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26 Abstract

27 Distillery industries are the key contributor to the world’s economy, but these are also one of the 

28 major sources of environmental pollution due to the discharge of a huge volume of dark colored 

29 wastewater. This dark colored wastewater contains very high biological oxygen demand, 

30 chemical oxygen demand, total solids, sulfate, phosphate, phenolics and various toxic metals. 

31 Distillery wastewater also contains a mixture of organic and inorganic pollutants such as 

32 melanoidins, di-n-octyl phthalate, di-butyl phthalate, benzenepropanoic acid and 2-

33 hydroxysocaproic acid and toxic metals, which are well reported as genotoxic, carcinogenic, 

34 mutagenic and endocrine disrupting in nature. In aquatic resources, it causes serious 

35 environmental problems by reducing the penetration power of sunlight, photosynthetic activities 

36 and dissolved oxygen content. On other hand, in agricultural land, it causes inhibition of seed 

37 germination and depletion of vegetation by reducing the soil alkalinity and manganese 

38 availability, if discharged without adequate treatment. Thus, this review article provides a 

39 comprehensive knowledge on the distillery wastewater pollutants, various techniques used for 

40 their analysis as well as its toxicological effects on environments, human and animal health. In 

41 addition, various physico-chemicals, biological as well as emerging treatment methods have 

42 been also discussed for the protection of environment, human and animal health.

43 Keywords: Melanoidins, Chemical pollutants, EDCs, Environmental problems, Health hazards, 

44 Treatment approaches
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56 1. Introduction

57 Distillery industries (DIs) are the key contributors to the world’s economy, but these industries 

58 also considered as one of the major source of environmental pollution worldwide. In India, there 

59 are ~ 319 distilleries with annual production of 3.25 × 109 L of alcohol and 40.4 × 1010 L of 

60 wastewater (Chandra et al., 2012; Uppal, 2004). The global production of bioethanol in 2007 was 

61 50 billion liters whereas, in 2008, it reached  60 billion liters representing almost 4% of the 

62 world’s gasoline consumption (Mussatto et al., 2010; Balat and Balat, 2009). DIs generate a huge 

63 volume of dark colored wastewater characterized by its dark brown color, acidic pH (5.4-4.5), 

64 high BOD (40,000- 50,000 mg/L), COD (80,000-100,000 mg/L), total dissolved solids (TDS), 

65 total solids (TS), total suspended solid (TSS), with high nitrogen, potassium, phosphates, 

66 calcium, and sulfate content (Table 1). The high BOD and COD values of DWW are mainly due 

67 to the presence of high organic content such as proteins, reduced sugars, polysaccharides, lignin, 

68 melanoidins, and waxes along with a complex mixture of recalcitrant organic pollutants 

69 (Chowdhary et al., 2017).

70 In distillery wastewater (DWW), melanoidins are the major coloring pollutants causing 

71 serious environmental problems and health threats in human and animals (Tamanna and 

72 Mahmood, 2015; Saranraj and Dtella, 2014). Melanoidins are recalcitrant compounds of sugar 

73 and amino acids, formed during the processing of sugar cane juice in sugar factories and 

74 molasses in distillery industries (Arimi et al., 2015; Saranraj and Dtella, 2014; Onyango et al., 

75 2012; Wang et al., 2011; Agarwal et al., 2010; Mohana et al., 2009; Plavsic et al., 2006). Besides 

76 melanoidins, some other toxic chemicals such as di-n-octyl phthalate, di-butyl phthalate, 

77 benzenepropanoic acid and 2-hydroxysocaproic acid are also reported in DWW (Chandra and 

78 Kumar, 2017b; Yadav and Chandra, 2012). These toxic chemicals particularly phthalates are 
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79 well reported as endocrine disrupting compounds (ECDs), which causes hormonal imbalance 

80 resulting several physiological as well as metabolic disorders affecting the reproductive fitness of 

81 human and animals (Dixit et al., 2015; Yadav and Chandra, 2012; Alam et al., 2010).  

82 However, the characteristics of DWW are largely depended on the raw materials, chemicals 

83 used and processes adopted by DIs (Arimi et al., 2015; Satyawali and Balkrishnan, 2008). Arimi 

84 et al. (2014) described in detail the various steps of wastewater generation in DIs utilizing 

85 sugarcane molasses as raw material for alcohol production (Fig. 1) (Arimi et al., 2014). Besides 

86 sugarcane molasses, DIs also use grains, grapes, sugarcane juice, and barley malt etc. for alcohol 

87 production, which mainly accomplished into four steps such as feed preparation, fermentation, 

88 distillation, and packaging (Satyawali and Balkrishnan, 2008; Skerratt, 2004; Berg, 2004; Tano 

89 and Buzato, 2003). 

90 When untreated/partially treated DWW discharged into the environment, it causes serious 

91 ecotoxicological and health threats. In water bodies, it reduces the penetration power of sun light 

92 causing a reduction in photosynthetic activity and depletion in dissolved oxygen (DO) content 

93 (Saranraj and Dtella, 2014; Chandra et al., 2008a) whereas in soil system, it reduces the fertility 

94 of agricultural land. Due to these environmental and health threats, DWW should be adequately 

95 treated for the degradation and detoxification of organic and inorganic pollutants prior to its final 

96 discharge into the environment. Various physico-chemical methods reported for the treatment of 

97 DWW are not feasible to meet the discharge standards set by various environmental protection 

98 agencies. On other hands, the biological methods like aerobic/anaerobic treatment processes 

99 were found somewhat capable to reduce BOD/COD load of DWW, but the substantial 

100 concentration of organic and inorganic pollutants and dark color left behind require further 

101 treatment (Safari et al., 2013). 
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102 Hence, this review article was mainly focused on the generation and characteristics of DWW 

103 pollutants, various analytical techniques used for their identification, their ecotoxicological and 

104 health threats as well as various treatment approaches, and challenges for the management of 

105 DWW.

106 2. Chemical pollutants in DWW 

107 The major color contributing pollutants present in DWW are melanoidins, an amino-carbonyl 

108 polymer, produced during the processing of sugarcane juice in sugar industries and molasses in 

109 DIs (Fig. 2). Melanoidins are produced by a series of non-enzymatic chemical reactions known 

110 as Maillard reactions and products produced as Maillard Reaction Products (MRPs). Melanoidins 

111 are the mixture of low and high molecular weight compounds ranging from 40 kDa - 40000 kDa 

112 (Chandra et al., 2008a). The elemental composition, structure as well as the molecular weight of 

113 MRPs is largely depends on the nature and molar concentration of reacting molecules and 

114 reaction conditions i.e. pH, temperature, and reaction time etc. (Silvan et al., 2006; Chandra et 

115 al., 2008a). The size of MRPs may vary from small molecules to very large polymers (Wang et 

116 al., 2011; Wagner et al., 2002). Various authors have reported that low and high molecular 

117 weight MRPs isolated from dry heated glucose-glycine systems (125 °C, 2 h) and aqueous sugar-

118 lysine model systems (121°C, 1h, pH 9.0) have genotoxic and cytotoxic effects on cells at higher 

119 concentration (Glosl et al., 2004; Jing and Kitts, 2000). Besides MRPs, a variety of mutagenic, 

120 carcinogenic, cytotoxic and endocrine disrupting chemicals are also reported in DWW (Table 2) 

121 (Dixit et al., 2015; Yadav and Chandra, 2012; Alam et al., 2010).

122 Endocrine disrupting chemicals (EDCs) are the chemical agents, which interferes the 

123 synthesis, secretion, transport, binding, or elimination of natural hormones in human and animal 

124 body that play a key role in various physiological and cellular functions such as homeostasis, 
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125 reproduction, development and behavioral activities (Kavlock et al., 1996). There are a number 

126 of organic compounds in DWW, which have been identified as EDCs such as di-butyl phthalate, 

127 di-n-octyl phthalate, butanedioic acid and 2-hydroxysocaproic acid etc. (Table 3) (Chandra and 

128 Kumar, 2017b; Yadav and Chandra, 2012). These EDCs can alter the regulation of various 

129 hormonal activities, which play a significant role in metabolism, sexual development, hormones 

130 production and their utilization in growth, stress response, gender behavior, and reproduction 

131 processes (Kabir et al., 2016; Somm et al., 2009). Phthalates have been well documented to 

132 induce the lipid peroxidation, oxidative stress, and interference with insulin receptor, altered 

133 glucose tolerance induction and reduced glucose oxidation. These also undergo a rapid 

134 transformation process in normal environment rather than in abiotic environment (Kabir et al., 

135 2016). Therefore, there is an urgent need for awareness and critical research on EDCs present in 

136 industrial wastewaters.

