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A B S T R A C T

The non-stationary climates of the 21st century are compelling forest managers to seek non-local species, pro-
venances, and silvicultural regimes that are better suited to the anticipated future climates of their operating
areas. Ideally, forest managers can source this information from climate analogs within their jurisdictions, but
the emergence of unfamiliar climates is a distinct possibility with particular challenges. Here, we present an
assessment of the emergence of mid-21st-century climates with no analog in the 20th-century climates of British
Columbia (BC), and the extent to which these novel climates are described by climate analogs elsewhere in North
America. We use a recently developed linear method of novel climate detection in parallel with Random Forest
classification to evaluate the robustness of novel climate inferences. Our results suggest that a majority of the
province’s area will remain free of novel climates over this time period, and therefore that BC’s ecological
knowledge system, the Biogeoclimatic Ecosystem Classification, can remain the dominant source of climate
analogs for mid-21st-century forest management planning horizons. Nevertheless, we detected a robust pattern
of climates that are novel to BC in mid-21st-century climate projections at low elevations in the coastal, southern
interior, and northeastern regions of the province. There appears to be potential to inform forest management in
some of these novel climates with analogs from adjacent states and provinces. We demonstrate that extra-
polations into novel climates typically understate the magnitude of climate change and modeling uncertainty,
creating a false impression of robust predictions in locations where model performance is poorest. By identifying
portions of their landscapes that are prone to emergence of novel climates, forest managers can avoid man-
agement errors and prioritize the search for analogs beyond the boundaries of their knowledge systems.

1. Introduction

1.1. Emerging challenges to the “local is best” ethic in forest management

The necessity to adopt non-local practices in response to climate
change is a major new dimension in forest management. Historically,
forest managers have developed specialized management regimes for
their local ecosystems (Puettmann et al., 2009). The complex interac-
tions of productivity, competition, stress, and disturbance are often
idiosyncratic to individual places, leading forest managers towards a
“local is best” ethic with respect to silvicultural systems, stand-tending
practices, and species and provenance selection (Seymour et al., 2002;
Ying and Yanchuk, 2006). These local idiosyncrasies are strongly driven
by climate (Pojar et al., 1987), but the climates of the 20th century
were sufficiently stable for forest managers to understand climate as a
stationary quality of place. The non-stationary climates of the 21st

century are a fundamental challenge to this place-based understanding
of climate and ecosystem function (Millar et al., 2007). Forest managers
have entered an era in which the “local is best” ethic is no longer re-
liable, and are looking to other locations for species, provenances, and
management regimes that may be better suited to the anticipated future
climates of their jurisdictions (Potter and Hargrove, 2012; Williams and
Dumroese, 2013). This use of non-local climate analogs is an emerging
cornerstone of 21st century forestry management, and underlies as-
sisted migration through remote provenance selection (Aitken and
Whitlock, 2013), assisted range expansion (Rehfeldt and Jaquish,
2010), and in situ tree species conservation (Hamann and Aitken, 2013).
Moreover, climate analogs are essential to maintaining the relevance of
accumulated practitioner knowledge in a changing climate. As climate
zones shift across the landscape, so must the ecological knowledge with
which they are associated.

Where analogs for anticipated future climates are available within
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local jurisdictional boundaries—e.g., from downhill locations—forest
managers are able to draw on their familiar local knowledge systems.
However, the projected magnitude of climate change over forest man-
agement timescales is compelling forest managers to look for climate
analogs in the relatively unfamiliar climates of other jurisdictions
(Potter and Hargrove, 2012). While some locally unfamiliar climates
may have historical analogs in nearby jurisdictions, previous research
suggests the potential for novel climates that have no historical analogs
at continental (Rehfeldt et al., 2012; Mahony et al., 2017) and even
global (Williams et al., 2007; García-López and Allué, 2013) scales.
These truly novel climates represent conditions for which little
knowledge is available from observational experience (Williams and
Jackson, 2007), and therefore for which ecological predictions are
unreliable (Fitzpatrick and Hargrove, 2009). Forest management in a
changing climate will inevitably involve some extrapolation of accu-
mulated knowledge into novel, unfamiliar conditions. Nevertheless, the
risk of management failures will likely increase with the degree of ex-
trapolation (Peterson et al., 2011, pp. 126–8). Measurement of novelty
in projections of climate change indicates the degree of confidence that
can be placed in climate analogs for forest management guidance.

1.2. Novel climates in the British Columbia forest management context

The use of climate analogs for climate change adaptation is in the
early stages of being operationalized in British Columbia. For the past
50 years, forest practices and legislation in British Columbia have been
organized under a province-wide structured knowledge system named
the Biogeoclimatic Ecosystem Classification (BEC; MacKenzie and
Meidinger, 2017; Haeussler, 2011). BEC includes, as one of its central
pillars, a hierarchical climate classification with 16 zones (Fig. 1),
∼100 subzones, and ∼200 subzone-variants. Though BEC climates
were originally conceived as static map units, spatial shifts in BEC cli-
mate units have been projected by using these units as analogs for the
future climates projected by global climate models (Hamann and Wang,
2006; Wang et al., 2012). BEC unit projections are being used in an
overhaul of the BC government’s tree seed transfer framework, in which
seed transfer limits are defined by BEC units and shifted in space in
accordance with their projected future spatial distribution (O’Neill
et al., 2017). BEC unit projections are also being used to incorporate

climate change into provincial government’s tree species suitability
guidelines, by demoting or promoting individual species based on their
historical suitability to the range of BEC units projected for a planting
site. In providing a pool of climate analogs that are richly embedded
with ecological knowledge, BEC is a coherent framework to guide the
transfer of locally-adapted forest management strategies among regions
and sites as their climates change.

