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A B S T R A C T

Some authors in the literature have addressed knowledge transfer via weak ties between organization’s units
which are themselves strongly tied inside (e.g. Hansen, 1999). Some others have investigated knowledge
management among open-source-software (OSS) developers and discussed factors influencing knowledge
transfer within development teams (e.g. Joshi and Sarker, 2006). In the domain of open source software (OSS)
communities, more companies are now attempting to establish relationships to benefit from these potential
value-creating communities; and project managers could in fact target different goals within software devel-
opment teams including knowledge transfer within and between teams. We step forward to distinguish
knowledge transfer within groups as opposed to knowledge transfer between groups; where relevant projects are
bundled into separate strongly intra-connected groups. In knowledge management literature there is a trade-off
between sparse network structures (Burt, 2000, 2002) versus dense network structures (Walker et al., 1997;
Coleman, 1988). It is argued that the former facilitates the diffusion and generation of ideas among groups, while
the latter affects the implementation of idea within each dense group. To our best knowledge, there has been no
study to investigate the relationship between dense and sparse network structures. We propose that knowledge
transfer within dense groups has a positive influence on knowledge transfer between sparse groups, in that intragroup
density, group size, developers centrality and betweenness could impact intergroup coupling. To prove our
hypothesis, we use a complex network of open source software (OSS) as the domain of interest, where developers
represent nodes and two developers contributing to a project task represent a network tie. Developers con-
tributing to tasks in groups other than their own can explore novel ideas via sharing knowledge, whereas de-
velopers contributing to tasks inside groups exploit ideas to improve those projects. We investigate the idea both
analytically and empirically within 4 months, 8 months and 1 year lagged time, and finally show that intragroup
density has a positive whereas developers’ centrality has a negative influence on intergroup coupling.

1. Introduction

Inside organizations, units can learn from each other and knowledge
transfer can provide new mutual opportunities for units as well as for
the whole organization. New ideas diffuse rapidly when they benefit
organizations adopting them, and they vanish, if otherwise
(Abrahamson, 1991). Huber (1991) suggested that organizational units
transfer knowledge and learn from other units, but not all units have
access and capacity to learn knowledge and apply it; they require ex-
ternal access and internal capacity. Internal capacity can be achieved by
R & D ability increase, while external access to new knowledge can be
improved by networking. In this regard, Hansen (1999) introduced

modelling an organization as a complex network with inter-unit links,
where knowledge transfer is investigated by analyzing inter-organiza-
tional network.

In regards to usage of social network analysis (SNA) in organiza-
tions, different authors focused on a wide range of network character-
istics from relational (e.g. tie strength) and nodal (e.g. functional
background) to positional (e.g. betweenness centrality) and structural
(e.g. density), e.g. impact of size of network on innovation (Baer, 2010),
relationship strength (Rost, 2011), or weak and strong tie (Nelson,
1989; Tsai, 2000, 2001). Baer, Evan, Oldham, and Boasso (2015) car-
ried out a meta-analysis of studies on innovation and social networks
and presented insights into the various trade-offs between strength of
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ties and bridging ties among other things. Tsai (2000) suggested that
social networks facilitate the creation of new knowledge within orga-
nizations. In another study, Tsai (2001) focused on the question “How
can an organizational unit gain useful knowledge from other units to
enhance its innovation and performance?”, and emphasized the role of
strong ties in intra-corporate and strategic alliances. Moreover, Ahuja
(2000) discussed firm’s network relationship impacting the rate of in-
novation, where network allows for knowledge sharing and information
flow. Others have studied the role of networks within the topic of
knowledge sharing and innovation adoption where importance was
given to the number of firm linkages and geographical proximity
(Florida, 1995; Van Oort & Atzema, 2004) impacting rate of adoption.

