimization problem in Eq. (11) can be rewritten as: 

min 

 t , w s , b t , b s 

1 

2 

‖ 

w t ‖ 

2 + C t 

d ∑ 

i =1 

l t (w 

T 
t ϕ(x ) + b t , y i ) + 

1 

2 

‖ 

w s ‖ 

2 

+ C s 

n ∑ 

i =1 

l s (w 

T 
s ϕ(x ) + b s , y i ) + 

λ

2 

‖ 

w t − w s ‖ 

2 
. (12)

In order to obtain both good classification performance in

he source domain and good probability estimation in the target

omain, two different loss functions are chosen in two do-

ains, i.e., hinge loss function l( f ( x i ) , y i ) = max { 0 , 1 − y i f ( x i ) }
n the source domain and ɛ -insensitive loss function l( f ( x i ) , y i ) =

ax { 0 , | f ( x i ) − ˜ y i | − ε} in the target domain. Therefore, Eq. (12) can

e formulated as an optimization problem: 

min 

 t , w s , b t , b s 

1 

2 

‖ 

w t ‖ 

2 + 

1 

2 

‖ 

w s ‖ 

2 + C s 

n ∑ 

i =1 

ξ s 
i + C t 

n + d ∑ 

i = n +1 

( ξi + ξi 
∗
) 

+ 

λ

2 

‖ 

w t − w s ‖ 

2 
, 

 . t . y i (w 

T 
s ϕ( x i ) + b s ) ≥ 1 − ξ s 

i , i = 1 , . . . , n, (13)

 

d 
i =1 : 

1 

| S i | 
∑ 

j∈ S i 
(w 

T 
t ϕ( x j ) + b t ) ≥ ˜ y i − ε i − ξi , 

 

d 
i =1 : 

1 

| S i | 
∑ 

j∈ S i 
(w 

T 
t ϕ( x j ) + b t ) ≤ ˜ y i + ε i + ξ ∗

i , 

here ξ s 
i 
, ξi and ξ i 

∗ are slack variables. The goal of the first

onstrain is to separate these samples as accurately as possible in

he source domain. The second and third constrains try to keep

he class probability estimate of S i close to p i in the target domain.

n TSVM-GP, ɛ i is a parameter defining the minimum precision of

he estimate of ˜ y i , which satisfies the following scaling function: 

p i − ε ≤ 1 

1 + exp (− ˜ y ) 
≤ p i + ε. (14)

Following [3] , ɛ i is set to be ε i = 

ε ′ 
p i (1 −p i ) 

where p i is the group

robability P (Y = 1 | S k ) , and ɛ ′ is a very small positive constant. 

In order to solve the optimization problem in Eq. (13) , we

evelop Theorems 1 and 2 as follows. 

heorem 1. The dual problem of Eq. (13) is a QP problem as

hown in Eq. (15) . 

in 

β

1 

2 

βT ˜ K β + ̃

 e T β, (15)

 . t . f T β = 0 , 

where β = [ αs , α, α∗] T , 0 ≤ β ≤ [ C s , . . . , C s ︸ ︷︷ ︸ 
n 

, C t , . . . , C t ︸ ︷︷ ︸ 
d 

, C t , . . . , C t ︸ ︷︷ ︸ 
d 

] ,

 

T = [ y 1 , . . . , y n , 1 , . . . , 1 ︸ ︷︷ ︸ 
d 

, −1 , . . . , −1 ︸ ︷︷ ︸ 
d 

] , 

˜ 
 = [ 0 , . . . , 0 ︸ ︷︷ ︸ 

n 

, ε − ˜ y , ε + ̃

 y ] , 

˜ 
 = 

⎡ 

⎢ ⎣ 

1+ λ
1+2 λ

K s,s + 

1 
λ

λ
1+2 λ

K s,t − λ
1+2 λ

K s,t 

λ
1+2 λ

K 

T 
s,t 

1+ λ
1+2 λ

K t,t − 1+ λ
1+2 λ

K t,t 

− λ
1+2 λ

K 

T 
s,t − 1+ λ

1+2 λ
K t,t 

1+ λ
1+2 λ

K t,t 

⎤ 

⎥ ⎦ 

(n +2 d) ×(n +2 d) 

, 

 s,s = ( y i y j k (x 
i 
, x j )) i, j=1 , ··· ,n , 

 s,t = 

(
˜ y i | S k | 

∑ 

j∈ S k k (x 
i 
, x j ) 

)
i =1 , ··· ,n,k =1 , ... ,d 

, 

 t,t = 

(
1 

| S i || S j | 
∑ 

i ′ ∈ S i 
∑ 

j ′ ∈ S j k (x 
i ′ , x j ′ ) 

)
i, j=1 , ... ,d 

. 
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The proof of Theorem 1 can be seen in Appendix 1 . 

heorem 2. The quadratic form of the optimization problem of

q. (15) is a standard convex quadratic programming problem. 

The proof of Theorem 2 can be seen in Appendix 2 . 

It is clear from the above results that the optimization problem

n Eq. (15) for TSVM-GP model training can be transformed into a

onvex QP problem and can be directly solved by the traditional

VM solutions. 

Suppose ˜ β = ( ̃  αs , ˜ α, ˜ α∗) T solve the optimization problem. Then

e can obtain the optimal value of w t 
∗ and b t 

∗ as below: 

 t 
∗ = 

λ

1 + 2 λ

n ∑ 

i =1 

˜ αs 
i y i ϕ( x i ) + 

1 + λ

1 + 2 λ

n + d ∑ 

i = n +1 

˜ αi − ˜ α∗
i 

| S i | 
∑ 

j∈ S i 
ϕ( x j ) , (16) 

 t 
∗ = y i −

λ

1 + 2 λ

n ∑ 

j=1 

˜ αs 
j 
y j 

| S i | 
∑ 

k ∈ S i 
k (x j , x k ) 

− 1 + λ

1 + 2 λ

n + d ∑ 

j= n +1 

˜ α j − ˜ α∗
j ∣∣S j ∣∣| S i | 

∑ 

l∈ S j 

∑ 

k ∈ S i 
k (x l , x k ) . (17) 

Finally, the decision of TSVM-GP can be represented as fol-

ows: 

f (x ) = w t 
T ϕ(x ) + b t (18) 

Based on the analysis above, we summarize the training

rocess for TSVM-GP as follows. 