The emergence of climates that are not described by the BEC system
is an open problem in the use of climate analogs for forest management
in British Columbia. Mismatch between future conditions of some lo-
cations and their BEC analogs should be expected, since current BEC
projections do not draw on analogs from outside British Columbia.
Two-dimensional seasonal temperature-precipitation envelopes for BC
indicate that the warm edge of the BC climate envelope will develop
novel climates (relative to historical BC climates) as it shifts due to
climate change (Fig. 2). These simplified representations of climatic
shifts suggest that the potential for novel climates is not limited to the
warmest and driest areas of the province (e.g., the CDFmm subzone in
the Georgia Basin and the PPxh subzone in the Okanagan Valley), but
spans the warm margin of the climate envelope along the full range of
precipitation regimes. The emergence of climates that are unfamiliar to
the BEC system is an inevitable consequence of climate change. Further,
previous research indicates the potential for future climates in British
Columbia with no analogs in North America (Rehfeldt et al., 2012;
Mahony et al., 2017).

The apparent potential for climate change to produce climate types
that are novel to BC indicates that BEC projections are susceptible to
extrapolation errors. Current BEC projections (Wang et al., 2012) pro-
vide the analog with the best match to projected conditions. The best
match, however, is not necessarily a good match. Where extrapolation
into novel climates results in a poor match between the projected future
climate condition and its assigned analog within the BEC system, the
BEC analog is likely to provide misleading guidance (Fitzpatrick and
Hargrove, 2009). Undiagnosed use of poor-quality analogs has the po-
tential to produce management failures due, for example, to in-
appropriate provenance or species selection for reforestation. It is es-
sential to identify poor-quality analogs associated with novel climates,
so that other more informative sources of guidance for management can
be sought.

1.3. Measuring climatic novelty

Climatic novelty is subjective to the ecological context under con-
sideration. The many variables with which climate can be character-
ized—growing season frosts, wind speed, fog, solar insolation, extreme
events, snow-free period, and so on—have varying relevance to dif-
ferent species in different environments. The scales and thresholds at
which these climate elements are relevant is similarly context-specific,
due to differences in species’ ecological tolerances. It follows that a
climatic condition that is novel from the perspective of one ecological
community may be functionally familiar to another.

The context-dependence of climatic novelty has important im-
plications for how it is measured. The most prominent approach to
novel climate detection defines novelty as the climatic distance (Dmin)
between the projected climate and its closest historical analog
(Williams et al., 2007; Mahony et al., 2017). This distance is measured
using a set of climate variables that is universal to all locations in the
study. The relative magnitude (the scaling) of these climate variables is
defined by standardizing them to their local interannual climatic
variability. Although this linear scaling approach is localized, it does
not necessarily reflect the complex and non-linear biological responses
to climate that are idiosyncratic to each ecosystem. In contrast, BEC
projections are currently produced using a machine learning algorithm,
Random Forest (Breiman, 2001), that models the relationship between
BEC units and climate using localized climate variable selection and
non-linear scaling. Climatic novelty measured within the model

Fig. 1. Biogeoclimatic zones of British Columbia, the highest level of the BEC climate
classification. Representative locations for a small sample of BEC subzones (see
Supplementary Table S1 for full names) are provided for reference in subsequent figures.
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structure of Random Forest BEC classifications could be much more
ecologically meaningful than novelty measured with the linear Dmin

approach. However, there currently are no established methods for
novelty detection in Random Forest bioclimatic classifications, despite
the availability of methods for simpler classification problems (Désir
et al., 2013; Zhou et al., 2015) and the promising approach developed
by Rehfeldt et al. (2012). In the absence of direct novelty detection with
Random Forest, the Dmin approach can provide a necessary approx-
imation of which areas of British Columbia are susceptible to the
emergence of novel climates. Further, the Dmin approach can provide a
point of comparison for evaluating indicators of novelty in Random
Forest BEC projections and investigating how Random Forests behaves
in the context of extrapolation.

1.4. Study objectives

The objectives of this study are to provide an assessment of where
novel climates in British Columbia are likely to emerge by middle of the
21st century and to demonstrate the utility of this approach to forest
management. We focus on the projected climates of the 2050s
(2041–2070) as this period roughly corresponds with the midpoint of
the 50–100-year harvest rotations typical of British Columbia and is of
immediate significance to current reforestation and timber supply
management decisions (O’Neill et al., 2017). We use our established
linear method for detecting novel climates (Mahony et al., 2017) in
parallel with Random Forest classification to evaluate (1) the robust-
ness of novel climate inferences and (2) the extent to which these
projected novel climates are described by climate analogs elsewhere in
North America. In addition to providing specific insights for British
Columbia, we find that overestimation of analog similarity and en-
semble agreement are general characteristic errors of extrapolation into
novel climates. We demonstrate that these quantities can be used as
indicators of climatic novelty in machine learning bioclimatic projec-
tions.

2. Methods

2.1. Linear novelty detection method

The linear novelty detection method in this study follows the gen-
eral approach of Williams et al. (2007) and the specific metric of
Mahony et al. (2017). We calculate linear novelty (Dmin) as the Maha-
lanobis distance (Mahalanobis, 1936) between the projected mid-21st-
century (2041–2070) climate of a location of interest and its closest
analog among the observed end-of-20th-century (1971–2000) climates
of an analog pool (Fig. 3). The analog pool is either BC or North
America depending on the analysis. This Mahalanobis distance is scaled
to the historical interannual variability of the climate variables for the
location of interest, as described in more detail below. This method is
described mathematically in Supplementary Note S1. Unlike Mahony
et al. (2017), we do not interpret Mahalanobis distances probabil-
istically using the sigma dissimilarity metric; novelty distances are in-
stead interpreted in this paper in terms of the minimum distances be-
tween BEC units.