Apart from the discussion about knowledge management within and
between organizations and the discussion about social network analysis
in organizations on the topic of innovation, within topic of open source
software (OSS) development, researchers have used social network
theories to investigate the OSS phenomenon including communication
among developers. The positions and relationships among developers in
a social network are significant in the efficiency of the network
(Jackson, 2004) using different techniques and tools such as social
network analysis (SNA). Success of many OSS projects is closely related
with the communication structure (see Grewal, Lilien, &Mallapragada,
2006; Singh, Tan, & Youn, 2011). One distinguished feature of the OSS
development model is the cooperation and collaboration among the
members, which will cause various social networks to emerge (Grewal
et al., 2006). To some extent, the OSS community is a more networked
world than the traditional organizational communities; where pro-
grammers can join, participate, and leave a project at any time and
developers collaborate not only within the same project team but also
across teams. It has also been shown that the structure of an interproject
network affects knowledge sharing within and across open source
projects. Montazemi, Siam, and Esfahanipour (2008) demonstrated that
the market structure of embedded interpersonal ties enables partici-
pants to take advantage of information asymmetry for profit taking
Singh, 2011. Hinds and Lee, (2008) discussed costs and benefits of
community ties, and concluded that social network structure of open
source software has no important effect on community structure. On the
other hand, Antwerp and Madey (2010) investigated social network
structure of open source software, and used long term popularity as the
metric developer–developer tie and concluded that previous ties are
generally an indicator of past success and usually lead to future success.
Crowston, Annabi, and Howison (2003) also discussed social structure
of open source software development teams based on the analysis of
interactions represented in bug reports from 122 large and active pro-
jects, and found out that some projects are highly centralized, and
others are not.

As above-mentioned, several authors have previously discussed the
significance of positions and relationships among developers or so-
called community ties in the efficiency of OSS network. In addition,
knowledge management among open-source-software (OSS) has been
investigated (Joshi and Sarker, 2006), where they discussed factors
influencing knowledge transfer within development teams. Ojha (2005)

also discussed knowledge sharing between team members based on
similarity-attraction paradigm; where he proposed that knowledge
sharing more likely happen between same demographic team members.
However, developers collaborate not only within the same project
group but also across groups, therefore knowledge transfer should be
also investigated across groups within sparse network structure. In this
regard, there are conflicting explanations concerning the impact of
sparse and dense network structure for the purpose of innovation.
Walker et al. (1997) and Coleman (1988) stressed that dense network
structure impacts on implementation of idea within each group, and
argued that strong ties are required for exchange of complex knowl-
edge, whereas Burt (2000, 2002) emphasized that a sparse network
structure facilitates diffusion of ideas and argued that strong ties within
dense network are inefficient for acquiring external knowledge as they
do not promote diversity in resources. To our best knowledge, there has
been no study to investigate relationship between dense and sparse
network structures, i.e. impact of dense network on sparse network
structure in regards to knowledge transfer. In other words, intragroup
density, group size, developers’ centrality and betweenness within
dense groups could have a positive influence on intergroup coupling
between sparse groups. In the theoretical development section, we
discuss why we have chosen these independent variables in this causal
relationship.

In order to develop our hypotheses, we use a complex network of
open source software (OSS) as the domain of interest. In this network,
developers represent the nodes and two developers contributing to a
project task represent a network tie. Developers contributing to tasks in
groups other than their own can explore novel ideas for new project
creation, whereas developers contributing to project tasks inside their
own group exploit ideas to improve those existing projects with better
inside-group search possibility.

In the theoretical development section, we provide hypotheses and
discuss logical and analytical reasoning to prove our hypothesis; then in
the empirical section, we alternatively examine the relationship be-
tween intragroup density, group size, developers’ centrality and be-
tweenness with intergroup coupling, using 4 months, 8 months and
1 year lagged time (to examine robustness), via examining OSS data
collected from SourceForge repository.

2. Theory development

In the introduction section, we provided literature and motivation
for this paper; here we render the hypotheses and model design to give
logic and reasoning to prove the hypothesis.