Training algorithm for TSVM-GP 

Input: n labeled samples { ( x i , y i ) } n i =1 
in the source domain, m unlabeled 

samples { x j } n + m j= n +1 
in the target domain and d group probabilities 

{ ( S k , p k ) } d k =1 

Output Decision function f ( x ) 

Step 1 Compute the output of Inverse Calibration ˜ y j ( j = 1 , . . . , d) in the 

target domain using Eq. (3) ; 

Step 2 Construct the matrix ˜ K using Eq. (15) ; 

Step 3 Compute Lagrange multiplier β by solving Eq. (16) with a QP 

Solver; 

Step 4 Compute w t using Eq. (16) ; 

Step 5 Compute b t using Eq. (17) ; 

Step 6 Output the decision function f (x ) using Eq. (18) . 

The computation complexity of TSVM-GP is O ( n + 2 d ) 3 , where

 is the number of the samples in the source domain and d is

he number of groups in the target domain. However, the time

omplexity of TSVM-GP is cubic of n , which makes TSVM-GP not

fficient to large scale datasets. In the following section, TSVM-GP

ill be extended into its scalable version scalable transfer support

ector machine with group probabilities (STSVM-GP) to address

his issue. 

. Scalable transfer support vector machine with group 

robabilities (STSVM-GP) 

In this section, we extend TSVM-GP to be scalable for large

cale transfer datasets. As discussed in Section 1 , it is not diffi-

ult to collect a large number of samples in the related domain

i.e., source domain) for TSVM-GP. In order to make TSVM-GP

o fully utilize large scale data in the source domain, we apply

ESVM algorithm to generate the representative set (i.e., convex

ull vertices set) of the source domain as the new training set

nd then utilize this representative set for transfer learning with

roup probabilities in the target domain. In this way, the size of

raining dataset in the source domain for TSVM-GP can be greatly

hortened, and the time complexity for training the classifier can

lso be greatly shorted. Meanwhile, the selected representative set

ontains the greatest amount of information of the data in the

ource domain. Based on this idea, TSVM-GP is extended to the
Please cite this article as: T. Ni et al., Scalable transfer support vec
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calable transfer support vector machine with group probabilities

called STSVM-GP), in which the representative set in the source

omain and the group probabilities of data in the target domain

re used to build a classifier. The optimization problem of the

TSVM-GP classifier can be expressed as 

min 

 t , w s , b t , b s 

1 

2 

‖ 

w t ‖ 

2 + 

1 

2 

‖ 

w s ‖ 

2 + 

C s 

M 

M ∑ 

i =1 

βi ξ
h 
i + C t 

M+ d ∑ 

i = M+1 

( ξi + ξi 
∗
) 

+ 

λ

2 

‖ 

w t − w s ‖ 

2 
, (19) 

 . t . y i (w 

T 
s ϕ( x i ) + b s ) ≥ 1 − ξ s 

i , i = 1 , . . . , M, 

 

d 
i =1 : 

1 

| S i | 
∑ 

j∈ S i 
(w 

T 
t ϕ( x j ) + b t ) ≥ ˜ y i − ε i − ξi , 

 

d 
i =1 : 

1 

| S i | 
∑ 

j∈ S i 
(w 

T 
t ϕ( x j ) + b t ) ≤ ˜ y i + ε i + ξ ∗

i , 

here M is the size of the representative set, and β =
 β1 , β2 , . . . , βM 

] T is the weight vector of representative sam-

les. According to the derivation of TSVM-GP, the dual problem of

TSVM-GP can be formulated as the following QP problem: 

in 

�

1 

2 

�T ˜ K� + ̃

 e T �, (20) 

 . t . f T � = 0 , 

here 

� = [ αs , α, α∗] T , 

0 ≤ � ≤ [ C s / β1 M, . . . , C s / βM 

M ︸ ︷︷ ︸ 
M 

, C t , . . . , C t ︸ ︷︷ ︸ 
d 

, C t , . . . , C t ︸ ︷︷ ︸ 
d 

] , 

β j = 

M ∑ 

i =1 

γi, j , f T = [ y 1 , . . . , y M 

, 1 , . . . , 1 ︸ ︷︷ ︸ 
d 

, −1 , . . . , −1 ︸ ︷︷ ︸ 
d 

] , 

˜ e = [ 0 , . . . , 0 ︸ ︷︷ ︸ 
M 

, ε − ˜ y , ε + ̃

 y ] , 

˜ K = 

⎡ 

⎣ 

1+ λ
1+2 λ

K s,s + 

1 
λ

λ
1+2 λ

K s,t − λ
1+2 λ

K s,t 

λ
1+2 λ

K 

T 
s,t 

1+ λ
1+2 λ

K t,t − 1+ λ
1+2 λ

K t,t 

− λ
1+2 λ

K 

T 
s,t − 1+ λ

1+2 λ
K t,t 

1+ λ
1+2 λ

K t,t 

⎤ 

⎦ 

(M+2 d) ×(M+2 d) 

, 

 s,s = ( y i y j k (x i , x j )) i, j=1 , ··· ,M 

, 

 s,t = 

( 

˜ y i 
| S k | 

∑ 

j∈ S k 
k (x i , x j ) 

) 

i =1 , ··· ,M,k =1 , ... ,d 

, 

 t,t = 

⎛ 

⎝ 

1 

| S i || S j | 
∑ 

i ′ ∈ S i 

∑ 

j ′ ∈ S j 
k (x i ′ , x j ′ ) 

⎞ 

⎠ 

i, j=1 , ... ,d 

. 