2.2. Random forest classification

2.2.1. Indicators of novelty in Random Forest projections
We propose two indicators of extrapolation into novel climates in

Random Forest projections: Analog similarity and ensemble agreement
(Fig. 4). We hypothesize that analog similarity—the similarity between a
location’s 20th-century climate and the 20th-century analog for its
projected 21st-century climate—will tend to be greater for novel cli-
mates than for projected climates with good analogs. Where there is a
good analog for the projected climate (location 1 in Fig. 4a), the analog
dissimilarity (Da) will be the same magnitude as the climate change
trajectory (Dc). Where the climate change trajectory extends beyond the
edge of the study area climate envelope (locations 2 and 3 in Fig. 4a),
analog dissimilarity may in some cases (e.g., location 2 in Fig. 4a) be
less than the magnitude of climate change (Da < Dc). In extreme cases
of novelty, where the climate change trajectory extends perpendicular
from the leading edge of the study area climate envelope (e.g., the PPxh

Fig. 2. Projected shifts in the British Columbian temperature-precipitation envelope in winter (a) and summer (b). RCP4.5 ensemble mean projection for the 2041–2070 period. Novel
climates emerge along the leading edge of the shifting climate envelope. Climate change trajectories for a selection of BEC subzones (mapped in Fig. 1) are shown for reference, linking
end-of-20th-century climates (blue dots) to the projected mid-21st-century climate (red dots). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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trajectory in Fig. 2), analog dissimilarity will be near zero because the
best analog for the end of the trajectory is its origin. This conceptual
model of analog similarity suggests that it is a precise but not highly
sensitive indicator: it is expected to produce few type I errors (novelty
inferred when the climate is not novel), but many Type II errors (no-
velty not detected when the climate is novel; e.g., location 3 in Fig. 4a).
Analog similarity can be measured as a distance (0-Da) in linear clas-
sification and approximated in Random Forest using proximity ma-
trices, as described in Section 2.2.3 and Supplementary Note S5.

Ensemble agreement—the uniformity of class (e.g., BEC subzone)
predictions for different global climate model projections—is another
potential fingerprint of novelty detectable in Random Forest projections
(Fig. 4b). Where good analogs are available (location 1 in Fig. 4b),
variation in the climate change trajectories of different global climate
model projections willproduce variation in class predictions for any
given location. In the absence of good analogs (locations 2 and 3 in
Fig. 4b), the ensemble predictions are more likely to fall into a smaller
number of classes located at the edge of the study area climate en-
velope. This conceptual model suggests that ensemble agreement is
likely to be a more sensitive indicator of novelty than analog similarity
(lower type II errors), but a less precise one (higher Type I errors). In
particular, the precision of ensemble agreement as an indicator of no-
velty can be expected to be reduced by (1) variations in the volume of
classes within the climate space and (2) variations the position of his-
torical reference climates relative to the climatic boundary of each
class. There are several ways to measure ensemble agreement; in this
paper we use the proportion of models that predict the majority class, as
illustrated in Fig. 4.

2.2.2. Random Forest classification
We trained Random Forest models to classify BEC subzone-variants

from climate variables. Each model comprised 500 trees. To prevent
class imbalances, each tree was grown using an n= 50 bootstrap
sample of grid cells each BEC subzone-variant, a technique called “tree-
level downsampling.” Analyses on the ensemble mean projection were
performed on a 2-km grid, using BEC subzone-variants as the class
variable. To reduce computation time, CMIP5 ensemble analysis was
performed on a 4-km grid, using BEC subzones as the class variable.

2.2.3. BEC proximity matrix
The similarity between BEC subzone-variants within a Random

Forest model was calculated with Random Forest proximity matrices.
Random Forest proximity between two training observations is the
proportion of trees within the forest in which the two observations are
assigned to the same predicted class (same leaf node). For each RF
model calculated on the full grid, we calculated a proximity matrix for
an n=10,100 stratified subsample of the grid (50 grid cells for each of
the 202 BEC subzone-variants). The proximity between two BEC sub-
zone-variants is estimated as the average of their 50× 50 submatrix
within the proximity matrix. This calculation results in a 202×202
proximity matrix between BEC subzone-variants. RF subzone-variant
proximities are log10-scaled in this paper’s results.

Fig. 3. Illustration of the linear method for mea-
suring climatic novelty. The local interannual
climatic variability (blue dots) of a location of
interest is used to scale a Mahalanobis distance to
identify the closest end-of-20th-century analog
(grey dots) for the projected climate of the loca-
tion of interest (red dot). (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this ar-
ticle.)
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2.3. Climate data

2.3.1. Climate variables
The primary climate variables used in this study are six “seasonal

basic” variables: mean daily minimum and maximum temperature
(Tmin, Tmax) and log-transformed total precipitation (PPT) for winter
(Dec-Jan-Feb) and summer (Jun-Jul-Aug). These variables provide a
simple characterization of climate, consistent with our objectives for
the linear novelty analysis; they have been validated for novelty ana-
lysis (Mahony et al., 2017); they avoid the conflation of distinct sea-
sonal climate signals (e.g. as with mean annual temperature); they have
approximately linear responses to increasing mean temperature (unlike
e.g., number of frost-free-days); and they do not have highly non-
normal distributions of interannual climatic variability. Random Forest
models were trained on 5 nested variable sets of increasing di-
mensionality: the 6-variable “seasonal basic” set, the 44-variable set of
Wang et al. (2012), and also on intermediate nested sets of 3, 12, and 24
variables (Supplementary Note S6).