2.1. Network group structure

As discussed by Burt (2000), groups are inter-connected via both
strong and weak ties, where weak ties are far more numerous. Groups
are also intra-connected via both strong and weak ties, where strong
ties are far more numerous, while intergroup coupling is used between
groups, as shown in Table 1. We use the word “coupling” between

Table 1
Terminology.

term definitions measure

Network tie two developer working on same project
task

frequency of developer contribution in project tasks

Network structure
Dense intragroup structure Densely intraconnected groups, where developers work on relevant project tasks
Sparse intergroup structure Sparsely interconnected groups, where developers work on irrelevant project tasks

Intragroup density Sum of intragroup ties over total possible ties within a group
Intergroup coupling Sum of intergroup ties (sum of intergroup project tasks)
OSS group group_projectid, including project relevant

members
Assigned by sourceforge administration for any new project; moreover new members/developers are added
by the group administrator based on relevancy and of course his or her interest
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groups, which refers to sum of network ties between network nodes,
where tie strength is in fact frequency of developer contribution to
project tasks. Intergroup ties are more efficient for acquiring external
knowledge, accessing the diversity in contribution in other groups, and
facilitating diffusion of new project ideas which leads to new project
initiation inside the group, and intragroup ties are more efficient for
quick transfer of information, which leads to group growth (Behfar,
Turkina, & Burger-Helmchen, 2017).

There are different methods in the literature to calculate intragroup
density; alternatively we compute intragroup density by the number of
project tasks in each group over total possible ties obtained by the
number of nodes represented by developers.

Groups could be connected by a member or more developing pro-
jects within different groups; in this case, number of common members
would be intergroup coupling. Alternatively here we assume that
groups are connected via project tasks by which members from dif-
ferent groups contribute to; in that, intergroup coupling would be
measured by number of project tasks connecting developers from the
different groups.

2.2. Model design

In OSS network, there are knowledge modules (OSS project), re-
levant projects are bundled into separate strongly intra-connected
groups; whereas irrelevant groups are weakly inter-connected. Ties
inside groups resulting from the fact that developers work on the same
or relevant project tasks create dense network structure; whereas de-
velopers working on other groups’ project tasks which are mostly ir-
relevant create sparse network structure.

Considering a research question which concerns knowledge transfer
within dense and sparse network structures, some authors have pre-
viously investigated both of them in details, and concluded a trade-off
between sparse network structures (Burt, 2000, 2002) versus dense
network structure (Walker et al., 1997; Coleman, 1988). It is argued
that the former facilitates diffusion and generation of ideas among
clusters within the network, while the latter impacts on implementation
of idea within each dense cluster. Kogut and Zander (1995) and Tsai
(2000) argued that a dense innovative cluster provides quick transfer of
information, knowledge sharing, more interactions, and better in-
tegration, better coordination. On the other hand, Burt (2000, 2002)
argued that strong ties are inefficient to acquire external knowledge as
they lack diversity in resources needed for innovation, and at the same
time increase communication costs as a result of redundancy of ties.
Therefore, weak ties (non-redundant, less-frequent) are more appro-
priate to communicate, which allow to access variety of knowledge.
Despite this trade-off, to our best knowledge, there has been no study to
investigate relationship between dense and sparse network structures
and whether knowledge transfer in dense network (inside groups) in-
fluences on knowledge transfer in sparse network (between groups). At
the same time, we propose that knowledge transfer within dense groups
has a positive influence on knowledge transfer between sparse groups.

Considering that knowledge transfer within dense groups could be
proxied by group density, group size, degree centrality and between-
ness inside groups; In another word, these measures represent knowl-
edge transfer within groups, we then explore their impact on intergroup
coupling which represent intergroup knowledge transfer.

We expect that bigger groups provide developers with more op-
portunities to contribute to, or increase intragroup density. A developer
or user in a larger group has easier access to the right information,
knowledge, and resources because there would be a greater number of
projects. Therefore it could affect knowledge transfer inside a group. On
the other hand, a larger pool of developers leading to a higher level of
participation could positively influence developer interaction leading to
higher intragroup density, see Fig. 1, however they could indirectly
impact intergroup coupling.