Suppose ˜ � = ( ̃  αs , ˜ α, ˜ α∗) T solve the optimization problem. The

ptimal w t 
∗ and b t 

∗ can be written as 

 t 
∗ = 

λ

1 + 2 λ

M ∑ 

i =1 

˜ αs 
i y i ϕ( x i ) + 

1 + λ

1 + 2 λ

M+ d ∑ 

i = n +1 

˜ αi − ˜ α∗
i 

| S i | 
∑ 

j∈ S i 
ϕ( x j ) , (21) 

 t 
∗ = y i −

λ

1 + 2 λ

M ∑ 

j=1 

˜ αs 
j 
y j 

| S i | 
∑ 

k ∈ S i 
k (x j , x k ) 

− 1 + λ

1 + 2 λ

M+ d ∑ 

j= n +1 

˜ α j − ˜ α∗
j ∣∣S j ∣∣| S i | 

∑ 

l∈ S j 

∑ 

k ∈ S i 
k (x l , x k ) . (22) 

Let us recall two important properties from AESVM in [21] .

hese two properties reveal that the optimal solution of AESVM
tor machine with group probabilities, Neurocomputing (2017), 
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is very close to that of SVM and the upper error bound of

AESVM does not depend on the size of training set. Let F S (w , b) =
1 
2 ‖ w s ‖ 2 + 

C s 
M 

∑ M 

i =1 βi ξ
h 
i 

represent knowledge learning from the

data in the source domain in STSVM-GP. Since the term F S ( w , b )

has the same formulation with F AESVM 

( w , b ), the properties con-

cluded on the AESVM algorithm will hold true for STSVM-GP. Thus,

we can state that STSVM-GP exhibits almost the same classification

performance or at least comparable performance with TSVM-GP. 

Property 1 [21] : F SV M 

(w 

∗
1 
, b ∗

1 
) − F AESV M 

(w 

∗
2 
, b ∗

2 
) ≤ C 

√ 

C ̃  ε . 

Property 2 [21] : F SV M 

(w 

∗
2 , b 

∗
2 ) − F AESV M 

(w 

∗
1 , b 

∗
1 ) ≤ 2 C 

√ 

C ̃  ε . 

where F SVM 

( w , b ) and F AESVM 

( w , b ) are the optimal problem

for SVM and AESVM, respectively. (w 

∗
1 
, b ∗

1 
) and (w 

∗
2 
, b ∗

2 
) are

the optimal solutions of SVM and AESVM respectively. C is the

regularization coefficient, and ˜ ε is the tolerance parameter. 

Based on the above, the learning algorithm of the proposed

STSVM-GP is developed and stated as follows: 

Learning algorithm for STSVM-GP 

Input: n labeled examples { ( x i , y i ) } n i =1 
in the source domain, m unlabeled 

examples { x j } n + m j= n +1 
in the target domain and d group 

probabilities { ( S k , p k ) } d k =1 

Output Decision function f ( x ) 

Step 1 Compute the output of Inverse Calibration ˜ y j ( j = 1 , . . . , d) in the 

target domain using Eq. (3) ; 

Step 2 Compute the representative set of the data of the source domain 

[21] ; 

Step 3 Compute Lagrange multiplier � by solving Eq. (20) with a QP 

Solver; 

Step 4 Compute w t using Eq. (21) ; 

Step 5 Compute b t using Eq. (22) ; 

Step 6 Output the decision function f (x ) using Eq. (18) . 

The overall complexity of STSVM-GP includes two stages:

representative set selection stage by AESVM and classifier building

stage. Given an original training dataset with n samples in the

source domain, the time complexity in representative set selection

is O (n ( log 2 
P 
V + 

P 
V + log 2 V ) + V 

∑ Q 
q =1 

∑ R 
r=1 A 

2 
qr ) , where P, V, Q and

R are four parameters involved in the segregation strategy in

AESVM, and A qr is the latest size of representative set of each seg-

regation during the iterations. In classifier building stage, with M

representative samples in the source domain and d samples in the

target domain, the corresponding time complexity is O ( M + 2 d ) 3 .

Since the time complexity in representative set selection is much

less than that in the latter stage, the overall time complexity of

STSVM-GP will scale at O ( M + 2 d ) 3 . In contrast to the TSVM-GP,

the time cost of STSVM-GP is smaller. 

5. Experimental results 

In this section, the proposed TSVM-GP and STVM-GP are eval-

uated by both toy and real-world datasets and its performance is

benchmarked with four representative classifiers, including: SVM

[26] , IC-SVM [3] , locally-weighted ensemble (LWE) classifier [27] ,

large margin kernel projected TSVM (LMPROJ) [28] . The exper-

iments are organized as follows. The experimental settings are

firstly described in Section 5.1 . Then, Sections 5.2 and 5.3 report

the experimental results in synthetic and real-world datasets

respectively. Finally, parameter sensitivity analysis of the proposed

classifiers is reported in Section 5.4 . The TSVM-GP, STVM-GP,

IC-SVM, LWE, and LMPROJ are implemented with MATLAB. In par-

ticular, SVM is implemented using LIBSVM [29] . All experiments

are carried on a 2.6 GHz machine with 3 G RAM. 

5.1. Experimental setting 

In order to make the experimental results fair, we repeat the

5-fold cross validation strategy three times by randomly gener-
Please cite this article as: T. Ni et al., Scalable transfer support vec
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ting five folds on the available data in which each fold keeps

he same proportion of positive and negative samples as in the

vailable data. For four transfer learning classifiers (LWE, LMPROJ,

SVM-GP and STSVM-GP), all labeled source data and the 5%

andomly selected unlabeled target data are used as training set;

hile only the labeled source data is used to train SVM and

% selected unlabeled target data is used to train IC-SVM. The

emaining unlabeled target data is used for testing. 

In our experiments, the average classification accuracy with

tandard deviation and training time (in seconds) on each classi-

cation task for 15 runs are recorded. The classification accuracy

hich is widely used in literature [30] is represented as, 

ccuracy = 

| x : x ∈ D t ∧ 

˜ y (x ) = y (x ) | 
| x : x ∈ D t | × 100% , 

here D t is the set of test data, y ( x ) is the truth label of x , ˜ y (x ) is

he label predicted by the classifiers. 