2.3.2. Observed and projected climate normals
Gridded climate normals for the 1971–2000 and 2041–2070 periods

were obtained using ClimateNA v5.10 (Wang et al., 2016). We ex-
tracted data grids from ClimateNA at 2 km resolution for British Co-
lumbia and 8 km resolution for North America in a North American
Equidistant Conic projection. Observed 1971–2000 climate normals are
interpolated from the PRISM climate surfaces for British Columbia
(Pacific Climate Impacts Consortium and PRISM Climate Group, 2014).
Projected 2041–2070 climate normals are the ensemble mean of the 15
CMIP5 projections (Taylor et al., 2012; Supplementary Table S2)
available in ClimateNA. The ensemble models were chosen to represent
the major clusters of CMIP5 GCMs identified by Knutti et al. (2013),
and further selected based on the validation statistics of their CMIP3
equivalents (Wang et al., 2016). The ensemble mean projection is cal-
culated from the mean monthly anomaly for each variable in all 15
models. We evaluate novelty for the RCP4.5 and RCP8.5 scenarios (van
Vuuren et al., 2011). The RCP4.5 scenario roughly corresponds to the
2.7 °C (2.1–3.2 °C) temperature rise consistent with the conditional In-
tended Nationally Determined Contributions of the Paris Agreement,
and the RCP8.5 scenario roughly corresponds to the 4.1 °C (3.1–4.8 °C)
warming consistent with an absence of emissions policies (Rogelj et al.,
2016).

2.3.3. Local interannual climatic variability
We estimated local interannual climatic variation using weather

station data from the CRU TS3.23 (Harris et al., 2014) source ob-
servations. Our use of point station data avoids variance reduction ar-
tefacts evident in gridded and interpolated time series (Director and
Bornn, 2015). Since the purpose of the CRU station time series in this
analysis is to estimate the covariance structure of local interannual
climatic variability, matching the normal period used for the analog
pool (1971–2000) is not strictly necessary. Maximizing the length and
reliability of the time series, however, is critical. For this reason, we
used a reference period of 1951–1990 due to higher risk of in-
homogeneities prior to 1951 and a sharp decline in precipitation station
density after 1990. Precipitation stations were assigned the temperature
time series of the nearest temperature station, and discarded if no
temperature station was available within 60 km. We discarded stations
with fewer than 20 years of complete records. This process selected 91
CRU TS3.23 stations within British Columbia. We calculated Mahala-
nobis distance (novelty) separately for each of the four stations nearest
to the location of interest, then averaged these values.

2.4. North American climate analogs

To identify North American analogs for the projected mid-21st-
century climates of British Columbia, we conducted both a “backward”

and a “forward” analysis (sensu Hamann et al., 2015). The backward
analysis trained Random Forest models on the projected 2041–2070
climate normals of pooled BEC units and North American ecoregions,
and used these models to classify the historical 1971–2000 normals of
North American raster grids. The forward analysis trained the model on
historical normals and made class predictions on the projected normals.
Tree-level downsampling was applied in all Random Forest models at
n=15 per class per tree. For the purpose of sensitivity analysis, we
created two alternative ecoregion classifications as class variables. The
coarse-ecoregion set is composed of the World Wildlife Fund terrestrial
ecoregions (Olson et al., 2001), totalling 145 ecoregions across the full
extent of North America outside British Columbia. The fine-ecoregion
set was compiled from US level IV ecoregions (Omernik, 1987) and
Canadian ecodistricts (Ecological Stratification Working Group
(ESWG), 1995), totaling 751 non-BC ecoregions in Western North
America (33°N-62°N; 102°W-140°W). Each ecoregion set was gridded at
8 km resolution and pooled with a 2 km grid of BEC subzones (interior
BC) and subzone-variants (coastal BC). Each of these two sets of
training classes was paired with the 6-variable and 44-variable pre-
dictor sets, for a total of 4 Random Forest models each for the forward
and backward analyses. Results of the 44-variable, coarse-ecoregion
analysis are presented in this paper, and all four model predictions are
presented as sensitivity analyses in the Supplementary Note S7.

3. Results

3.1. Distance between BEC units

Climatic distances between BEC units (Supplementary Fig. S1)
provide ecological context for interpreting novelty distances. Coastal
(maritime) and interior (continental) BEC units have distinct distribu-
tions of nearest-neighbour distances. Coastal units are further apart
from each other in climate space, on average, than interior units; a
difference that is increasingly evident at higher levels of the BEC
hierarchy (Fig. S1c). This difference may be due to inconsistency in the
application of the expert-based classification methodology between the
two regions. However, the potential for this difference to be caused by
lower vegetation sensitivity to climatic differences on the coast cannot
be ruled out a priori. Although the ecological significance of the distinct
distributions of coastal and interior regions is unclear, it nevertheless
suggests that the two regions should be treated separately when inter-
preting climatic novelty. We use the median distance between nearest
neighbour subzones as a threshold for novelty: Dmin > 2.7 in the coast
region and Dmin > 1.5 in the interior region.