Intragroup density refers to the ties and relationships inside a group

over total possible number of ties between the developers. In general,
these ties represent knowledge transfer inside each group. We claim a
positive influence of intragroup density on intergroup coupling. This is
based on the fact that developers within a densely-connected group are
very likely to create subsequent intergroup connection. The reason for
subsequent intergroup connection could include awareness or common
neighborhood. Therefore, we propose (see Fig. 1) that

Hypothesis (H1). Intragroup density has a positive influence on
intergroup coupling.

Degree centrality for developers is the number of projects in which
the developers contribute to. For instance, Developer 1 only links to
Project A, and therefore has a degree centrality measure of 1. A high
developers’ degree centrality for a project implies that developers work
on a large number of project tasks simultaneously, resulting in a more
structurally diverse team. The variation in structural diversity is ob-
tained through accessing different resources of knowledge or informa-
tion. The source of knowledge for any given OSS projects can range
from developers within and outside the group. Therefore OSS team will
have different social networks outside the team; we therefore propose
(see Fig. 1) that

Hypothesis (H2). Degree centrality has a positive influence on
intergroup coupling.

Betweenness of a developer can be measured by the sum of the
probabilities that a developer lies on between pairs of others including
both developers and projects. Developers could function as a broker in
that they facilitate exchanges between those who are connected
through them. Researchers have discovered that people from distant
networks have access to distinct knowledge and information which
leads to novel knowledge and improve productivity (Granovetter,
1973). If developers’ closeness centrality shows developers ability to
access other developers’ projects through the minimum number of in-
termediaries, their betweenness implies their ability to control others
(Wang, 2007). Developers’ betweenness as a matter of fact could
function as a broker outside a group, and can supposedly increase in-
tergroup coupling. Therefore, we propose (see Fig. 1) that

Hypothesis (H3). Developers’ betweenness has a positive influence on
intergroup coupling.

After the description of network group structure, we present what
the complex network components node and tie are. In our network of
OSS project collaboration, each developer represents a node whereas
two developers contributing to the same project task represent a tie. We
use social network dynamics to explain and predict our phenomena of
interest. The theory components are: the unit of analysis is the group of
OSS developers, where the network is made of the node (developer or
user) linking with project tasks. Each developer can initiate new pro-
jects, but at the same time co-work on project tasks with other devel-
opers.

As will be discussed later in the data section, each project initiated
by a developer is given a group_projectid. In fact, it benefits developers
allowing them to search related projects faster as well as benefiting
other developers working on similar project tasks. In this way, devel-
opers within each group have quicker transfer of information and
contribute to the same project tasks. This helps improve those existing
projects, which attracts more developers to join the group, but of course

Inter-group coupling    
or knowledge transfer

Intra-group density
#users
per group

H1

Degree centrality

#projects 
per user

H2

Betweenness

H3

Fig. 1. Illustration of impact of intragroup density, centrality and betweenness on in-
tergroup coupling.
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this does not reject possibility of new project creation within the group.

2.3. Theoretical analysis

In information science, clusters or groups could be defined as sum of
developers working on related projects. We consider network of open
source software (OSS) developers as our domain of interest; where
knowledge groups (OSS communities) are distinguished based on re-
levancy. Links inside each group where projects are relevant represent
developers working on the same project tasks. However mechanisms of
link formation between two groups with irrelevant projects are dif-
ferent from the ones inside each group. In OSS project collaboration
network, link formation mechanisms are as follows:

2.3.1. Visibility/popularity
projects with higher visibility are found first, because search engine

gives more weightage of displaying results to those projects with higher
in-degree.

2.3.2. Common neighborhood/latent relevancy
projects which have reused similar third project are more visible to

the first project; because if project 1 reuses project 3, and project 2 also
reuses project 3, project 1 is able to see that project 2 also reuses project
3. This also holds, when different developers could potentially work on
the same project tasks.

2.3.3. Awareness
if a project of group 1 reuses a project of group 2, or a developer of a

project from group 1 contributes to a project from group 2, then other
developers working in similar projects are influenced or become aware
of this reuse, then subsequent links will be consequently formed.