For each classifier, we select a Gaussian kernel function in the

orm k ( x i , x j ) = exp (−‖ x i −x j ‖ / 2 σ 2 ) , the width parameter 2 σ 2 is

earched according to the following grids { s /64, s /32, s /16, s /8, s /4,

 /2, s , 2 s , 4 s , 8 s , 16 s , 32 s , 64 s }, where s is the mean squared norm

f the training data. The parameters C 1 , C 2 and λ of the proposed

lassifiers are determined by searching the grid { 10 −3 , 10 −2 , 10 −1 ,

0 0 , 10 1 , 10 2 , 10 3 , 10 4 }. Following [3] , the group size k is set as

 = 16, i.e., the target datasets are randomly partition into sets

f size 16 for IC-SVM, TSVM-GP and STSVM-GP. For LWE, LMPROJ,

nd AESVM, the default parameter settings in their literatures are

dopted in our experiments. 

.2. Experiments on synthetic datasets 

The original source data in three two-moon datasets [31] (called

wo-moon1, two-moon2 and two-moon3) contains 20 0, 80 0 and

0 0 0 samples respectively, with the ratio of positive samples and

egative samples 1:1. The target data is generated by rotating

ounter-clockwise the source data by 15 °, 30 °, 45 °. Thus, there

re three datasets with different rotating degrees involved in

wo-moon1, two-moon2 and two-moon3, respectively. Due to the

imited size of the paper, we only present the experimental results

or those data of two-moon1, two-moon2, and two-moon3 datasets

here target data is generated by rotating counter-clockwise the

riginal source data by 15 ° as shown in Figs. 3 –5 . As in Fig. 3 for

xample, the dataset is composed of 100 positive class samples

i.e., SD + ) in the source domain, denoted by red “.”, 100 negative

lass samples (i.e., SD-) in the source domain, denoted by blue

.”, and 200 unlabeled samples (i.e., TD) in the target domain,

enoted by black “.”. The two-moon1 dataset in Fig. 4 and the

wo-moon3 dataset in Fig. 5 are composed of 1600 and 10,000

amples, respectively, generated by rotating counter-clockwise

he original source data by 15 °. Thus, the samples in the source

nd target domains belonging to these three two-moon datasets

xhibit different distributions due to rotation. Particularly, the

reater is the rotation angle, the more differences between the

ource domain and the target domain. Figs. 3 –5 also show the best

ecision surfaces of different classifiers on three datasets gener-

ted by rotating counter-clockwise the original source data by 15 °.
able 1 reports the average running time of different classifiers on

hree two-moon datasets shown in Figs. 3 –5 . Moreover, Table 2 re-

orts the average classification accuracy of different classifiers on

he two-moon datasets with different sizes and different rotating

egrees. In order to save space, here we did not report the running

ime for two-moon2 and two-moon3 by rotating 30 ° and 45 °. 
From Figs. 3 –5 , Tables 1 and 2 , we can observe the following

esults: 

(1) SVM can only separate the binary class samples in the

source domain correctly by considering the margin maxi-
tor machine with group probabilities, Neurocomputing (2017), 
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Fig. 3. Best decision surfaces obtained by using different algorithms on the two-moon1 generated by rotating counter-clockwise the original source data 15 °. (a) SVM, 

(b) IC-SVM, (c) LWE, (d) LMPROJ, (e) TSVM-GP, (f) STSVM-GP. 

Fig. 4. Best decision surfaces obtained by using different algorithms on the two-moon1 generated by rotating counter-clockwise the original source data 15 °. (a) SVM, 

(b) IC-SVM, (c) LWE, (d) LMPROJ, (e) TSVM-GP, (f) STSVM-GP. 
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Fig. 5. Best decision surfaces obtained by using different algorithms on the two-moon3 generated by rotating counter-clockwise the original source data 15 °. (a) SVM, 

(b) IC-SVM, (c) LWE, (d) LMPROJ, (e) TSVM-GP, (f) STSVM-GP. 

Table 1 

Comparison of the average running time with standard deviation on the two-moon 

datasets with different sizes generated by rotating counter-clockwise the original 

source data 15 °. 

Classifiers Training time (s) 

two-moon1 two-moon2 two-moon3 

SVM 6.30( ±0.35) × 10 −4 1.47( ±0.12) × 10 −3 2.65( ±0.3) × 10 −2 

IC-SVM 2.21( ±0.21) × 10 −4 2.51( ±0.31) × 10 −4 8.18( ±0.02) × 10 −3 

LWE 7.49 ( ±0.39) × 10 −2 3.93 ( ±0.21) × 10 −1 3.12( ±0.11) 

LMPROJ 5.64 ( ±0.34) × 10 −2 1.88 ( ±0.13) × 10 −1 1.33( ±0.05) 

TSVM-GP 1.09 ( ±0.44) × 10 −2 3.96( ±0.12) × 10 −2 1.43 ( ±0.04) × 10 −1 

STSVM-GP 1.89 ( ±0.31) × 10 −3 6.53 ( ±0.13) × 10 −3 4.22( ±0.02) × 10 −2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Comparison of the average classification accuracy with standard deviation on the 

two-moon datasets with different sizes and different rotating degrees. 

Datasets Classifiers Rotating degrees 

15 ° 30 ° 45 °

two-moon1 SVM 78.00 ( ±0.05) 80.0 0 ( ±0.0 0) 78.00 ( ±0.05) 

IC-SVM 78.00 ( ±0.05) 80.0 0 ( ±0.0 0) 78.00 ( ±0.05) 

LWE 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

LMPROJ 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

TSVM-GP 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

STSVM-GP 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

two-moon2 SVM 93.85( ±0.05) 92.00 ( ±0.05) 92.12( ±0.06) 

IC-SVM 92.80 ( ±0.08) 92.00 ( ±0.05) 92.45( ±0.08) 

LWE 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

LMPROJ 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

TSVM-GP 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

STSVM-GP 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 10 0 ( ±0.0 0) 

two-moon3 SVM 87.33( ±0.05) 85.0 0 ( ±0.0 0) 87.12( ±0.06) 

IC-SVM 87.79( ±0.10) 85.0 0 ( ±0.0 0) 87.25( ±0.06) 

LWE 92.50 ( ±0.19) 92.00 ( ±0.12) 92.35( ±0.18) 

LMPROJ 92.50 ( ±0.11) 92.40 ( ±0.09) 92.30 ( ±0.12) 

TSVM-GP 92.30 ( ±0.09) 91.70 ( ±0.05) 91.20 ( ±0.07) 

STSVM-GP 91.90 ( ±0.08) 90.90 ( ±0.05) 90.70 ( ±0.05) 

 

 

 

 

 

 

 

 

 

 

mization between two classes in the source domain; while

for the target domain, which has a different distribution

from the source domain, SVM cannot obtain satisfactory per-

formance. IC-SVM also performs poorly for the target do-

main because the limited groups cannot reveal the enough

structure information of the data in the target domain.