3.2. Detection of novel climates with linear classification

The pattern of novelty of projected mid-21st-century climates of
British Columbia is consistent across emissions scenarios (Fig. 5a and
b). Under RCP4.5 (Fig. 5a), BEC subzone-scale novelty (Dmin > 1.5 in
the interior) is projected for the major valley-bottoms of the southern
interior, the Chilcotin Plateau, and northeastern BC. Under RCP8.5
(Fig. 5b), this spatial pattern of novelty intensifies to a level corre-
sponding to the emergence of novel interior-region BEC zones
(Dmin > 2.5). On the coast, subzone-level novelty (Dmin > 2.7) is
limited to the small pockets of the coast under RCP4.5, but expands
under RCP8.5 to large areas of the outer North Coast, Haida Gwaii,
southern Vancouver Island, and the Lower Mainland. Expanding the
analog search to all of North America substantially reduces novelty in
Northeast BC, the Chilcotin Plateau (Central BC), and Rocky Mountain
Trench (Southeast BC) (Fig. 5c and d). However, the pattern and
magnitude of novel climates on the coast and the southern interior is
essentially equivalent for the BC and North American analog pools. The
lack of North American analogs for these locations in the linear novelty
assessment indicates the potential for emergence of continental-scale
climatic novelty in British Columbia.
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Linear novelty is strongly associated with topographic position:
novel climates (Dmin > 1.5) predominantly occur at low elevations and
there are very few low-elevation locations (< 500m) with low novelty
(Dmin < 1) (Supplementary Note S8). As expected, climate analogs are
predominantly sourced from downhill and southward locations
(Supplementary Note S4). However, there are instances of uphill and

northward analog sources, indicating that that climatic shifts may not
follow intuitive geographic trajectories.

The spatial distribution of projected novelty within the current map
area of BEC zones is summarized in Fig. 6a and b. With the exception of
the BWBS and CDF, novelty does not align well spatially with BEC
zones: zones that contain some areas of high novelty—i.e., the ICH, PP,

Fig. 5. Novelty of projected climates of British Columbia in the 2041–2070 period. (a and c) RCP4.5 and (b and d) RCP8.5 CMIP5 ensemble mean projections. Analog pools are (a and b)
British Columbia and (c and d) North America. The color scheme is scaled to the median climatic differentiation between BEC subzones in the coastal (2.7) and interior (1.5) regions.
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SBPS, and BG zones—also contain areas of low novelty. The BEC sub-
zone-variant is a more effective level of the BEC hierarchy to capture
the spatial distribution of novelty (Fig. 6c–f): in the interior, some BEC
subzone-variants are occupied by novel climates on more than 75% of
their area, even in RCP4.5. On the coast, however, few variants have a
majority of their area as novel climates, even in RCP8.5.

3.3. Evaluation of indicators of novel climates using linear classification

Analog similarity and ensemble agreement are both moderately
correlated with climatic novelty (r= 0.59 and r= 0.57, respectively)
in the linear classification of the RCP4.5 ensemble mean projection
(Fig. 7). High analog similarity exclusively occurs at high novelty (i.e.,
there are no Type I errors), indicating that analog similarity is a precise
indicator of climatic novelty in the context of linear classification. In-
stances of simultaneously low analog similarity and high novelty (type
II errors) indicate that the sensitivity of this proxy is not as high as its
precision. Despite being correlated with novelty, ensemble agreement
exhibits both type I and II errors (Fig. 7b), suggesting that it is not as
precise a proxy of novelty as analog similarity. These results indicate
that analog similarity and ensemble agreement have some utility in
detection of model extrapolation in projections by machine learning
algorithms such as Random Forest.

3.4. Indicators of novelty in Random Forest BEC projections

Random Forest and linear classification produce similar BEC

projections based on the RCP4.5 “seasonal basic” variable set (Fig. 8a
and d) despite their large methodological differences. The prominent
trends of both of these projections, relative to the historical distribution
of BEC zones (Fig. 1), are: (1) the uphill expansion of the CWH and ICH
zones at the expense of the MH and wet belt ESSF, respectively; (2) the
expansion of the IDF and ICH into the central interior at the expense of
the SBPS, MS, and SBS zones; (3) the expansion of the ESSF and SBS
zones into the Northern interior at the expense of the SWB and alpine
(BAFA) zones; and (4) the expansion of the CWH zone into montane
elevations of the West Kootenays.

As expected due to their correlation (Fig. 7a), analog similarity of
the linear classification (Fig. 8b) reflects the patterns and magnitude of
climatic novelty measured directly (Fig. 5a), notably the Alberta Pla-
teau (BWBS zone), Okanagan valley, Georgia Basin, Chilcotin Plateau,
and the outer coast. These patterns are also evident in the analog si-
milarity of the Random Forest projection (Fig. 8e). More broadly, the
Coastal valleys and mountains and the valleys of the southern interior
exhibit low analog similarity in the Random Forest projection. The
coarse-scale patterns of RF analog similarity (Fig. 8e) and ensemble
agreement (Fig. 8f) are similar. However, there are some occurrences of
high ensemble agreement that are not matched in analog similarity,
notably the northern Cariboo region and central Rocky Mountain
Trench. These mismatches may indicate areas of genuinely high pro-
jection confidence (ecological equivalence between model projections),
as opposed to spurious ensemble agreement produced by novel condi-
tions. Examples of BEC subzone-variant similarities are presented in
Supplementary Note S5.