In order to investigate how intragroup density influence on inter-
group coupling (or subsequent intergroup link formation), we use the
link cost/benefit method introduced by Jackson and Wolinsky (1996)
using utility function for each project based on benefit and cost of new
link formation, e.g. benefit of reuse ρE is time saving for rewriting, and
cost cE is time spending for searching the right OSS project, or in case of
social communication among individuals, there are values for direct
communications as well as indirect communications from their adjacent
individuals whose value depends on their distance; of course, commu-
nication is also costly, therefore on should compare its benefit against
its cost. We compare utility function of individual i when intergroup
link is formed to utility function of individual i without new link, where
utility function is defined in (1).

∑= −
∈

u ρ d cP
j n

j j Ej
i

Pi (1)

where, dj denotes degree of individual Pj
i and nPi denotes number of

individuals in groups. Link benefit is represented by
∈ρ ρ, (0,1)External Internal , where value of i connected to j is proportional to

their proximity, and cost of intergroup link formation is represented by

cE, and cI = 0 for connected groups. Figs. 2 and 3 feature the step by
step proof. Initially we compare the utility function between two si-
tuations, first there is no link existing between groups, and a link be-
tween groups 1 and 2 is targeted, as shown in Fig. 2a. Second there is a
link existing between groups 1 and 3, and between group 2 and 3, and a
link between groups 1 and 2 is expected.

To have the initial link formed between P1
1 from group 1 and P1

2 from
group 2, the utility function when having a link l P P( , )1

1
1
2 (without a

prior intergroup connection) should be less than link creation when
there is a prior connection (common neighborhood), as seen in Fig. 2b.
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1

1
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1
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1
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1
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1
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1
1

1
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− + − < − + + − + −

→ < +
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c ρ ρ

1 1P I E E P I E E E E E

E E E

2
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Eq. (3) is not always true; however having a common neighborhood
makes link formation cE < ρEbetween groups 1 and 2 more likely in
that < +c ρ ρE E E

2 is more beneficial (less costly) than
Therefore, having a common neighborhood makes link formation

between groups 1 and 2 more. Now we would like to see whether in-
tragroup density leads to subsequent intergroup link.

In order to have a subsequent link created between P2
1 and P1

2, the
utility function when having subsequent link l P P( , )2

1
1
2 shown in Fig. 3b,

should be greater than the one when just having initial link l P P( , )1
1

1
2

shown in Fig. 3a.

<u l P P u l P P l P P( ( , )) ( ( , ), ( , ))P P1
1

1
2

2
1

1
1

1
1

1
2

1
1

2
1 (4)

− + − < − + + − → <( ) ( )n ρ ρ c n ρ ρ ρ c ρ1 1 0P I E E P I E E E E
2 21 1 (5)

As given in (4) and (5), when initial link is formed between two
groups, subsequent link formation is always cost-wise beneficial to
form, shown by >ρ 0E

2 , while formation of initial link on the basis of
common collaboration is conditional on link benefit and cost, ρE > cE
without a common neighborhood, or + >ρ ρ cE E E

2 when having a
common neighborhood in (3). This is based on the condition that
groups are densely connected. This indicates that intragroup density
leads to subsequent intergroup link (growth in intergroup strength).

We discussed the positive influence of intragroup density on inter-
group coupling. This is based on the fact that developers within a group
are densely connected, then if any of those intra-connected developers
has also intergroup connection, then subsequent intergroup connection
is very likely to happen. The reason includes awareness or common
neighborhood, as previously discussed, which makes this link formation
costwise beneficial.

One can explore this further, and investigate the causal relationship
in more detail in that how dense a group should be? Is there a
threshold, upon that all intergroup connections are automatically
formed; and below that threshold, no extra intergroup connection is
formed. Jackson and Wolinsky (1996) discussed unique strongly effi-
cient network where for the case of a complete or fully connected
graph, ρ− ρ2 > c should hold true.