TSVM-GP and STSVM-GP take full use of both the labeled

samples in the source domain and the group probabilities in

the target domain, so these two classifiers achieve more pre-

cise classification hyperplanes than SVM and IC-SVM. TSVM-

GP and STSVM-GP obtain the comparable performance with

two transfer learning classifiers, i.e., LWE and LMPROJ. It is

worth to mention that TSVM-GP and STSVM-GP only use the

group probabilities in the target domain. So they are appro-

priate to be adopted for certain classification problems, such

as demanding for privacy protection. 

(2) In terms of Tables 1 and 2 , although the classification

performance of SVM is not prominent, its training time is

efficient on all generated two-moon datasets. Since SVM is
Please cite this article as: T. Ni et al., Scalable transfer support vec
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implemented by LIBSVM in C ++ code, it runs much faster

than Matlab code under the same environment. IC-SVM

occupies less training time than the other four transfer

learning algorithms because its training dataset only con-

tains the group probabilities constructed from 5% randomly

selected unlabeled target data which is far less than the size

of training data for the other classifiers. Both TSVM-GP and

STSVM-GP obtain satisfactory classification performance on

all generated two-moon datasets, while they have evident

advantage on training time compared to LWE and LMPROJ.
tor machine with group probabilities, Neurocomputing (2017), 
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Table 3 

The detailed information of generated transfer datasets on 20newsgroups and email spam datasets. 

Datasets Sizes Dimensions Tasks Source domain Target domain 

Positive Negative Positive Negative 

20newsgroups 60 0 0 20 comp vs. rec 1500 1500 1500 1500 

60 0 0 20 comp vs. sci 1500 1500 1500 1500 

60 0 0 20 com vs. talk 1500 1500 1500 1500 

Email spam data set 50 0 0 20 User1 vs. User2 1250 1250 1250 1250 

50 0 0 20 User2 vs. User3 1250 1250 1250 1250 

50 0 0 20 User3 vs. User1 1250 1250 1250 1250 

Table 4 

Detailed information of four large scale transfer datasets. 

Datasets Sizes Dimensions Tasks Classes Source domain Target domain 

USPS 9298 20 USPS vs. MNIST 10 9298 70,0 0 0 

MNIST 70,0 0 0 20 MNIST vs. USPS 2 70,0 0 0 9298 

5SrRNA 95,172 8 5SrRNA vs. tRNA 2 90,0 0 0 90,0 0 0 

tRNA 228,962 8 tRNA vs. 5SrRNA 2 90,0 0 0 90,0 0 0 
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i  

t  
With the increment of training size, STSVM-GP degrades a

little in classification performance but consumes much less

training time than TSVM-GP. It is noted that we use the

quadprog function in Matlab to solve the QP problem for

both TSVM-GP and STSVM-GP, and their computation com-

plexity is cubic to the training set size. If a more efficient QP

solver is used, TSVM-GP and STSVM-GP will run much faster.

.3. Experiments on real-world datasets 

.3.1. 20newsgroups and email spam transfer datasets 

20newsgroups [32] is a collection of 18,774 news documents

nd organized in a hierarchical structure, which consists of six

ain categories and 20 subcategories. In our experiments, in order

o generate transfer 20newsgroups dataset, two top categories

re chosen, one as positive class and the other as negative class.

hen the samples are split based on subcategories, i.e., different

ubcategories are considered as different domains, and the bi-

ary classification task is defined as a top category classification.

his splitting strategy ensures that the domains of labeled and

nlabeled data are related, since they are under the same top

ategories. Besides, these domains are also ensured to be different,

ince they are drawn from different subcategories. The generated

hree transfer datasets are named as “comp vs. rec”, “comp vs. sci”

nd “comp vs. talk” with 60 0 0 samples respectively. 

Email spam dataset [33] has three email subsets (denoted by

ser1, User2, and User3, respectively) annotated by three different

sers. The task is to classify spam and non-spam emails. Since the

pam and non-spam emails in the subsets have been differentiated

y different users, the data distributions of these three subsets are

elated but different. Each subset has 2500 emails, in which one

alf of the emails are non-spam and the other half are spam. 

Table 3 lists the detailed information of six transfer datasets

n 20newsgroups and email spam datasets. In our experiments,

he original high-dimensional data is preprocessed into the final

ataset containing 20 effective features using the same feature

xtraction strategy as that in [34 , 35] with principal component

nalysis (PCA). 

.3.2. Large scale transfer dataset 

USPS dataset [36] consists of 9298 16 × 16 image datasets

ith 256 dimensions. MNIST dataset [36] consists of 70,0 0 0

8 × 28 image datasets with 256 dimensions. By using the feature

xtraction strategy PCA, we compress these image features into

0 effective features in our experiment. Here two large scale

ransfer datasets are constructed, i.e., USPS vs. MNIST and MNIST
Please cite this article as: T. Ni et al., Scalable transfer support vec
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s. USPS. Both USPS and MNIST have ten classes. By using the

ne-against-all (OAA) way [37] , a multi-class classification task

s decomposed into the corresponding binary classification tasks.

SrRNA and tRNA are two bio-medical datasets composed of two

cRNAs of cod fish (see [38] ), which are consist of 95,172 and

28,962 samples, respectively, with eight attributes. The ratio of

ositive samples and negative samples in both dataset is 1:1. In

ur experiments, 90,0 0 0 samples in 5SrRNA and 90,0 0 0 samples

n tRNA are randomly selected to construct two large scale transfer

atasets: 5SrRNA vs. tRNA and tRNA vs. 5SrRNA. 