137 3. Analytical techniques available for the detection and characterization of DWW 

138 pollutants 

139 DWW contains a number of organic and inorganic pollutants produced during the alcohol 

140 production processes in DIs, which can be detected, characterized and identified by using various 

141 analytical techniques such as high performance liquid chromatography (HPLC), gas 

142 chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-

143 MS/MS), infrared spectroscopy (IR), protonic nuclear magnetic resonance (1H NMR), fast atom 

144 bombardment-mass spectrometry (FAB-MS), matrix assisted lesser desorption ionization-time of 

145 flight (MALDI-TOF), and atomic absorption spectroscopy (AAS) and inductively coupled 

146 plasma mass spectrometry (ICP-MS) etc. (Table 4). The HPLC can be used for the separation, 

147 identification as well as quantification of organic pollutants present in a complex industrial 
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148 wastewater (Bharagava et al., 2009). The GC-MS is being used for the characterization and 

149 identification of low molecular weight compounds (volatile compounds) from industrial 

150 wastewaters, which are soluble in organic solvents such as dichloromethane, ethyl acetate, 

151 diethyl ether, methanol, acetone, n-hexane etc. (Chandra and Kumar, 2017b). LC-MS/MS 

152 technique is used for the characterization and identification of high molecular weight 

153 compounds, which are not soluble in organic solvents, but soluble in water (Chandra et al., 2012; 

154 Bharagava and Chandra, 2010a). Infrared (IR) spectroscopy can be used for the identification of 

155 functional groups such as alcoholic (-OH), -C-H, ketonic (=C=O), aldehydic (-CHO), carboxylic 

156 (-COOH), carbon carbon double bond (-C=C-) and an asymmetric -NO2 group etc., respectively 

157 in the form of stretching frequencies. On the other hand, the 1H NMR showed the presence and 

158 position of protons in organic pollutants (Chandra et al., 2012). FAB-MS can also be used for the 

159 detection and characterization of organic pollutants from wastewaters and this method is very 

160 simple as the samples are directly introduced into the ion source. But, the drawback of this 

161 technique is that it can’t be used for the detection and characterization of many organic 

162 pollutants at a time and thus, this technique has been replaced by electro-spray ionization (ESI) 

163 technique that offers the advantage of a very soft ionization. MALDI-TOF technique is used for 

164 the detection and characterization of proteinaceous compounds. On the other hand, the AAS and 

165 ICP-MS are used for the detection and quantification of metallic (Cu, Cr, Zn, Fe, Ni, Mn, Pb, 

166 Hg, As etc.) and non-metallic pollutants from industrial wastewaters (Chandra et al., 2008a; 

167 Chandra et al., 2008b).  

168 4. Ecotoxicological and health hazards of DWW pollutants

169 DWW contains a high concentration of recalcitrant organic pollutants generated during the 

170 processing of sugarcane juice in sugar industries and alcohol production in DIs. DWW also 
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171 contains natural color contributing compounds such as polyphenols, caramels, melanoidins and 

172 alkaline degradation products of hexoses (ADPH) etc. (Arimi et al., 2014; Dai and Mumper, 

173 2010). These polyphenolic compounds have antioxidant, anti-microbial, anti-carcinogenic, free 

174 radical scavenging and metal chelating properties (Silvan et al., 2006; Borrelli et al., 2003). 

175 Phenolic compounds are also reported to react with proteins during beer storage and form high 

176 molecular weight compounds and hazes (Siqueira et al., 2011; Dai and Mumper, 2010; Jimoh et 

177 al., 2008).

178 The presence of polyphenols in DWW is largely depends on the source of molasses and 

179 sugar content in feed flow (Bustamante et al., 2005; Jimenez et al., 2004; Martin et al., 2003). 

180 Polyphenols are categorized into three broad classes: phenolic acids, flavonoids, and tannins. 

181 The phenolic compounds detected in molasses based DWW includes benzoic acid and its 

182 derivatives (e.g., gallic acid), cinnamic acid and its derivatives (e.g., coumaric acid, caffeic acid, 

183 chlorogenic acid and ferulic acid) (Incedayi et al., 2010; Payet et al., 2006). Besides these 

184 polyphenols, DWW also contains melanoidins as major recalcitrant coloring compounds (Arimi 

185 et al., 2015; 2014).  

186 4.1. Ecotoxicity 

187 The discharge of DWW in water bodies without adequate treatment causes severe water 

188 pollution. Due to its high BOD, COD values, high sulphate, phosphate, and nitrogen content, it 

189 causes eutrophication of contaminated water resources (Ramakritinan et al., 2005; Mahimaraja 

190 and Bolan, 2004). For DWW, Mahimaraja and Bolan (2004) have estimated the LC50 value of 

191 0.5% by using a bio-toxicity test on fresh water fish Cyprinus carpio var. communis. 

192 Subsequently, it was reported by some other researchers that respiratory process in Cyprinus 
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193 carpio under DWW stress get affected resulting in a shift towards the anaerobic conditions at 

194 organ level during the sublethal intoxication (Ramakritinan et al., 2005)

195 DWW also causes soil pollution and acidification in the case of inappropriate land discharge. 

196 Further, it is also reported by various researcher that it inhibits seed germination, reduce soil 

197 alkalinity, cause soil manganese deficiency and reduces the growth and yield of crop plants 

198 (Chowdhary et al., 2017; Onyango et al., 2012; Bharagava and Chandra, 2010b; Agrawal et al., 

199 2010; Mohana et al., 2009). In addition, Bharagava and Chandra (2010b) have also reported that 

200 post methanated distillery effluent (PMDE) have deleterious effects on seed germination and 

201 seedling growth parameters in Phaseolus mungo (L). The inhibition in seed germination at 

202 higher PMDE content might be attributed to high salt concentration and TDS, which increases 

203 high osmotic pressure (OP) and anaerobic conditions, respectively. These conditions affect 

204 various biochemical and physiological activities such as movement of solute, respiration and 

205 enzymatic process of seed germination. It has been also reported that high PMDE concentration 

206 also acts as an inhibitor for plant growth hormone(s) (auxin and gibberline), which play an 

207 important role in plant growth and development (Subramani et al., 1997). Moreover, Bharagava 

208 et al. (2010b) have reported that at higher PMDE concentration, the entrance of potentially toxic 

209 trace elements into the protoplasm may result in the reduction of intermediate metabolites, which 

210 are responsible for the reduction in plant growth parameters.

211 4.2. Health hazards 

212 Besides soil and water pollution, the residents of DWW contaminated area also face severe 

213 health problems such as irritation of eyes, skin allergies, headache, fever, vomiting sensation, 

214 and stomach pain etc. All these problems might be due to the presence of high concentration of 

215 dissolved impurities like carbonates, bicarbonates, sulphates, calcium chloride, magnesium, iron, 
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216 sodium, and potassium along with the colloidal impurities like coloring compounds, organic 

217 waste, finely divided silica and clay (Chaudhary and Arora, 2011).

218 DWW due to the presence of a number of anti-nutritional and toxic MRPs such as 

219 melanoidins has been also reported to cause severe health problems in human and animals 

220 directly/indirectly (Taylor et al., 2004). Melanoidins present in DWW in high concentration have 

221 mutagenic, carcinogenic and cytotoxic effects on cells (Silvan et al., 2006; Somoza, 2005). Some 

222 researchers have reported that excessive glycation process also destroys the essential amino 

223 acids, inactivation of enzymes, cross-linking of glycated extra-cellular matrix, inhibition of 

224 regulatory molecule binding sites, altered macromolecular recognition, abnormalities in nucleic 

225 acid function, endocytosis and increased immunogenicity etc. (Silvan et al., 2006; Taylor et al., 

226 2004). In addition, melanoidins were also found to be involved in the progression of various 

227 diseases such as cardiovascular complications, diabetes mellitus and Alzheimer’s disease 

228 (Somoza, 2005).

229 However, the genotoxic compounds can act at various levels in cells (causing gene, 

230 chromosome, or genome mutations), necessitating the use of a range of genotoxicity assays 

231 designed to detect these different types of mutations (Bartling et al., 2005; Taylor et al., 2004). 

232 Brands et al. (2000) have demonstrated that heated sugar-casein model melanoidins consisting 

233 variable sugars exhibit different mutagenic activity. For example, ketose sugars (fructose and 

234 tagatose) showed a remarkably high mutagenic activity as compared to their aldose isomers 

235 (glucose and galactose) and generated reactive oxygen species results in the breaking of DNA 

236 strands and mutagenesis. In addition, some other MRPs were also reported to induce 

237 chromosomal aberrations in Chinese hamster ovary cells and gene conversion in yeast cells. The 

238 mutagenicity and DNA strand breaking activity of glucose-glycine model melanoidins was also 
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239 demonstrated by Hiramoto et al. (1997), who reported that LMW fractions act as lipid sink and 

240 induced DNA damage, where the effect increases with increase in concentration.

241 5. Treatment approaches for DWW

242 DWW is a major source of soil and water pollution and thus, it becomes imperative to treat it 

243 adequately before its final discharge into the environment. This can be achieved by using various 

244 physical, chemical and/ or biological treatment processes either alone or in combination for the 

245 effective treatment. 

246 5.1. Physico-chemical treatment methods

247 5.1.1. Coagulation/flocculation

248 Coagulation is the destabilization of colloidal particles by neutralizing the forces that keep them 

249 apart by using coagulating agents and sometimes by the coagulant aids (e.g. activated silica, 

250 bentonite, polyelectrolytes, starch etc.). As a result, the particles collide to form larger particles 

251 (flocs) whereas flocculation is the action of polymers to form bridges between the flocs, and bind 

252 particles to form large agglomerates or clumps. A number of coagulants such as aluminium 

253 sulfate (AlSO4), ferric chloride (FeCl3), ferrous sulfate (FeSO4), alum, iron aluminum, calcium 

254 salts, polyaluminium chloride (PACl) etc. are reported to be used in the treatment of DWW. 

255 These coagulants are reported to reduce the organic load (COD) and suspended solids (SS) from 

256 DWW (Wagh and Nemade, 2015; Prajapati and Chaudhari, 2015; Arimi et al., 2014; Agarwal et 

257 al., 2010; Satyawali and Balakrishnan, 2008; Pandey et al., 2003).