Fig. 6. Spatial distribution of linear climatic novelty (Dmin) in current BEC zones and subzone-variants. (a and b) Boxplots of the spatial distribution of climatic novelty within the current
BEC zone map units, using the 6-variable “seasonal basic” predictor set for the (a) RCP4.5 and (b) RCP8.5 ensemble mean projections. (c–f) BEC subzone-variants with the highest median
novelty over their spatial range on the (c and e) coast and (d and f) interior for (c and d) RCP4.5 and (e and f) RCP8.5. Boxplot whiskers indicate minima and maxima. Red horizontal lines
indicate the subzone-level novelty thresholds of Dmin=2.7 for the coast and Dmin=1.5 for the interior. BEC subzone-variant names are provided in Supplementary Table S3. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Progressively increasing the predictors available from the 6 “sea-
sonal basic” variables up to 44 variables produces similar but somewhat
more conservative Random Forest BEC projections (Fig. S6), notably
removing the small occurrences of questionable analogs such as IDF in
far northern BC and CWH (a coastal zone) in the interior wet belt.
Higher dimensionality produces subtle increases in analog similarity
(Fig. S7) and ensemble agreement (Fig. S8), with some pronounced
localized changes. Reducing the variable set to include only winter
Tmin, summer Tmax, and mean annual precipitation produces an in-
crease in questionable analogs (Fig. S6b) (e.g. extensive MS in the
Boreal mountains), as would be expected due to insufficient predictors
to differentiate distinct ecosystem climates. Analog similarity is some-
what higher in these 3-variable projections (Fig. S7b), but ensemble
agreement is substantially lower (Fig. S8b), reflecting a higher level of
analog availability in this low-dimensional climate space that is too
simple to differentiate many ecologically distinct climates.

3.5. North American climate analogs

The “backward” search for North American analogs trains a
Random Forest model on the projected climates within the mapped
distributions of pooled BEC subzones (within BC) and WWF ecoregions
(outside of BC). This model is then used to assign a class label (subzone
or ecoregion) to the historical climates of North America. The propor-
tion of classification trees in the Random Forest that voted for a BC
climate (Fig. 9a) is an approximate measure of analog similarity to the
future climates of British Columbia. Non-BC climate analogs are pre-
dominantly located in the Rocky Mountains as far south as Colorado
and on the southwestern coast of Alaska. Southern climate analogs on
the coast are limited to small areas of the Oregon Cascades and the
Sierra Nevada. With the exception of some low-similarity analogs in the
Great Lakes and Canadian Maritimes regions, climate analogs are
generally absent from central and eastern North America.

The class assigned to a grid cell in the “backward” analog search
indicates the current BEC unit of the location to which the historical
analog is matched (Fig. 9b). For example, the large pink area in central
British Columbia indicates analogs for the projected climates of the
current subzones of the Montane Spruce (MS) BEC zone, and the purple
areas in the Rocky Mountains of NW Montana indicate analogs for the
projected climates of the current Engelmann spruce – subalpine fir
(ESSF) subzones. This backward prediction produced analogs for the
future climates of current BG, ESSF, MS, SBPS and IDF subzones in
Washington, Oregon, Idaho, Montana, and Wyoming. There are rela-
tively few analogs for ICH and PP subzones either within or outside of
British Columbia. West-central Alberta contains large areas of analogs
for BWBS subzones and small pockets of analogs for SWB subzones.
Analogs for projected climates of CWH and CDF climates are limited to
coastal Washington.

This analog mapping is highly sensitive to variable availability and
ecoregion generalization. Reducing the variable availability from 44
variables to the six-variable “seasonal basic” set produces a large ex-
pansion of analogs in the Northwestern United States (Supplementary
Figs. S9a and S10a). The fine-scale ecoregionalization (replacing 145
ecoregions of North America with 751 ecoregions for western North
America) produces a large contraction of analogs (Supplementary Figs.
S9d and S10d).

The “forward” search for North American analogs trains a Random
Forest model on historical climates of pooled BEC subzones and WWF
ecoregions and assigns a class label to the projected climates of BC
(Fig. 10). The proportion of classification trees in the Random Forest
that voted for a non-BC climate is an approximate measure of climatic
novelty to BC. Non-BC votes are limited to the areas of novelty inferred
from the linear analysis. However, some areas of novelty inferred from
previous analyses are absent from the forward search of North Amer-
ican analogs. These absences, such as on the North Coast, suggest
projected climates without North American analogs. In contrast to the
backward analog search, the forward search is not sensitive to the
coarseness of the non-BC classes (Supplementary Fig. S11c and d).
However, the forward search is sensitive to variable availability: the 6-
variable predictor set produces an increase in non-BC Random Forest
votes relative to the 44-variable set, particularly in the Chilcotin and
Thompson Plateaus (Supplementary Fig. S11a). Similar to linear no-
velty, non-BC Random Forest votes are strongly associated with low
topographic positions (Supplementary Note S8).

4. Discussion

We have provided an assessment of the projected scale and pattern
of novel climate emergence in British Columbia by the middle of the
21st century. The analysis followed two emissions scenarios: one which
is consistent with the current national commitments to the Paris
Agreement (RCP4.5) and one corresponding to continued uncontrolled
increase in greenhouse gas emissions (RCP8.5). Our results suggest that