.3.3. Experiment results and analysis 

Tables 5 and 6 show the average classification accuracies with

heir standard deviations and the average running time of all the

enchmarking classifiers on different transfer learning tasks. From

hese results, we can have the following conclusions: 

(1) In terms of classification accuracy, it can be seen from

Table 5 that both TSVM-GP and STSVM-GP obtain improved

or at least comparable performance on all transfer learning

tasks. Particularly, STSVM-GP is comparable to TSVM-GP in

classification performance on all generated transfer datasets

as it works on representative set of the source domain and

group probabilities of the target domain which indeed re-

veals the structure of the datasets and exhibits competi-

tive performance to TSVM-GP. Similar to the observations

presented in previous subsections, two traditional classifiers

(SVM and IC-SVM) have the lower classification accuracy,

compared with four transfer learning classifiers. 

(2) In terms of training time shown in Table 6 , it can also

be seen that STSVM-GP has obvious advantage over LWE,

LMPROJ and TSVM-GP in training time, especially for large

datasets, due to its strong scalability. IC-SVM requires less

training time than other five classifiers in our experiments.

This is because its training data only contains the group

probabilities constructed from the 5% randomly selected un-

labeled target data which is much less than the size of the

training data for the other classifiers. Although SVM is effec-

tive in training time on some small scale datasets, its classi-

fication accuracy is not prominent on transfer learning prob-

lems. 

.4. Parameter sensitivity analysis 

In this subsection, a sensitivity analysis of three parameters,

.e., C s , C t and λ in our proposed classifiers is presented to illus-

rate their influence on the classification performance, while the
tor machine with group probabilities, Neurocomputing (2017), 

http://dx.doi.org/10.1016/j.neucom.2017.08.049


10 T. Ni et al. / Neurocomputing 0 0 0 (2017) 1–13 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; September 7, 2017;23:50 ] 

Table 5 

Comparison of average classification accuracy with standard deviation on real-world transfer datasets. 

Datasets SVM IC-SVM LWE LMPROJ TSVM-GP STSVM-GP 

comp vs. rec 79.65 ( ±2.11) 82.31 ( ±2.11) 86.98 ( ±2.00) 85.09 ( ±1.77) 85.38 ( ±1.11) 85.33 ( ±1.13) 

comp vs. sci 72.09 ( ±1.98) 71.99 ( ±1.98) 83.19 ( ±1.12) 82.98 ( ±1.98) 83.20 ( ±1.18) 83.07 ( ±1.01) 

com vs. talk 82.29 ( ±2.85) 84.99 ( ±2.85) 93.81 ( ±1.20) 92.92 ( ±0.90) 92.91 ( ±0.85) 92.78 ( ±1.25) 

User1 vs. User2 85.65 ( ±1.51) 90.65 ( ±1.51) 96.10 ( ±1.60) 96.30 ( ±0.22) 96.65 ( ±1.51) 95.80 ( ±1.10) 

User1vs. User3 85.78 ( ±2.02) 81.78 ( ±2.02) 95.50 ( ±2.05) 95.15 ( ±1.19) 95.78 ( ±1.02) 95.38 ( ±1.20) 

User2 vs. User3 81.01 ( ±1.24) 82.01 ( ±1.90) 91.87 ( ±1.01) 92.01 ( ±0.95) 91.01 ( ±0.90) 90.85 ( ±0.99) 

USPS vs. MNIST 37.87 ( ±1.00) 35.00 ( ±1.97) 54.41 ( ±1.22) 54.36 ( ±1.44) 54.07 ( ±1.01) 54.01 ( ±1.31) 

MNIST vs. USPS 58.05 ( ±2.00) 57.23 ( ±1.56) 61.52 ( ±1.72) 61.72 ( ±1.37) 61.32 ( ±1.75) 61.18 ( ±1.28) 

5SrRNA vs. tRNA 83.31 ( ±1.57) 84.11 ( ±1.90) 92.29 ( ±1.29) 92.43 ( ±1.21) 92.29 ( ±1.33) 92.08 ( ±1.72) 

tRNA vs. 5SrRNA 85.19 ( ±1.10) 85.88 ( ±2.21) 93.56 ( ±1.30) 93.11 ( ±1.54) 93.97 ( ±1.02) 93.41 ( ±1.12) 

Fig. 6. Parameter sensitivity analysis. (a) Sensitivity of parameter C s for TSVM-GP, (a) sensitivity of parameter C s for STSVM-GP, (c) sensitivity of parameter C t for TSVM-GP, 

(d) sensitivity of parameter C t for STSVM-GP, (e) sensitivity of parameter λ for TSVM-GP, (f) sensitivity of parameter λ for STSVM-GP. 
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parameters for representative set selection in STSVM-GP are set to

be the default values in [21] . For each parameter, we fix the other

two parameters at their best values determined by cross-validation

and then observe the influence of this parameter on classification

with different values. The experimental results in the comp vs.

rec, User1 vs. User2, USPS vs. MNIST and 5SrRNA vs. tRNA datasets
Please cite this article as: T. Ni et al., Scalable transfer support vec
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re reported in Fig. 6 . From the results, several insights can be

btained as follows: 

(1) From Fig. 6 (a)–(d), we can see that TSVM-GP is considerably

sensitive to regularization parameter C s and C t for a wide

range of values, as well as STSVM-GP. This implies that it is
tor machine with group probabilities, Neurocomputing (2017), 
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Table 6 

Comparison of average running time with standard deviation on real-world transfer datasets. 