258 However, coagulants are pH specific and their effectiveness depends on their type, 

259 concentration, and characteristics of wastewater to be treated. Chaudhari et al. (2005) have 

260 reported 72.5%, 60% and 55% COD reduction and 92%, 86% and 83% color reduction from 

261 DWW using polyaluminium chloride (PACl), AlCl3 and FeCl3. Sowmeyan and Swaminathan 
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262 (2008) have tested FeCl3 and AlCl3 for the effective treatment of DWW and reported 93% & 

263 76% reduction in color and total organic carbon, respectively. Moreover, the highest color 

264 removal (upto 98%) from biologically treated DWW was reported by using the conventional 

265 coagulants such as ferrous sulfate, ferric sulfate, and alum under alkaline conditions (Pandey et 

266 al. 2003). Further, Prajapati et al. (2015) have reported 80%, 90%, 70%, and 92% COD 

267 reduction and 81.8%, 80.64%, 74.19% and 81.8% color reduction from DWW by FeCl3, alum, 

268 AlCl3, and FeSO4 at concentration of 60mM/dm3 at pH 5, 5, 6, and 5, respectively. David et al. 

269 (2015) have also applied a green methodology for DWW treatment using Moringa oleifera seed 

270 extract as the coagulant in conjunction with chemical coagulants i.e. aluminium sulphate and 

271 calcium sulphate and found 97% color reduction.

272 5.1.2. Adsorption

273 Adsorption is a surface based physical phenomenon used for the removal of organic pollutants 

274 from industrial wastewaters. Extensive literature is available on the studies using adsorbents such 

275 as chemically modified sugarcane  bagasse, powdered activated carbon (PAC), activated 

276 charcoal, pyochar, chitosan etc. for DWW treatment (Prajapati and Chaudhari, 2015; Agarwal et 

277 al., 2010; Satyawali and Balakrishnan, 2008; Mandal et al., 2003; Lalov et al., 2000; Chandra 

278 and Pandey, 2000). Activated carbon (AC) has been reported as an efficient adsorbent due to its 

279 extended surface area, microporous structure, high adsorption capacity as well as high degree of 

280 surface reactivity (Arimi et al., 2014; Agarwal et al., 2010; Satyawali and Balakrishnan, 2008).  

281 AC is widely used for the removal of color, polyphenols and specific organic pollutants from 

282 various industrial wastewaters (Prajapati and Chaudhary, 2015; Satyawali and Balakrishnan, 

283 2008). Chandra and Pandey (2000) has reported >99%, 70% and 90% reduction in color, BOD, 

284 and COD, respectively by using commercial activated charcoal having a surface area of 1400 



ACCEPTED MANUSCRIPT

14

285 m2/g from anaerobically treated distillery spentwash. Lalov et al. (2000) used chitosan as an 

286 adsorbent at the concentration of 10 g/l for 30 min contact time for the effective treatment of 

287 DWW and found 98% and 99% reduction in color and COD, respectively. Further, Mane et al. 

288 (2006) have reported 50% color reduction from DWW using chemically modified bagasse (0.5 

289 g/100 ml wastewater) using 2-diethylaminoethyl (DEAE) chloride hydrochloride and 3-chloro-2-

290 hydroxypropyl trimethyl ammonium chloride (CHPTAC) for the effective treatment of DWW. 

291 Shivayogimath and Inani (2014) have also reported 95.4%, 62.83% and 89.8% COD, color, and 

292 TDS reduction, respectively from DWW by using bagasse activated carbon.

293 5.2. Biological treatment approaches

294 Biological treatment approaches are eco-friendly methods for the mitigation of industrial 

295 pollutants and involve the stabilization of wastes by degrading them into harmless substances 

296 either by anaerobic or aerobic processes. 

297 5.2.1. Anaerobic process

298 The anaerobic digestion is the most appropriate approach for the mitigation of high organic 

299 carbon content such as distillery and pulp and paper industry wastewater. The anaerobic 

300 digestion process is mainly used to produce biogas from spentwash. The high organic content of 

301 molasses spentwash makes the anaerobic treatment more attractive in comparison to direct 

302 aerobic treatment process (Satyawali and Balakrishnan, 2008; Mohana et al., 2007). The 

303 anaerobic digestion is a process in which the organic compounds present in DWW are digested 

304 by microorganisms to produce biogas (CH4 60% and CO2 40% approximately). On an average, 

305 1m3 of spentwash produces ~38-40 m3 of biogas. The other products of anaerobic digester 

306 include treated spentwash and digested sludge, which is highly rich in nutrients. This digested 

307 sludge can be used as green manure since, it contains the high nutrient content (Nandy et al., 
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308 2002). The most widely used anaerobic process for DWW treatment is up-flow anaerobic sludge 

309 blanket (UASB) (Satyawali and Balakrishnan, 2008; Mohana et al., 2007; Wilkie et al., 2000). 

310 The limitations of anaerobic treatment processes are the requirement of high dilution due to 

311 the presence of many antimicrobial compounds such as 2,3-dimethylpyrazone, 2,2-bifuran-5-

312 carboxylic acid, 2-nitroacetophenone, 2,2-bifulan, 2-methylhexane, methylbenzene, 2,3-dihydro-

313 5-methylfuran, p-chloroanisole, 3-pyrroline and acetic acid etc. These compounds can be 

314 transformed by bacteria into other products including: 2-nitroacetophenone, p-chloroanisole, 

315 indole, 2- methylhexane and 2,3-dihydro-5-methylfuran etc. (Jimenez et al., 2004; Bharagava 

316 and Chandra, 2010a). Despite of high COD removal from diluted DWW, the chemical inhibitors 

317 remain in DWW even after the anaerobic digestion process. Therefore, a further treatment is 

318 required to remove the remaining dark color and COD, BOD etc. Another strategy is the 

319 pretreatment of DWW with ozone, UV light plus titanium dioxide before the aerobic digestion in 

320 order to improve the efficiency of anaerobic treatment processes (Arimi et al., 2014; Jimenez et 

321 al., 2004; Martin et al., 2002). It is thus, preferable to treat the DWW anaerobically first and then 

322 with other treatment methods. Arimi et al. (2015) have used natural manganese oxides (MnOx) 

323 in anaerobic digestion process to remove DWW pollutants. Further, more information on 

324 anaerobic digestion processes can be found in Table 6 and other reviews (Satyawali and 

325 Balakrishnan, 2008; Melamane et al., 2007; Wilkie et al., 2000).

326 5.2.1.1. Conventionally used system

327 Some conventionally used digesters like continuous stirred tank reactors (CSTR) are the simplest 

328 closed anaerobic reactors with the provision of a gas collection. CSTR also known as sealed-tank 

329 digester equipped with treatment facility. DWW treatment has been reported in single and as 

330 well as biphasic system, resulting in a significant reduction in pollution parameters such as COD 
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331 and BOD with the provision of a gas collection (Jo et al., 2015; Mendez-Acosta et al., 2010; 

332 Mohana et al., 2009; Pathade, 2003). However, the hydraulic retention time in a CSTR- type 

333 reactor is determined by the growth rate of microorganism growing in the system. It means to 

334 achieve the high degradation rate of DWW, a very high HTR value will be required because the 

335 high HTR values make the CSTR concept less feasible and less effective for the treatment of 

336 DWW. As CSTR requires long retention time and less gas yield during the treatment process 

337 (Siddique, 2012; Kleerebezem and Macarie, 2003).

338 5.2.1.2. Single and biphasic system

339 The treatment of DWW in an anaerobic system can be controlled by the single or biphasic 

340 system. In single phasic systems, only one reactor involve in the microbial degradation of 

341 organic pollutants, whereas biphasic system has two reactors i.e. one for acidogenic and other for 

342 methanogenic microorganisms. In biphasic reactors, the most promising thing is that 

343 fermentation steps can be optimized at each stage in separate fermenters. Due to this, the 

344 effectiveness and kinetics of biphasic reactors become much higher in comparison to single 

345 phasic reactors because in this system all process occurs in same environmental conditions. In 

346 both phases (primary and secondary), the end products produced are acetate, lactate, ethanol, 

347 CO2, H, C3, higher volatile fatty acid and methane, CO2, respectively (Mohana et al., 2009; Gosh 

348 1990). Thus, the biomethanation using biphasic system seems to be most appropriate treatment 

349 method for DWW because of its multiple advantages such as easy maintenance of optimal 

350 conditions for buffering between the production of organic acid and their utilization, steady 

351 performance, and high methane gas production.