Fig. 7. Relationship between linear novelty (Dmin) measured with Mahalanobis distance
and two hypothesized indicators of novelty: (a) analog similarity and (b) ensemble
agreement. RCP4.5 ensemble mean projection of the “seasonal basic” variable set for
British Columbia grid cells. (a) Scatter plot of analog similarity shaded by grid point
density and contoured by 50th, 75th, and 95th percentiles. (b) Violin plots indicating the
novelty of grid points within each level of ensemble agreement, which is a discrete
variable because it is the number of models voting for the majority class divided by the
number of models in the ensemble. Conceptual models of novelty (Dmin), analog similarity
(0-Da), and ensemble agreement are illustrated in Fig. 4.
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a majority of the province’s area will remain free of BC-level novel
climates during the middle of this century, and therefore that the BEC
system will remain the dominant source of climate analogs for mid-
21st-century forest management planning horizons. Nevertheless, we
detected a robust pattern of novel climates in mid-21st-century climate
projections at low elevations in the Boreal Northeast interior (BWBS
zone), the Georgia basin (CDF zone), the Chilcotin Plateau, the North
Coast, and the major valley systems of the southern interior (BG, PP,
IDF and dry ICH zones). Our analysis suggests that forest management
in some of these novel climates can be informed by analogs from other
jurisdictions in North America. However, the novel climates of the
north coast do not have North American analogs in either the linear or
Random Forest classifications. Further, the linear and Random Forest
analyses disagree on whether there are North American analogs for the

projected climates of the south coast and southern interior regions. We
have demonstrated that projections of classification models into novel
climates can be expected to under-represent the magnitude of climate
change and overestimation of ensemble agreement. These characteristic
extrapolation errors create the false impression of robust predictions in
locations where model performance is poorest. The necessity to identify
novel climates applies to the structured forest management knowledge
systems of other jurisdictions—e.g., those of Yukon Territory
(Environment Yukon, 2013) and Quebec (Saucier et al., 2003)—and
also to the informal local knowledge base of individual land managers.
By identifying portions of their landscapes that are prone to emergence
of novel climates, forest managers can avoid misinterpretation of model
projections and prioritize the search for analogs beyond the jurisdic-
tional boundaries of their ecological knowledge systems.

Fig. 8. Analog similarity and ensemble agreement in BEC projections made using Mahalanobis nearest neighbour (a-c) and Random Forest (d–f) classification; RCP4.5 ensemble mean
projection for the 2041–2070 period, using the “seasonal basic” variable set. (a and d) BEC zone of best analog. (b and e) Climatic similarity between the best analog and the reference
period condition. (c and f) Proportion of a 15-model ensemble that voted for the majority subzone.
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4.1. Novel climate detection in Random Forest projections

We have used a linear classification framework to validate two
novelty indicators that are measurable in Random Forest pro-
jections—analog similarity and ensemble agreement. The similarities in
the spatial distributions of these novelty indicators in linear and
random forest classifications provide a robust indication of locations in
British Columbia that are susceptible to emergence of novel climates.
The novelty indicators also indicate the types of extrapolation errors
that are induced by climatic novelty: analog similarity and ensemble
agreement cannot be interpreted at face value in Random Forest pro-
jections. In the presence of substantial climate change, the absence of a
shift in projected bioclimatic zones at certain locations should be in-
terpreted as an artefact of novel climates, rather than as an indicator
that climate change is relatively benign in those locations. Similarly,
ensemble agreement cannot be assumed to indicate locations where the
confidence in the ensemble projection is higher. On the contrary, en-
semble agreement more likely indicates locations where lower con-
fidence in the ensemble projection is warranted due to errors of ex-
trapolation into novel climates. These artefacts of novel climates
highlight the importance of developing a reliable novelty metric for
random forest bioclimate classifications. Random Forest has proven to
be a valuable tool for climate analog identification because it performs
non-linear, localized variable selection and scaling appropriate to the

complex relationships between climate drivers and ecological re-
sponses. Linear classification methods, though highly amenable to
measurement of novelty, likely produce less reliable analogs because
the variables and their relative scalings are universal to all of the eco-
system climates being modelled and are not necessarily relevant to each
or any of them. Further development of machine learning novelty
metrics, such as the novelty indicators proposed here and the “dummy
class” approach demonstrated by Rehfeldt et al. (2012), will greatly
assist the use of climate analogs for forest management.

4.2. Forest management hazards

The ecological hazards associated with errors of extrapolation into
novel climates are likely to be diverse and case-specific. In some cases,
poor analogs will fail to represent the crossing of critical ecological
thresholds. For example, the presence of Southern-Alberta grassland-
climate analogs for the projected climates of the Northeastern BC boreal
forest region (Fig. 9b) suggests that a biome-level drought threshold
may be undetected in current BEC projections (Wang et al., 2012), for
which the analog pool is limited to British Columbia. However, novel
climates do not intrinsically represent a direct hazard for tree pro-
ductivity, as indicated by the successful introduction of Douglas-fir into
Europe, where climatic conditions are distinctly novel to the North
American native range of this species (Boiffin et al., 2017). Novel

Fig. 9. End-of-20th century analogs for the mid-21st-century climates of BC, as predicted by a Random Forest model trained on the 44-variable RCP4.5 ensemble mean 2041–70 climates
of BEC units (within BC) and WWF ecoregions (outside BC). (a) Random Forest proportional votes for climates projected to occur within BC. (b) Dominant BEC zone predicted by the RF
model, indicating the BEC zone that each climate analog represents.
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climatic conditions may in some cases represent a relaxation of en-
vironmental constraints. For example, the central- and north-coast re-
gions of BC are projected to become warmer and wetter overall, con-
ditions which appear to have no North American analogs. These
climatic conditions are unlikely to have any direct negative environ-
mental consequences on native tree species, and indeed may be con-
ducive to increased productivity in the absence of unforeseen biotic
constraints. Current species selection guidance is likely to remain ap-
propriate in these circumstances. These examples illustrate the im-
portance of case-specific analysis and expert judgement in designing
management strategies for identified novel climates.