Datasets SVM IC-SVM LWE LMPROJ TSVM-GP STSVM-GP 

comp vs. rec 1.21 ( ±0.11) 0.02 ( ±0.00) 7.68 ( ±0.32) 8.25 ( ±0.88) 2.43 ( ±0.83) 0.58 ( ±0.32) 

comp vs. sci 1.17 ( ±0.12) 0.02 ( ±0.00) 7.65 ( ±0.33) 8.20 ( ±0.83) 2.27 ( ±0.72) 0.55 ( ±0.32) 

com vs. talk 1.43 ( ±0.11) 0.04 ( ±0.01) 8.12 ( ±0.21) 8.49 ( ±0.82) 2.93 ( ±0.91) 0.62 ( ±0.31) 

User1 vs. User2 1.76 ( ±0.11) 0.05 ( ±0.01) 11.22 ( ±0.85) 12.34 ( ±0.94) 3.88 ( ±0.93) 0.99 ( ±0.35) 

User1vs.User3 1.76 ( ±0.12) 0.05 ( ±0.01) 11.13 ( ±0.84) 12.40 ( ±0.94) 3.86 ( ±1.12) 0.97 ( ±0.34) 

User2vs.User3 1.73 ( ±0.11) 0.05 ( ±0.01) 11.12 ( ±0.82) 11.39 ( ±0.91) 3.57 ( ±1.03) 0.92 ( ±0.22) 

USPS vs. MNIST 71.21 ( ±0.21) 8.51 ( ±0.31) 398.18 ( ±0.62) 402.21 ( ±8.21) 112.51 ( ±10.11) 43.18 ( ±2.02) 

MNIST vs. USPS 401.30 ( ±0.15) 3.47 ( ±1.12) 1389.65 ( ±11.30) 1401.30 ( ±7.35) 1111.47 ( ±12.12) 142.65 ( ±3.30) 

5SrRNA vs. tRNA 381.49 ( ±0.79) 13.93 ( ±1.21) 1253.12 ( ±9.11) 1231.49 ( ±10.39) 1023.93 ( ±10.21) 153.12 ( ±11.11) 

tRNA vs. 5SrRNA 381.64 ( ±0.64) 15.88 ( ±1.13) 1259.33 ( ±11.00) 1232.64 ( ±7.34) 1021.88 ( ±11.73) 151.33 ( ±9.95) 
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critical to determine this parameter value by some effective

strategies, such as cross-validation strategy. 

(2) In Fig. 6 (e)–(f), we can see that both TSVM-GP and STSVM-

GP are sensitive to kernel width parameter λ. It is shown

that when λ approaches to 1, the proposed classifiers

achieve their best performance. When λ is too small, they

cannot achieve the satisfactory performance since the differ-

ence between source and target domains might be ignored;

in contrast, when λ is too large, although the larger values

of λ can make the distribution discrepancy between source

domain and target domain more larger in the kernel space

in theory, the term ‖ w t ‖ 2 + ‖ w s ‖ 2 will be no longer useful

for building TSVM-GP and STSVM-GP. 

. Conclusions 

Designing the classifiers from datasets with group probabilities

s an important learning task for practical applications, as well

s for scalable datasets. In view of this, we propose a transfer

upport vector machine with group probabilities (TSVM-GP) by

ncorporating additional group probabilities into the transfer

earning framework. Furthermore, in order to make TSVM-GP

calable to large scale transfer datasets, a scalable transfer support

ector machine with group probabilities (STSVM-GP) is proposed

y using the representative set of the source domain as the new

raining set and then utilize them for transfer learning with group

robability. The effectiveness of the classifiers is demonstrated

sing several datasets from the real-world classification datasets

s well as using the synthetic datasets. 

Although the proposed TSVM-GP and STSVM-GP have shown

romising performance, there are still many aspects that deserve

urther investigation. For example, how to further reduce the

omputation in proposed classifiers by using more efficient QP

olver is a research topic worth to be studied. Furthermore, how to

evelop a robust classifier for noisy data with group probabilities

s also worth to be studied. 
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ppendix 1 

Proof of Theorem 1 

By using the Lagrangian optimization theorem, we can obtain

he following Lagrangian function for Eq. (15) 

 ( w t , w s , b t , b s , ξ , ξ ∗, ξ s , α, α∗, αs , r s , r, r ∗) 

= 

1 

2 

‖ 

w t ‖ 

2 + 

1 

2 

‖ 

w s ‖ 

2 + C s 

n ∑ 

i =1 

γi ξi 
h + C t 

n + d ∑ 

i = n +1 

( ξi + ξi 
∗
) 
Please cite this article as: T. Ni et al., Scalable transfer support vec
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+ 

λ

2 

‖ w t − w s ‖ 

2 −
n ∑ 

i =1 

r s i ξi 
s −

n + d ∑ 

i = n +1 

r i ξi −
n + d ∑ 

i = n +1 

r ∗i ξi 
∗

−
n ∑ 

i =1 

αs 
i ( y i (w 

T 
s ϕ( x i ) + b s ) − 1 + ξ s 

i ) 

−
n + d ∑ 

i = n +1 

αi 

( 

1 

| S i | 
∑ 

j∈ S i 
(w 

T 
t ϕ( x j ) + b t ) − ˜ y i + ε i + ξi 

) 

−
n + d ∑ 

i = n +1 

αi 
∗( ̃  y i + ε i + ξ ∗

i 
− 1 

| S i | 
∑ 

j∈ S i 
(w 

T 
t ϕ( x j ) + b t ) ) , (1.1) 

here αs = (αs 
1 
, . . . , αs 

n ) , α = ( α1 , . . . , αd ) , α
∗ = (α∗

1 , . . . , α
∗
d 
) , r s =

( r 1 , . . . , r n ) , r = (r 
1 
, . . . , r 

d 
) , r ∗ = (r ∗

1 
, . . . , r ∗

d 
) are Lagrange multipli-

rs. 

According to the dual theorem, the minimum it with respect

o w t , w s , b t , b s , ξ , ξ ∗, ξ s and maximize with respect to Lagrange

ultipliers αs 
i 

≥ 0 , αi ≥ 0 , α∗
i 

≥ 0 , r s 
i 

≥ 0 , r i ≥ 0 , r ∗
i 

≥ 0 . Then the

ollowing equations can be considered as the necessary conditions

f the optimal solution: 

∂L 

∂ ξi 
s = 0 ⇒ C s = αi 

s + r s i , (1.2) 

∂L 

∂ ξi 
(∗) = 0 ⇒ C t = αi 

(∗) + r (∗) 
i 

, (1.3) 

∂L 

∂ w t 
= 0 ⇒ w t + λ( w t − w s ) −

n + d ∑ 

i = n +1 

αi 

| S i | 
∑ 

j∈ S i 
ϕ( x j ) 