352 5.2.2. High rate anaerobic reactors

353 5.2.2.1. Upflow anaerobic sludge blanket (UASB) reactors
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354 The UASB reactors have become more popularized in the recent years for the treatment of 

355 various types of wastewaters including DWW (Petta et al., 2017) The USAB reactors are high 

356 rate anaerobic wastewater treatment reactors, which are extensively used for the treatment of 

357 DWW worldwide. The UASB reactors have four main components such as sludge bed, sludge 

358 blanket, gas solid separator, and settlement compartment. The biomass layers settled at the 

359 bottom of the reactors are called as sludge bed whereas the suspension of sludge particles mixed 

360 with produced gas is called as sludge blanket. However, the operation of UASB is mainly 

361 dependent on the formation of active and settleable granules (Fang et al., 1994). The function 

362 and efficiency of USAB reactors are dependent on several factors like temperature, pH, 

363 wastewater composition, and organic loading rate. Recently, Petta et al. (2017) have observed 

364 that the UASB reactors combined with the anoxic-aerobic ultra filtration membrane bioreactors 

365 (UF-MBR) achieve the treatment efficiency up to 97% with the production of methane 340 L of 

366 CH4/kg COD. The efficiency UASB depends on the active and settleable granules that contain 

367 the aggregation of anaerobic bacteria, self-immobilized into a compact form. These granules 

368 enhance the settleability of biomass leading to an effective retention of bacteria in UASB 

369 reactors (Akunna and Clark, 2000). However, the most attractive features of UASB reactor 

370 design include, its independence from the mechanical mixing of digester contents, recycling of 

371 sludge biomass as well as the ability to deal with the perturbances caused due to the high loading 

372 rates and temperature fluctuations (Sharma, and Singh, 2000). For the successful performance of 

373 UASB reactors, it should be operated at a low loading rate of 4-8 kg COD m-3d-1 and COD 

374 removal rate should be monitored carefully. Wolmarans and de Villiers (2002) have reported that 

375 USAB reactors can achieve 90% COD removal from DWW under high loading rate.  

376



ACCEPTED MANUSCRIPT

18

377 5.2.2.2. Anaerobic batch reactors

378 The anaerobic batch reactors have not been generally used for the treatment of DWW and thus, 

379 the potential, operational feasibility and scale-up of such reactors need to be studied. However, 

380 Moletta, (2005) has achieved 90-95% COD reduction during the anaerobic digestion with the 

381 organic loading between 5-15 kg COD/m3 of digester/day with biogas production from 400-600 

382 per kg COD removal with 60- 70% methane content. Recently, Tansengco et al. (2016) have 

383 reported 60% and 86% COD and BOD reduction along with the generation of 72% methane gas 

384 during the treatment of DWW in Anaerobic Sequencing Batch Reactor (ASBR), at 8 h of 

385 reaction time. In addition, a semi continuous batch digester was also designed to study the 

386 biomethanation of DWW within the range of mesophilic and thermophilic temperatures   

387 Banerjee and Biswas (2004). In this study, authors have reported 86.01% BOD reduction with 

388 73.23% methane gas production at the BOD loading rate of 2.71 kg m-3 and 50 °C.

389 5.2.2.3. Anaerobic filters 

390 The anaerobic filters are more popular in comparison to aerobic wastewater treatment methods 

391 because these generate less amount of solid residue. The anaerobic filters are packed column 

392 having static medium to support the colonization of anaerobic microbial consortium for 

393 wastewater treatment. These filters are based on an attached growth process, which immobilizes 

394 microorganisms on the surface of packing materials to produce a biofilm (de Lemos 

395 Chernicharo, 2007). Thus, in anaerobic filters, the selection of packing materials is important 

396 because it plays an important role in the effective performance of anaerobic filters as various 

397 characteristics of filter media such as porosity, and surface area has significant effects on the 

398 attachment of biomass (Loupasaki and Diamadopoulos, 2013).
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399 The anaerobic filters work in up and downflow mode were the latter achieves better sustained 

400 and reliable operation because the downflow has the capacity to reduce the clogging of packed 

401 material during the treatment of wastewater carrying the very high content of suspended solid 

402 (Nicolella et al., 2000). Yu et al. (2006) achieved 82% COD removal from DWW under 

403 laboratory condition by upflow anaerobic filter at a temperature ranging from 19-27 °C, BV = 

404 37.68 kg COD/ (m3.d and HRT of 8h. Further, a lab scale anaerobic reactor packed with small 

405 sized and low-density polyethylene (0.93 g/cm3, Bioflow 30) as supporting materials resulted in 

406 80% COD removal at BV of 30 kg COD m3.d. However, the biomass retention capacity obtained 

407 was 4-6 g dry solids per g support representing a fixed biomass of 57 g solids/L of reactor 

408 volume (Thanikal et al., 2007).

409 5.2.2.4. Bihydrogen production

410 Industrial wastewaters are well reported to have a high organic load, BOD, and COD, which 

411 causes various harmful effects on the environment, but these parameters, can also act as a source 

412 of beneficial by-products generation. Approximately, 5.2 million tons of solid waste is generated 

413 per day worldwide, which can be used for the generation of useful by-products (Modak, 2011). 

414 Many investigators have proposed and selected hydrogen gas as an alternative renewal source of 

415 energy and also looking toward the new alternatives to generate hydrogen gas from organic 

416 pollutants by using microorganisms  (Choudri and Baawain, 2016; Fountoulakis and Manios, 

417 2009; Wang and Zhao, 2009). Recently, many authors have reported the hydrogen gas 

418 production utilizing DWW as C, N, and energy source by anaerobic treatment process (Wicher et 

419 al., 2013; Mishra and Das, 2014; Mishra et al., 2015). However, the main advantages of 

420 microbiological methods of hydrogen generation rely on the possibility of utilization of industrial 
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421 and municipal wastewaters, significant decrease of costs of production and simplicity of the 

422 processes.

423 5.2.3. Aerobic process

424 5.2.3.1. Bacterial treatment

425 Bacterial treatments employing pure bacterial culture have been reported frequently in the past 

426 and recent years. Bacterial degradation and decolorization of industrial wastewaters is an 

427 environment-friendly and low-cost alternative to the physico-chemical treatment processes of 

428 wastewaters. In recent years, many researchers used bacterial consortium and pure culture for the 

429 effective degradation/decolorization of DWW. The bacterial consortium comprising of 

430 Pseudomonas aeruginosa PAO1, Stenotrophomonas matophila and Proteus mirabilis is reported 

431 for 67% and 51% reduction in color and COD within 24 h and 72 h, respectively at 37 °C from 

432 DWW (Mohana et al., 2007). Jiranuntipon et al. (2008) have reported 9.5, 1.13, 8.02, and 17.5%, 

433 color removal from Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater 

434 (41% v/v), and sugarcane molasses wastewater (20% v/v) within 2 days by using a consortium of 

435 Klebsiella oxytoca, Serratia mercescens, and Citrobacter sp. In addition, they also achieved 

436 26.5% color removal from DWW by using the consortium of Acinetobacter sp., Pseudomonas 

437 sp., Comamonas sp., Klebsiella oxytoca, Serratia marcescens, and unidentified bacterium in 48 h 

438 under aerobic condition (Jiranuntipon et al., 2009). However, a detailed list of bacteria used by 

439 various researchers in the treatment of DWW is given in Table 5. 

440 5.2.3.2. Fungal treatment (Mycoremediation)

441 There are a number of fungal species such as Aspergillus fumigatus G-2-6, Emericella nidulans 

442 var. lata, Geotrichum candidum, Trametes sp., Aspergillus niger, Citeromyces sp., Flavodon 
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443 flavus etc., which have been used by various worker for the treatment of DWW (Bezuneh 2016; 

444 Pal and Vimla, 2012; Raghukumar et al. 2004; Patil et al. 2003; González et al. 2000). 

445 Fungal treatment is used to reduce COD, BOD, and degradation of organic compounds as 

446 well as to obtain some valuable byproducts such as protein-rich, fungal biomass, which can be 

447 used as animal feed or some other specific fungal metabolites. Filamentous fungi have lower 

448 sensitivity to variations in temperature, pH, nutrients, and aeration and have lower nucleic acid 

449 content in biomass (Satyawali and Balakrishnan, 2008). 

450 Ravikumar et al. (2011) have reported that Cladosporium cladosporioides was capable to 

451 reduce 52.6% color and 62.5% chemical oxygen demand from DWW at optimum conditions i.e. 

452 5 g/L of fructose, 3 g/L of peptone, 5 pH and 35 °C. Further, these authors again used  

453 Cladosporium cladosporioides at different conditions i.e. fructose concentration 7 g L-1, peptone 

454 2 g L-1, 6 pH and 10% (w/v) inoculum concentration and found 62.5% and 73.6% reduction in 

455 color and COD, respectively (Ravikumara et al., 2013). In addition, Shukla et al. (2014) also 

456 reported 97.2% color reduction from DWW by using Aspergillus niger (ATCC No. 26550 and 

457 NCIM No. 684) with the help of combined coagulants.   

458 However, some white rot fungi also reported to secret ligninolytic enzymes (LiP, MnP & 

459 Laccases), which are capable of degrading xenobiotics and organometalic-pollutants (Chandra 

460 and Chowdhary, 2015). Moreover, various fungal species investigated for their ability to 

461 degrade/decolorize DWW are given in Table 5.

462 5.2.3.3. Algal treatment (Phycoremediation) 

463 The treatment of DWW with microalgae attracts the researchers not only by treating the waste, 

464 but also by its products/byproducts, which are in high demands for social welfare (Sankaran et 

465 al. 2014). Solovchenko et al. (2014) have investigated the possibilities of DWW bioremediation 
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466 along with a new Chlorella sorokiniana sp. cultivated in a semi-batch mode in a high-density 

467 photobioreactor. Microalgal treatment becomes effective only after the anaerobic treatment of 

468 spentwash, since the process is energy efficient and has ability to fulfill its nutrients requirement 

469 from biomethanated spentwash and energy requirement from sun light. The treatment of 

470 anaerobically treated 10% DWW using the microalgae Chlorella vulgaris followed by Lemna 

471 minuscula resulted in 52% color reduction (Valderrama et al. 2002). Further, Kalavathi et al. 

472 (2001) examined the degradation of 5% melanoidin by a marine cyanobacterium Oscillatoria 

473 boryana BDU 92181. 