4.3. Managing novel climates

Novelty to the British Columbia analog pool indicates projected
climates that are not described by BEC, and which therefore have no
associated forest management strategies that are formalized in pro-
vincial legislation (e.g. species selection guidelines) and local practice
(e.g. stand establishment and tending regimes). One remedy, which is
currently being implemented by the BC government, is to extend bio-
geoclimatic mapping into adjacent jurisdictions to access climate ana-
logs from which management strategies and observational data can be
drawn. The results of our North American climate analog assessment
(Figs. 9 and 10) suggest that North American climate analogs are
available for many of the projected novel climates of interior British

Columbia, particularly in Alberta, Washington, Oregon, Idaho, Mon-
tana and Wyoming. The very high sensitivity of Random Forest analog
identification to the bioclimate classification (Supplementary Figs.
S9–11) suggests that extension of the BEC classification and mapping
methodology into these jurisdictions is a prerequisite to accurate
identification of climate analogs.

Drawing analogs from adjacent jurisdictions, however, can only
partially ameliorate the problem of novel climates. For example, the
scarcity of southern analogs for the coastal climates of BC in Fig. 9 is
consistent with the prior expectation that the climate trajectory of
coastal BC, towards warmer but still wet conditions, may not follow the
observed north-to-south spatial climatic gradient of cool-wet to warm-
dry (Mahony et al., 2017). The linear novelty assessment (Fig. 5),
random forest novelty indicators (Fig. 8), and the North American
analog search (Fig. 10) consistently indicate that the north coast in
particular appears to be susceptible to the emergence of continental-
scale novel climates. In such cases, a global-scale analog search may be
informative, especially in locations where plantations of species native
to British Columbia have been established. For example, species choices
could be informed by the climates where Sitka spruce grows well in the
British Isles (Cameron, 2015) or where Douglas-fir is planted in Europe
(Isaac-Renton et al., 2014). However, management decisions in the
absence of climate analogs must inevitably rely on other approaches,
such as species-specific climatic suitability modeling (e.g. Leites et al.,
2012; Rehfeldt et al., 2014), not just of tree species but also of their
major pests, pathogens, and competitors. Indeed, disruption of patho-
systems is among the earliest and most severe climate change impacts
on forests and may be particularly difficult to predict in novel climates
(Woods, 2011). Experimental climate modification experiments (e.g.
Templer et al., 2017) can also be informative, especially at the re-
generation stage, and managers should consider prioritizing these ex-
periments in ecosystems that are more likely to transition into novel
climates. Novel climates intensify the uncertainties of forest manage-
ment under climate change. Strategies for dealing with these un-
certainties—including lowering risk exposure (e.g., reducing rotation
length), hedging (e.g., mixed-provenance regeneration), bolstering re-
sistance (e.g., retention of intact ecosystems), and adaptive manage-
ment (Spittlehouse and Stewart, 2003; Millar et al., 2007; Bolte et al.,
2009; Vilà-Cabrera et al., 2018)—are particularly necessary in locations
where novel climates are projected to emerge.

4.4. The limits to adaptation in unfamiliar climates

The accumulation of local ecosystem management regimes, and an
understanding of the range of conditions over which they could be
successfully applied, was one of the defining accomplishments of 20th-
century forest management. This structuring of ecological knowledge
into climatic and edaphic classes based on the concept of ecological
equivalence is exemplified by BEC, which provides a framework to
define limits to the spatial transferability of management regimes, ge-
netic resources, and natural resources legislation. Climate change un-
dermines a core underpinning of this knowledge base—that the future
will resemble the past on the timescales over which forests are man-
aged. Climate analogs can assist forest managers with redeploying their
hard-won knowledge across the changing climates of their land base,
and with sourcing non-local management strategies for the locally un-
familiar climates of the 21st century. However, a distinct problem of
managing ecosystems in a non-stationary climate is that predicted
ecosystem responses, and the applicability of knowledge derived from
climate analogs, cannot be verified except by waiting for events to
unfold (Rastetter, 1996), at which point the predictions are moot. In
addition, the future state of local climates is subject to many un-
certainties stemming from global climate models (Deser et al., 2012;
Knutti and Sedláček, 2012). These factors constrain the time horizon
over which forest managers can place confidence in guidance from
climate analogs.

Fig. 10. Locations in BC with non-BC North American analogs for their RCP4.5 ensemble
mean climate of the 2041–2070 period, as predicted by a Random Forest model trained
on the 1971–2000 climates of BEC units (within BC) and coarse ecoregions (outside BC).
The map is shaded by the proportion of classification trees in the Random Forest that
voted for non-BC ecoregions.
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The intensity of these constraints is determined by the magnitude
and pace of climate change. A greater magnitude of climate change
requires sourcing analogs from more distant biogeographical contexts,
which may have low ecological equivalency due to non-climatic factors
such as photoperiod and biotic interactions, and from beyond jur-
isdictional boundaries, which involves the formidable task of assim-
ilating new management regimes into the jurisdictional knowledge
system. Further, the magnitude of climate change increases the poten-
tial for climates with no analog and thus no observational knowledge
base. The RCP4.5 scenario represents a disruptive change in climate
that nevertheless stabilizes by the end of this century. This stabilization
implies that the shifting climatic zones will settle into place, and that
forest managers at the end of the 21st century may be able to reinitiate
the accumulation of locally-specific ecosystem knowledge. In contrast,
it is questionable whether forest managers and other applied ecologists
will be able to keep pace with the perpetually transitory and increas-
ingly novel climates projected under the RCP8.5 scenario (Williams and
Jackson, 2007). The limits to which the forestry knowledge base can be
brought to bear on the problem of climate change adaptation is a basis
for forest managers to advocate for global emissions reductions.
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