+ 

n + d ∑ 

i = n +1 

αi 
∗

| S i | 
∑ 

j∈ S i 
ϕ( x j ) = 0 , (1.4) 

∂L 

∂ w s 
= 0 ⇒ w s − λ( w t − w s ) −

n ∑ 

i =1 

αi 
s y i ϕ( x i ) = 0 , (1.5) 

∂L 

∂ b t 
= 0 ⇒ 

n + d ∑ 

i = n +1 

( αi − αi 
∗) = 0 , (1.6) 

∂L 

∂ b s 
= 0 ⇒ 

n ∑ 

i =1 

αi 
s y i = 0 . (1.7) 

Substituting Eqs. (1.2) –(1.7) into Eq. (1.1) , we have the dual of

q. (1.8) , 

min 

s ,α, α∗

1 + λ

2(1 + 2 λ) 

(
n + d ∑ 

i = n +1 

n + d ∑ 

j= n +1 

( αi − α∗
i 
)( α j − α∗

j 
) 

| S i | 
∣∣S j ∣∣

∑ 

i ′ ∈ S i 

∑ 

j ′ = S j 
k (x i ′ , x j ′ ) 

+ 

n ∑ 

i =1 

n ∑ 

j=1 

αs 
i α

s 
j y i y j k (x i , x j ) 

)

+ 

λ

2(1 + 2 λ) 

(
n ∑ 

i =1 

n + d ∑ 

j= n +1 

αi 
s y i 

( α j − α∗
j 
) ∣∣S j ∣∣

∑ 

k ∈ S j 
k (x i , x k ) 
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+ 

n ∑ 

i =1 

n + d ∑ 

j= n +1 

αi 
s y i 

( α j − α∗
j 
) ∣∣S j ∣∣

∑ 

k ∈ S j 
k (x i , x k ) 

)

+ 

n + d ∑ 

i = n +1 

αi ( ε i − ˜ y i ) + 

n + d ∑ 

i = n +1 

α∗
i ( ε i + 

˜ y i ) , (1.8)

s.t. αs 
i 

∈ [0 , C s ] , αi , α
∗
i 

∈ [0 , C t ] , 
∑ n 

i =1 αi 
s y i + 

∑ n + d 
i = n +1 ( αi − αi 

∗) = 0 . 

To obtain a quadratic form of the optimization problem, we

denote 

β = [ αs , α, α∗] T , 0 ≤ β ≤ [ C s , . . . , C s ︸ ︷︷ ︸ 
n 

C t , . . . , C t ︸ ︷︷ ︸ 
d 

C t , . . . , C t ︸ ︷︷ ︸ 
d 

] , 

f T = [ y 1 , . . . , y n , 1 , . . . , 1 ︸ ︷︷ ︸ 
d 

, −1 , . . . , −1 ︸ ︷︷ ︸ 
d 

] , ˜ e = [ 0 , . . . , 0 ︸ ︷︷ ︸ 
n 

, ε −y , ε + y ] , 

˜ K = 

⎡ 

⎣ 

1+ λ
1+2 λ

K s,s + 

1 
λ

λ
1+2 λ

K s,t − λ
1+2 λ

K s,t 

λ
1+2 λ

K 

T 
s,t 

1+ λ
1+2 λ

K t,t − 1+ λ
1+2 λ

K t,t 

− λ
1+2 λ

K 

T 
s,t − 1+ λ

1+2 λ
K t,t 

1+ λ
1+2 λ

K t,t 

⎤ 

⎦ 

(n +2 d) ×(n +2 d) 

, 

K s,s = ( y i y j k (x i , x j )) i, j=1 , ··· ,n , K s,t = 

( 

y i 
| S k | 

∑ 

j∈ S k 
k (x i , x j ) 

) 

i =1 , ··· ,n,k =1 , ... ,d 

,

K t,t = 

⎛ 

⎝ 

1 

| S i || S j | 
∑ 

i ′ ∈ S i 

∑ 

j ′ ∈ S j 
k (x i ′ , x j ′ ) 

⎞ 

⎠ 

i, j=1 , ... ,d 

and { y i } n i =1 
are class labels of training samples in the source

domain. Eq. (1.8) is equivalent to the following equation 

min 

β

1 

2 

βT ˜ K β + ̃

 e T β, (1.9)

s.t. f T β = 0 . 

Thus, Theorem 1 is hold. 

Appendix 2 

Proof of Theorem 2 

We denote the matrix ˜ K as ˜ K = 

˜ K 1 + 

˜ K 2 + 

˜ K 3 where 

˜ K 1 = 

λ

1 + 2 λ

⎡ 

⎣ 

K s,s K s,t −K s,t 

K 

T 
s,t K t,t −K t,t 

−K 

T 
s,t −K t,t K t,t 

⎤ 

⎦ 

(n +2 d) ×(n +2 d) 

, 

˜ K 2 = 

1 

1 + 2 λ

⎡ 

⎣ 

K s,s 0 0 

0 0 0 

0 0 0 

⎤ 

⎦ 

(n +2 d) ×(n +2 d) 

, 

˜ K 3 = 

1 

1 + 2 λ

⎡ 

⎣ 

0 0 0 

0 K t,t −K t,t 

0 −K t,t K t,t 

⎤ 

⎦ 

(n +2 d) ×(n +2 d) 

. 

Set Q 1 = 

√ 

λ
1+2 λ

( y 1 ϕ ( x 1 ) , . . . , y n ϕ ( x n ) , 
1 

| S 1 | 
∑ 

i ∈ S 1 ϕ ( x i ) , . . . , 
1 

| S d | ∑ 

i ∈ S d ϕ( x i ) , − 1 
| S 1 | 

∑ 

i ∈ S 1 ϕ( x i ) , . . . , − 1 
| S d | 

∑ 

i ∈ S d ϕ( x i ) ) , then 

˜ K 1 =
Q 1 

T Q 1 . So the matrix ˜ K 1 is positive semi-definite. Similarly, the

matrixes ˜ K 2 and 

˜ K 3 can be proved to be positive semi-definite.

That is, the matrix ˜ K is symmetric and positive semi-definite.

Thus, Theorem 2 is hold. 
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