474 Saha et al. (2005) observed that Oscillatoria willei, when grown under lower nitrogen 

475 content, but with optimum phenolic compounds, showed an increased oxidative stress with an 

476 increase in ligninolytic and anti-oxidative enzymes such as lignin peroxidase, laccase, 

477 polyphenol oxidase, superoxide dismutase, catalase, peroxidase and ascorbate peroxidase. This 

478 study concluded that these enzymes were responsible for the decolorization of substrate phenol 

479 upto 52% in 7 days by the Cyanobacterium O. willei.  

480 Sankaran et al. (2014) have given the phycoremediation mechanism of DWW (Fig. 3). Thus, 

481 coupling microalgae biomass production with nutrient removal/pollutant degradation may 

482 represent an important milestone in the bioenergy goals since the wastewater market is immense 

483 (Sankaran et al. 2014). 

484 5.2.4. Constructed wetlands (CWs)

485 Plants have high metal accumulation potential from the contaminated sites, which was observed 

486 by TEM analysis of various naturally growing plants (Fig. 5) (Chandra and Kumar, 2017a). 

487 Constructed wetland as a natural process, environment friendly with a simple construction and 

488 low maintenance is one of the interesting technique. The treatment of DWW through constructed 
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489 wetlands is the most biological active ecosystem worldwide (Sayadi et al., 2012; Choudhary et 

490 al., 2011). Mulidzi et al. (2010) showed the impact of shorter retention time on the performance 

491 of constructed wetlands in terms of BOD, COD and other elements removal. The results had 

492 shown an overall 60% COD removal throughout the year. Results also showed the significant 

493 removal of other elements namely; potassium, nitrogen, electrical conductivity, calcium, sodium, 

494 magnesium, and boron from DWW wastewater by constructed wetlands. 

495 Billore et al. (2001) have demonstrated a four-celled horizontal subsurface flow (HSF) CW 

496 for the treatment of DWW after anaerobic treatment. The post-anaerobic treated effluent had 

497 BOD of 2500 mg/l and COD 14,000 mg/l. A pre-treatment chamber filled with gravel was used 

498 to capture the suspended solids. All the cells were filled with gravel up to varying heights and 

499 cells, third and fourth were planted with Typha latipholia and Phragmites karka, respectively. 

500 The overall retention time was 14.4 d and the treatment resulted in 64%, 85%, 42%, and 79% 

501 reduction in COD, BOD, total solids, and phosphorus, respectively.

502 5.2.5. Biocomposting

503 In this process, press mud generated from sugar mills is utilized to produce compost by mixing 

504 with DWW (Torres-Climent et al., 2015). Both anaerobic and aerobic composting systems are 

505 being used for the treatment of DWW. In some treatment plants, composting with effluent 

506 treated through the bio-methanation plant is also practiced. Biocomposting is one of the most 

507 valuable thermophilic processes, resulting in a product rich in humus, which is used as fertilizer 

508 in agriculture fields. The spentwash, either directly, or after biomethanation is sprayed in a 

509 controlled manner on sugarcane pressmud. The latter is the filter cake obtained during the juice 

510 clarification in sugar industries. Jimnez and Borja, (1997) reported that the aerobic pretreatment 

511 of beet and molasses spentwash with Penicillium decumbens resulted ~74% and 40% reduction 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Mulidzi%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=20453335
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512 in phenolics content and color, respectively. This is a popular option adopted by several Indian 

513 distilleries attached to sugar mills with adequate land availability.

514 5.2.6. Enzymatic mechanism of DWW decolorization

515 There are several enzymes (e.g., Peroxidases, Oxidoreductases, Cellulolytic enzymes, Cyanidase, 

516 Proteases, Amylases, etc.) reported from different sources to play an important role in waste 

517 treatment processes (Chandra and Chowdhary, 2015; Dec and Bollag, 1994). The ligninolytic 

518 system consists of two main groups of enzymes: peroxidases (lignin peroxidases and manganese 

519 peroxidases) and laccases (Chandra and Chowdhary, 2015; Baldrian, 2006). The bacterial 

520 laccases play an important role in bioremediation of industrial waste because these oxidize both 

521 toxic and non-toxic substrates. Laccases are also included in the cleaning of industrial effluents, 

522 mostly from paper and pulp, textile and DIs. Among the biological agents, laccases represent an 

523 interesting group of ubiquitous oxidoreductase enzymes showing great potential for 

524 biotechnological applications (Chandra and Chowdhary, 2015; Sangave and Pandit, 2006; 

525 Gianfreda et al., 1999). On DWW decolorization, many studies have suggested the involvement 

526 of various enzymes with different mechanisms as Watanabe et al. (1982) have reported the 

527 involvement of an intracellular enzyme produced by Coriolus sp No. 20 that requires active 

528 oxygen molecule and sugars for its activity. This intracellular enzyme was identified as sorbose 

529 oxides with molecular weight 2,00,000 kDa. The purified enzyme was found capable to 

530 decolorize DWW in presence of glucose, galactose, sarbose, xylose, and maltose. DWW is 

531 reported to be decolorized by the active oxygen species (O2
-, H2O2) produced by the reactions 

532 catalyze by oxidases because the reaction with pure enzymes was accompanied by the oxidation 

533 of glucose into gluconic acid. It could be due to the production of sugar oxidases rather than the 

534 sorbose oxidase because the crude preparation utilizes arabinose, fructose, and mannitol while 
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535 sarbose oxidase does not utilize these sugars. Further, Aoshima et al. (1985) have reported the 

536 decolorization of DWW by Coriolus versicolor Ps4a, which might be due to an intracellular 

537 enzyme induced by DWW pollutants. This intracellular enzyme is reported to consist of two 

538 major components i.e. 1st a sugar independent enzyme that forms two-third part while other is 

539 sugar independent part that contributes one-third part of the enzyme. Ohmomo et al. (1985) 

540 purified a DWW decolorizing enzyme from Coriolus versicolor Ps4a and reported that this was 

541 an intracellular enzyme consisting of a major P-fraction and a minor E-fraction. The P-fraction 

542 consist at least five enzymes, which were of two types that may/may not require sugar for their 

543 decolorizing activity. In addition, Miyata et al. (1998) have also studied the DWW decolorizing 

544 by Coriolus hirsutus pellet, which was mainly due to the production of extracellular hydrogen 

545 peroxide (H2O2) and peroxidases. The culture filtrate was found to have two major extracellular 

546 peroxidases, one manganese independent peroxidase (MIP) and other is manganese dependent 

547 peroxidase (MnP). Since both MIP and MnP exhibited DWW decolorizing activity in presence 

548 of H2O2 and thus, it can be concluded that the decolorization of DWW by C. hirsutus involved 

549 the production of extracellular H2O2 and peroxidases. Therefore, the knowledge of enzymes in 

550 bioremediation of various industrial wastes will open many opportunities for large-scale 

551 application. 

552 5.2.7. Miscellaneous approaches for color removal from DWW 

553 Sirianuntapiboon et al. (2004) have isolated a strain No. WR-43-6 (Citeromyces sp.), which 

554 showed the highest decolorization yield i.e. 68.91% from a solution containing molasses pigment  

555 in presence of glucose 2.0%, sodium nitrate 0.1% and KH2PO4 0.1% respectively at 30 °C for 8 

556 days. Further, this bacterium also found capable for removal of color (75%), BOD (76%), and 

557 COD (100%) from the stillage of an alcohol factory. 
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558 Satyawali and Balakrishnan (2007) have prepared 19 carbon samples by the acid and thermal 

559 activation of various agro based by-products such as bagasse, bagasse fly ash, saw dust, wood 

560 ash, and rice husk ash for the color removal from the biomethanated distillery effluent. They 

561 found that phosphoric acid carbonized bagasse B (PH) has resulted maximum color removal 

562 (50%). In addition, various commercial activated carbons AC (ME) and AC (LB) have resulted 

563 80% color removal from biomethanated DWW. Besides color removal, these activated carbons 

564 were also found effective for the reduction in COD, TOC, phenol, and total nitrogen content.   

565 Kaushik and Thakur (2009) have isolated 5 different bacterial strains from a distillery mill 

566 site and tested for their COD and color removal efficiency. Out of these 5 bacterial strains, one 

567 bacterium (Bacillus sp.) was found capable for 21 and 30% color and COD reduction from 

568 distillery spent wash. Further, under the optimized parameters such as pH, temperature aeration, 

569 carbon, nitrogen, inoculum size, and incubation time by the Taguchi approach, the same 

570 bacterium was found effective for 85%, and 90% color, and COD reduction respectively within 

571 12 h of incubation period. 

572 Apollo et al. (2013) achieved maximum colour reduction (88%) from DWW by the 

573 combined treatment with anaerobic up-flow fixed bed reactor and annular photocatalytic reactor 

574 (as post-treatment technique). They also found that during single (UV photodegradation) 

575 treatment process, the colour reduction was 54% and 69% from DWW and MWW, respectively. 

576 But, when UV photodegradation apply as pre-treatment to the anaerobic digestion process, it 

577 reduced the biogas generation and also COD reduction. Farshi et al. (2013) have reported 97-

578 98% colour reduction from DWW by using electrochemical treatment at different optimized 

579 conditions i.e. electrode distance 1 cm, pH 4, current density 2 A/dm2  for 3 hrs. The removal of 

580 melanoidins form stimulated and real wastewaters (biologically treated and untreated) was 

http://www.sciencedirect.com/science/article/pii/S0964830508002047#!
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581 studied by coagulation/flocculation method by Liakos and Lazaridis (2014). In this study, the 

582 authors achieved 90% colour removal at pH 5 by coagulation method with different 

583 concentration of ferric ions. However, the real wastewater could be decolorized by 100 mM 

584 [Fe3+] while stimulated wastewater by 300 mM [Fe3+]. After the completion of flocculation 

585 experiment, the generated ferric hydroxide residue was washed, solubilized and re-used in new 

586 cycle. The maximum colour reduction from the real treated, real untreated, and stimulated 

587 effluent was 95%, 90%, and 45%, respectively by applying 0.5 A current intensity (Liakos and 

588 Lazaridis 2014).          

589 David et al. (2015) have reported that Pseudomonas aeruginosa, which produces 

590 Polyhydroxybutyrate (PHB) in presence of excess carbohydrate source. PHB is an intercellular 

591 polymer, which is utilized by microorganisms as an energy storage molecule when common 

592 energy sources are available in limited amount and this bacteria in presence of PHB resulted in 

593 resulted 92.77% color removal from DWW. DWW mainly consist of recalcitrant coloring 

594 compound (melanoidins), and other organic colorant, which are not easily degraded in biological 

595 treatment process. Arimi et al. (2015) achieved significant reduction in colour, dissolve organic 

596 carbon, and melanoidins 92.7%, 63.3%, and 48%, respectively at pH 5 and a concentration of 1.6 

597 g/l. In this experiment, the above mentioned physico-chemical parameters were reduced by using 

598 six coagulants, out of which, ferric chloride was found to be more effective resulting 92.7% 

599 colour reduction. In another study, Arimi et al. (2015) have developed an effective polishing step 

600 for the removal of colorants from melanoidin-rich DWW by using natural manganese oxides. In 

601 this process, low molecular weight coloring compounds removed first followed by high 

602 molecular weight colorant removal with a significant dependence on pH. 
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603 Georgiou et al. (2016) have reported the decolorization of DWW by the immobilized laccase 

604 enzyme. In this study, authors have immobilized the laccase enzyme covalently on alumina or 

605 controlled pore glass-uncoated particles and achieved 71% and 74% decolorization, respectively 

606 in 48 h of incubation period. In addition, immobilized laccase on glass achieved 68% 

607 degradation of baker’s wastewater in 24 h. Chen et al. (2016) achieved 97.1% color reduction 

608 from 50% (v/v) DWW by combined micro-electrolysis process with the help of biological 

609 treatment method. In this study, fungal biomass and ligninolytic enzyme (LiP, MnP, and laccase) 

610 are also played an important role in enhancing the DWW de-colorizing efficiency. El-Dib et al. 

611 (2016) achieved 78% and 83% reduction in colour and chemical oxygen demand by using 

612 organic-inorganic nanocomposite (chitosan immobilized bentonite with chitosan content). In this 

613 study, the used modified chitosan immobilized bentonite (mCIB) and Bentonite (mbent) were 

614 prepared by intercalating cetyl trimethylammonium bromide (CTAB) as a cationic surfactant. 

615 Further, FTIR, XRD and SEM were used to study the interlayer structure and morphology of 

616 prepared samples. Out of all the used sorbents, the modified CIB3 was found to be more effective 

617 in decolorization of distillery wastewater. Santal et al. (2016) isolated Paracoccus pantotrophus 

618 and found that these bacterial strains were highly effective to decolorize melanoidins up to 81.2 

619 ± 2.43% in presence of carbon (glucose), and nitrogen (NH4NO3) source. 

620 Recently Zhang et al. (2017) achieved ~94.0% colour reduction and ~78% reduction of 

621 dissolve organic matter from DWW with the treatment by ferric chloride (FeCl3) as coagulant. 

622 During treatment process, this coagulant was found to react preferably with melanoidins (major 

623 colorant) via either surface complexation or neutralization of electric charge or by both 

624 mechanisms. Krzywonos et al. (2017) achieved 38% colour reduction from vinasse by using 

625 Bacillus megaterium ATCC 14581 and medium component (NH4)2SO4, KH2PO4, yeast extract, 
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626 peptone glucose, and vinasse. Out of these factors, four promising factors were chosen as 

627 follows: (NH4)2SO4, KH2PO4, glucose, and vinasse for further optimizing process for color 

628 removal. Nure et al. (2017) have reported the significant reduction in colour (64%) and chemical 

629 oxygen demand (61%) from melanoidin solution by using activated carbon, which was produced 

630 from bagasse fly ash (BFA). In this study, the surface area of used BFA was determined as 160.9 

631 ± 2.8m2/g with about 90% of particle < 156.8 µm in size. However, BFA was characterized by 

632 using Fourier transform infrared spectroscopy (FTIR) and showed the carbonyl (R-C=O) and 

633 hydroxyl (OH-) groups, while X-ray diffraction and scanning electron microscopy analysis 

634 showed amorphous nature and heterogeneous and irregular shape of pores, respectively. In 

635 addition, microbial fuel cells (MFCs) are also becoming as promising technology, which produce 

636 electricity with simultaneous removal of pollutants in terms of COD, color and total dissolved 

637 solids etc. from the wastewaters (Feng et al., 2008; Wen et al., 2010; Samsudeen et al., 2015).

638 5.3. Emerging treatment approaches 

639 5.3.1. Oxidation process

640 There is a number of oxidation processes, which are being used for the treatment of DWW such 

641 as ozone, hydrogen peroxide, Fenton’s reagent and ozone combined with hydrogen peroxide 

642 (Asaithambi et al., 2015; Arimi et al., 2014; Afify et al., 2009; Dwyer et al., 2008). Ozone 

643 treatment alone reduces 76% color, where ozone in presence of low concentration of hydrogen 

644 peroxide removes 89% color (Santal et al., 2013; Dwyer et al. 2008). But, bicarbonate ions are 

645 reported to have the inhibitory effects on these decolorizing reactions (Coca et al., 2005). The 

646 sonication of DWW as a pre-treatment step, converts complex molecules into a more utilizable 

647 form by cavitation process and thus, significantly enhances the decolorization of DWW 

648 (Sangave and Pandit, 2006). 
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649 Vineetha et al. (2013) found that photodegradation of DWW by solar radiation resulted in 

650 79% color reduction under the optimum conditions of H2O2, pH, and catalyst. In a recent study, 

651 Asaithambi et al. (2015) found that ozone-photo Fenton system was effective to reduce 100% 

652 color and chemical oxygen demand (COD) within 4 h.

653 5.3.2. Membrane treatment

654 In recent years, membrane processes have been widely used in various applications, especially 

655 for the treatment of wastewaters. The use of membrane technologies is accompanied with a high 

656 removal efficiency, optimal costs and simple devices handling (Prodanovic and Vasic, 2013). 

657 A two-stage biological treatment followed by membrane modules has been recently 

658 developed for the effective treatment of DWW, which have following functions:

659 a. Biological removal of organic pollutants is carried out in bioreactor by the adapted microbial 

660 communities;

661 b. The membrane module performs the separation of microorganisms from treated wastewater. 

662 The membranes constitute a physical barrier for all the suspended solids and therefore, enable 

663 not only the recycling of activated sludge to the bioreactor, but also the production of permeate 

664 that is free from suspended solids, bacteria, and viruses.

665 Rai et al. (2008) reported that tertiary treatment of aerobically treated DWW by nano-

666 filtration (NF) technique was carried out in a spiral wound NF membrane module under different 

667 conditions and resulted in COD, TDS, and color removal within the range of 96-99.5%, 85-95%, 

668 and 98-99.5%, respectively. 

669 The total membrane area was 0.2m2 and the system was operated at a fluid velocity of 6.08 

670 m/s, and 0.5 bar transmembrane pressure. Besides the COD reduction, the pre-treatment also 

671 improved the efficiency of anaerobic process possibly due to the removal of inhibitory 
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672 substances. Kumaresan et al. (2003) employed the emulsion liquid membrane (ELM) technique 

673 in a batch process for spentwash treatment. In another study, the treatment of vinasse from beet 

674 molasses by electrodialysis using a stainless steel cathode, titanium alloy anode and 4% (w/v) 

675 NaCl as electrolytic agent resulted in 88% COD reduction at pH 9.5, but it decreased drastically 

676 at higher feeding rates (Vlyssides et al., 1997). In addition, reverse osmosis (RO) has been also 

677 employed for DWW treatment. In a recent study, Nataraj et al. (2006) reported a pilot trial on 

678 distillery spentwash using a hybrid nanofiltration (NF) and RO process. Both, the NF and RO 

679 stages employed a thin film composite (TFC) membrane in spiral wound configuration with 

680 module dimensions of 2.5 inches diameter and 21 inches length. NF was primarily effective in 

681 removing color and colloidal particles accompanied by 80%, 95% and 45% reduction in total 

682 dissolved solids (TDS), conductivity and chloride concentration, respectively at an optimum feed 

683 pressure of 30-50 bars. The subsequent RO operation at a feed pressure of 50 bar resulted in 99% 

684 reduction each in COD, potassium and residual TDS (Prodanovic and Vasic, 2013; Satyawali 

685 and Balakrishnan, 2008). 

686 Despite the knowledge of treatment technologies for DWW there is also need to know about 

687 the merits and demerits (Table 7). 

688 6. Challenges for the biodegradation and bioremediation of DWW pollutants

689 The DIs is reported to produce only ~7-9% of alcohol from sugarcane molasses and major 

690 portion ~91-93% contribute as wastewater. This huge volume of wastewater requires a long time 

691 for treatment due to the non-availability of fast and feasible treatment techniques. Due to very 

692 high BOD, COD and TDS values, the Effluent Treatment Plant (ETP) remains to fail to reduce 

693 these pollution parameters within the permissible limits set by various environmental protection 

694 agencies. DWW contains high melanoidins content, the major coloring compounds, which are 
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695 highly recalcitrant in nature i.e. resistant to biological/microbial degradation. The management of 

696 large amount of sludge generated during the physical, chemical and biological treatment of 

697 DWW is also a big challenge for DIs. Further, the lack of advanced and feasible treatment 

698 techniques for the effective treatment of DWW within a limited time is a major challenge for 

699 sustainable development. In addition, the poor capacity utilization also leads to the higher 

700 financial cost and overheads charges. Moreover, the very high expenditure on operation and 

701 maintenance of wastewater treatment plants is also not affordable and hence, the Governments 

702 should also provide the financial support to industries for sustainable development.    

703 7. Conclusion  

704 This review manuscript concludes that DWW contains a complex mixture of organic and 

705 inorganic pollutants and acts as a major source of environmental pollution. DWW causes 

706 coloration of water resources, reduces photosynthetic activities, and dissolved oxygen content, 

707 whereas, in the soil, it reduces soil fertility and seed germination. The organic and inorganic 

708 pollutants such as melanoidins and endocrine disrupting compounds (phthalates) present in 

709 DWW are well reported to have cytotoxic, genotoxic, carcinogenic and mutagenic effects on 

710 human and animal health. Thus, it requires adequate treatment before its final discharge into the 

711 environment. Physico-chemical methods available are capable of both color and organic load 

712 reduction, but these methods are highly costly and generate a large amount of sludge as 

713 secondary pollutants. Hence, biological methods are gaining its momentum in the arena of 

714 wastewater treatment methods due to cost effective and eco-friendly nature, but these methods 

715 are time-consuming. Therefore, there is an urgent need to address the limitations in existing 

716 treatment methods and to develop the integrated treatment processes that can provide a solution 

717 to DIs for the management and treatment of generated wastewater. 
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Figure 1: Steps during alcohol production and wastewater generation in distillery industry 
(Modified from Arimi et al., 2014). 
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Figure 2: Basic structure of melanoidin (Adapted from Cammerer et al., 2002)
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Figure 3: The mechanism of melanoidin containing biomethanated spent wash treatment using 
microalgae (Modified from Sankaran et al. 2014).
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Figure 4: Environmental impact of distillery wastewater and technologies to fight the threat.

Figure 5: TEM images of native plants root after phytoextraction of heavy metals. a-c Congress 
grass (Parthenium hysterophorous) (Adapted from Chandra and Kumar 2017a).
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Tables 

Table 1: Physico-chemical characteristics of various types of distillery wastewater

Wastewater Types
Parameter Distillery 

wastewater
Wine distillery 

wastewater
Vinasse Raw spent wash Lees stillage Molasses 

wastewater
BOD5 (g/l) 30 0.21-8.0 42.23 - 20 -
CODT (mg/l) 100-120 3.1-40 37.5 - 80.5
CODS (mg/l) - 7.6-16 97.5 - - -
TOC (mg/l) - 2.5-6.0 36.28 - - -
pH 3.0-4.1 3.53-5.4 4.4 4-5 3.8 5.2
EC 346 - - 2530 - -
Alkalinity (meq/l) - 30.8-62.4 - 2 9.86 6000
Phenol (mg/l) - 29-474 477 - - 450
VFA (g/l) 1.6 1.01-6 - - 0.248 8.5
VS (g/l) 50 7.340-25.4 - - - 79
VSS (g/l) 2.8 1.2-2.8 - - 0.086 2.5
TDS mg/l - - 51,500 - - 51,500
TS (g/l) 51.5 – 100 11.4-32 1.5-3.7 2.82 68 109
TSS (g/l) - 2.4-5.0 - - - -
MS (g/l) - 6.6 - - - 30
MSS (g/l) - 900 100 - - 1100
TN (g/l) - 0.1-64 - 2.02 1.53 1.8
NH4+ (mg/l) - 140 - 125-400 45.1 -
NO3- (mg/l) 4900 - - - - -
TP (g/l) - 0.24-65.7 - 0.24 4.28 -
PO43-  (mg/l) - 130-350 - 139 - -
Iron 0.06 0.05-0.075 - - - 0.028

Adapted from (Prajapati and Chaudhari 2015; Arimi et al., 2014; Yadav and Chandra 2012; Melamane et al., 2007; Nataraj et al., 2006; 
Bustamante et al., 2005; Martin et al., 2002)
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Table 2: Organic pollutants identified by various researcher in distillery wastewater

S. No. Compound Name
1. 3-Amino-2-oxazolidinone
2. Cyclopropylmethanol acetate
3. 4-Pyridinecarboxlic acid
4. 2-Ethylpyridine
5. 3-(2-Pyridyl)-1-propanol
6. n-Methyl-2-nitro-3-pyridinamine
7. 3-Ethylpyridine
8. Nicotinic acid, propyl ester
9. Isonicotinyl formaldoxime
10. 3-Octadecene
11. Phthalic acid
12. DI-N-octyl phthalate
13. Phthalic acid, butyl-4-octyl ester
14. Dibutyl phthalate
15. n-Hexadecanoic acid
16. 1-Eicosanol
17. 13-Tetradecen-1-O-acetate
18. 5,5-Dimethyl hexane
19. Hexadecamethyl octasiloxane
20. Benzyl butyl phthalate
21. 1-Hexacosanol
22. Phthalic acid, dodecyl octyl ester
23. 1,2-Benzenedicarboxylic acid
24. Phenol
25. Methylbenzene (toluene)
26. Butenoic acid
27. Furfuryl alcohol
28. 2-Hydroxymethylfuran
29.. 2-Methoxyphenol (guaiacol)
30. Methylphenol
31. Methylbenzaldehyde
32. Indole
33. 2,6-Dimethoxyphenol (syringol)
34. 1-Hexadecanol
35. Palmitic acid
36. Methylindole
37. 2-Ethyl-5-methylfuran
38. Hydroxypropanone
39. 1,2,3- triethoxy-5-methyl benzene
40. 3,4,5-trimethoxy phenol
41. 2-phenyl ethanol
42. 4,4-dimethyl- 3-(3-oxobutyl)cyclohex-2-enone
43. 2, 2’-bifuran

               
Adopted from (Fagier et al. 2015; Chandra et al. 2012; Yadav and Chandra, 2012; Bharagava and 
Chandra, 2010; Wu and Zhou, 2010; Gonzalez et al. 2002) 
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Table 3: Organic compounds detected and characterized by using different solvents and GC-MS-MS 
analysis of distillery wastewater by various authors 

Solvent system used Identified Compounds
1,3-propanediol
3-oxy- propanoic acid
3-methyl-2-oxy- butanoic acid
D-Erythrotetrofuranose
Pentanoic acid 
Butanedioic acid
Resorcinol
2,3-Butandiol
Malic acid 
2-Methyl-1,3-butanediol 
2-Furancarboxylic acid
2,3,5-Tri-O- arabino-1,5-lactone
Cyclooctene
Tricarballylic acid 
3-deoxy--2,5,6, tris- O- D-Ribo-hexanoic acid
Benzoic acid
Tert-butylhydroquinone
3,5-dimethoxy-4-9 benzoate 
Vanillypropionic acid

Acetone

Benzeneacetic acid
Ethyl succinate 
1,3-Propanediol
Diethyl methylsuccinate 
Lactic acid
2-Furancarboxylic acid
Benzenepropanoic acid
4-oxy-Benzoic acid
D-Erythro-Hex-2-enoic acid

Ethyl Acetate

Trimethylsilyl 3,5 dimethoxy-4-benzoate
Butanedioic acid
ButaneIsopropanol
2-Methyl-1,3-propanediol
3-oxy-Propanoic acid
2-methyl-2-oxy-butanoic acid
2-Methylbutanoic acid
2-dedoxy-1,3,4,5-tetrakis- O-erythro-pentitol
2,2,4,5,7,7-hexamethyl-3,6-didoxa
1,2-bis-cyclooctene
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Adopted from 
(Chandra and Kumar, 2017b; Fagier et al. 2015; Yadav and Chandra, 2012)

2,3,5-Tri-O-lactone Methanol
3-deoxy-2,5,6 tris- O-D-Ribo-hexanoic acid
Ethyl-succinate 
Butanedioic acid
-2,2,4,7,7- pentamethyl-3,6-Dioxa
Erytritol
2,3,4,5-Tetrahydroxypentanoic acid-1,4- lactone
1,2, bis-cyclooctene
3-deoxy-2,5,6-tris- O-D-ribohexanoic acid

Ethanol

α-D-Galactopyranose
Benzene, 1-ethyl-3,5-disopropyl 
Eicosane 
3,4-Dihyroxymandelic acidn-Hexane
Octadecane,3-ethyl-5(2-ethylbutyl) 
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Table 4: Various analytical techniques used for the detection and characterization of distillery 
wastewater pollutants 

S. No. Distillery wastewater 

pollutants

Analytical techniques References 

1. Organic pollutants HPLC, GC-MS, Ion-pair RP-HPLC, CEC UV-detection, 

HPLC differential refractometry detection, HPLC involving 

derivatization HPAEC coupled electrochemical, and/or DAD, 

FAB-MS, ESI coupled HPLC and EC, MALDI-TOF, LC-MS, 

LC-MS with ESI, NBT, ELISA, Ion-pair RP-HPLC, CEC 

UV-detection, Ion-exchange chromatography, FAB-MS, 

Colorimetric and fluorimetric methods, FAST, HPLC-DAD, 

RP-HPLC o-phthalaldehyde precolumn derivatization, RP-

HPLC,HPLC-coupled GC-MS, RP-HPLC/LC-ESI-TOF-

MS/NMR, HPLC with UV and fluorescence detection, HPLC-

DAD, UV, IR spectrometry, MALDI-TOF mass spectrometry.

Chandra and 

Kumar, 2017b; Wu 

and Zhou, 2010; 

Chandra et al., 

2008a; Silvan et al., 

2006

2. Inorganic pollutants AAS, ICP, Ion chromatography, Flame atomic absorption 

spectroscopy (FAAS)

Hamza et al., 2017; 

Chandra and 

Kumar, 2017b; 

Chandra et al., 

2008b
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1 Table 5: Microorganisms capable for decolorization of distillery wastewater
2

Reported Microorganisms Comments Color Removal (%) Reference

Bacterial species 

Pediococcus acidilactici B-25 Glucose are used as a primary supplementary carbon source 79 Tiwari et al., 2013

Pseudomonas putida Glucose concentration was critical for decolorization and improved color removal efficiency 

was obtained by periodic replenishment of glucose

24 Ghosh et al., 2009

Pseudomonas putida Glucose used as a carbon source, for the production of H2O2, which reduced the colour 60 Ghosh et al., 2002

Pseudomonas

Fluorescens

The organism performed decolorization with cellulose carrier coated with collagen. Reuse 

of decolorized cells reduced the decolorization efficiency

94 Dahiya et al., 

2001a

Pseudomonas

Aeruginosa

The three strains were part of a consortium which decolorized the anaerobically digested 

spent wash in presence of basal salts and glucose

67 Mohana et al., 2007

Pseudomonas sturzeri The organism required sugar especially, glucose for decolorization of distillery wastewater ≤ 60.00 Ramachandra, 1993

Pseudomonas sp. The organism used glucose and fructose as carbon source for decolorization 56.00 Chavan et al., 2006

Bacillus thuringiensis 1% glucose are used as a supplementary carbon source 22 Kumar and 

Chandra, 2006

Xanthomonas fragariae The organism used glucose as carbon source and NH4Cl as nitrogen source. 76 Jain et al., 2002

Acinetobacter sp. All these organisms were isolated from an air bubble column reactor treating winery 

wastewater after 6 months of operation. Most isolates from the colonized carriers belonged 

to species of the genus Bacillus

- Petruccioli et al., 

2000

Acetobacter acetii The organism required sugar especially, glucose and fructose for decolorization of MWWs 76.4 Sirianuntapiboon et 

al.,2004

P. aeruginosa Glucose used as carbon source 67.00 Sarayu et al., 2005

P. aeruginosa Glucose are used as a supplementary carbon source 69 Pal and Vimala, 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Tiwari%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23224419
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2012

Fungal species

Penicillium sp. All fungi produced decolorization from first day of incubation, with maximum being shown 

by P. decumbent at fourth day with a reduction of 70% of the phenolic content of the 

wastewater

30 Jimnez et al., 2003

Aspergillus niger

UM2

Decolorization was more by immobilized fungus and it was able to decolorize up to 50% of 

initial effluent concentrations

80 Patil et al., 2003

Flavodon flavus MSW was decolorized using a marine basidiomycete fungus. It also removed 68% benzo(a) 

pyrene, a PAH found in MSW

80 Raghukumar and 

Rivonkar, 2001; 

Raghukumar et al., 

2004

P. chrysosporium Phenolic concentration and color were decreases under two different growth conditions 56.8 1 Potentini and 

Rodriguez 2006

Phanerochaete

chrysosporium

JAG-40

This organism decolorized synthetic and natural melanoidins when the medium was 

supplemented with glucose and peptone

80 Dahiya et al., 2001

Aspergillus niveus The fungus could use sugarcane bagasse as carbon source and required other nutrients for 

decolorization

56 Angayarkanni et 

al., 2003

Williopsis saturnus

strain CBS 5761

Yeast isolates from a rotating biological contactor (RBC) treating winery wastewater. Only 

43% COD removal could be achieved

Malandra et al., 

2003

Coriolus versicolor sp no. 20 10% diluted spent wash was used with glucose @ 2% added as carbon source 34.5 Chopra et al., 2004

Phanerochaete

Chrysosporium

Sugar refinery effluent was treated in a RBC using polyurethane foam and scouring web as 

support

55 Guimaraes et al. 

2005

https://www.ncbi.nlm.nih.gov/pubmed/?term=Potentini%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=17405327


ACCEPTED MANUSCRIPT

64

Marine

Basidiomycete

NIOCC # 2a

Experiment was carried out at 10% diluted spent wash 100 D’souza et al., 

2006

Citeromyces sp. WR-43-6 Organism required glucose, Sodium nitrate and KH2PO4 for maximal decolorization 68.91 Sirianuntapiboon et 

al., 2003

Pleurotus florida Various fungi grown under solid-state fermentation using agro-residue 86.3 Pant and Adholeya, 

2009

Yeast 

Candida tropicalis RG-9 75 Tiwari et al., 2012

Citeromyces sp. The organism required sugar especially, glucose and fructose for decolorization 75.00 Sirianuntapiboon et 

al., 2004

Cyanobacteria 

Oscillotoria boryana The organism required sugar especially, glucose and fructose for decolorization 60.00 Kalavathi et al., 

2001

3
4
5
6
7
8
9

10
11
12
13
14
15
16
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17 Table 6: Performance efficiency of various anaerobic reactors for the treatment of distillery wastewater
18

Reactors COD

Reduction (%)

BOD removal (%) Retention time

(days)

Reference

Upflow anaerobic fixed film bioreactor 64% 8 Acharya et al., 2008

Upflow Anaerobic Sludge Blanket (UASB) 90-95% - - Moletta, 2005 

Anaerobic granular sludge reactor 80-90 - 1 Collins et al., 2005

Thermophilic UASB reactor 87 - 0.3 Syutsubo et al., 1997

Downflow fluidized bed reactor with ground perlite 85 - 3.3-1.3 Garcia-Calderon et al., 1998

Upflow anaerobic sludge blanket (UASB) reactor 39-67 80 - Harada et al., 1996

UASB 75 - - Sanchez Riera et al., 1985

UASB 90 - - Wolmarans and de Villiers, 2002

UASB 93 - 20-39h Wolmarans and de Villiers, 2002

Granular bed anaerobic baffled reactor (GRABBR) 82-90 90 - Akunna and Clark, 2000

Anaerobic filter and UASB 90 - 1.3d Blonskaja et al. 2003

Anaerobic contact filter 73-98 - 4 Vijayaraghavan and Ramanujam, 

2000

Diphasic (Upflow) fixed film reactor (granular activated 

carbon support)

67.1 4 Goyal et al., 1996

19
20
21
22
23
24
25
26
27
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28 Table 7: Various treatment approaches/technologies with their merits and demerits used for the treatment of distillery wastewaters

Treatment Technology Advantages Disadvantages

Physico-chemical Treatment 

Adsorption  Simultaneous adsorption and degradation of many 

pollutants 

Temperature and pH sensitive 

High cost of commercial adsorbents is their main drawback for 

application

Coagulation/ Flocculation Simple, and cost-effective

Widely accepted

Separates many kinds of particles from wastewater

Enhances filtration process

Uses abundant and low cost chemicals

pH sensitive

As+3 and As+5 must be fully oxidized

High energy lost 

Excess use of chemicals 

Large amount of sludge generated

Oxidation process Broad range of organic compounds are oxidized

The method has advantages over AOP since it can be used 

in either the pretreatment step or in the final treatment step

Ozone can selectively attack the double bonds (e.g. C=C, N=C) 

and functional groups (e.g. -OCH3, -OH, and -CH3) in acid or 

neutral conditions with limited concentrations, High cost

Membrane treatment  Significant color removal 

Removal of multiple contaminants

Membrane fouling, clogging, scaling and cleaning

Poor production efficiency, Requires pretreatment

Evaporation and  Combustion Due to potassium rich ash it can be used for land application Poor efficiency

Biological Treatment

Aerobic treatment/ Anaerobic 

treatment Reactors

Bacterial treatment

Fungal treatment

Eco-friendly and cost effective Requires high dilution 

Slow process

Time consuming

It acquires large space for treatment

Treatment by other microorganisms
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29
30
31
32
33
34

Microalgae No need to add nutrients 

Yield biogas or biodiesel or fertilizer are by-product

Light dependent process 

Cyanobacteria Energy obtain from photosynthesis Slow growth rate

Yeast Produced ethanol for biofuel industry Slow growth rate

Enzymatic treatment

Laccases 

Peroxidases

Oxidoreductases

Cellulolytic enzymes

Cyanidase

Proteases

Amylases

Enzyme are naturally produced by microorganism  which is 

ecofriendly 

Reusable in nature

Enzymatic biotransformation of industrial pollutants

Slow process and thus, cannot be applicable at large scale 

application