Fig. 2. Illustration of three groups in two cases of a) no intergroup
link, b) initial link between groups 1 and 3, and groups 2 and 3.
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However for a condition that all nodes of a network is directly
connected (a start encompassing everyone) but is not a complete graph,
then ρ − ρ2 < c < ρ+ ((N-2)/2) ρ2 should hold true. This is the
threshold which shows how dense a group should be, within which all
nodes are directly connected.

3. Empirical analysis

In the theoretical development section, we first outlined the litera-
ture gap and proposed our hypothesis about the positive influence of
intragroup density influence on intergroup coupling, and showed that
subsequent intergroup tie is always costwise beneficial when having
high intragroup density or fully connected groups. Here, we provide the
empirical analysis to validate the relation of intragroup density in in-
tergroup coupling. For this purpose, we use the complex network of
open source software (OSS) as the group of interest, and collect OSS
project collaboration data, as below.

3.1. Data collection

We collected the data from the website of SourceForge.net, which is
the largest repository of OSS projects. At the time it contained more
than 150,000 projects and more than 1,600,000 project developers (as
indicated by Crowston, et al., 2003). SourceForge.net website has ca-
tegorized open source software (OSS) into several categories such as
Audio and Video, Business and Enterprise, Communications, Develop-
ment, Home and Education, Games, Graphics, Science and Engineering,
Security and Utilities, System Administration.

SourceForge website gives group_projectid as an identifier for each
project. In fact, sourceforge administration assigns id for a new project;
moreover new members/developers are added by the group adminis-
trator based on relevancy and of course his or her interest. We down-
loaded the data (group_projectid, project_taskid, projectid and userid) for
10,000 users for Sep 2013 and Jan 2014, May 2014 and Sep 2014 from
SourceForge repository based on multidimensional table shown in
Fig. 4. There is no OSS data collected by the University of NotreDame
after Sep 2014.

Projectid represents just name and id of its initiator, whereas project
task shows the number of developers contributing to the particular task.
We use taskid to find out number of developers contributing to the same
task. As already stated, downloaded data include 10,000 users,

1. They are in random, because those users belong to random projects
or group.

2. Any additional group user is added to the group by the adminis-
trator.

3. Each user selects what project to initiate, or decide which project
task to contribute to.

According to all explanations, different users intra and inter groups
are connected by project tasks and are assigned group_projectid by

SourceForge Administration.

3.2. Measures

In the complex network of open source software (OSS), a group
(team of developers) is represented by group_projectid associated with
each project. As previously mentioned, intragroup tie represents de-
velopers working on common tasks within a group, and intergroup
coupling represents developers contributing to common tasks between
two groups (measured by number of intergroup ties); whereas in-
tragroup density is measured by number of intragroup ties over total
number of developers, and represent developers contributing to
common tasks within a single group. However there are other variables
which influence on the output, as we explained in the model design
section how group size, degree centrality and developer betweenness
could affect intergroup coupling.

In order to show the relationship between intergroup coupling and
intragroup density and other explanatory variables, we use regression
modelling below, as parameterized in Table 2.

= + + + + + +Y X X X X X ε1 a a 1 a 2 a 3 a 4 a 5 t0 1 2 3 4 5 (6)

where −S task user εinter groups( | )t id id represents sum of intergroup ties
at time t; whereas −−S task user εintra group( | )t id id1 represents sum of
intragroup ties at tie t-1. Betweenness and degree centrality are already
defined. In addition, −S project user( | )t id id1 represents number of projects
associated with a user at time t-1, and S user group( | )t id id represents sum
of developers within a group at time t-1.

The influence of group structure on intergroup coupling may de-
pend on group size in addition to group tie density. As previously
stated, we conjecture that more projects associated with a user and
more developers within a group could indirectly affect the probability
of having more intergroup ties; however our hypothesis and theoretical
analysis is based on direct impact of intragroup density, centrality and
betweenness on intergroup coupling. A high developers’ degree cen-
trality for a project implies that developers of different projects work on
a large number of projects simultaneously, resulting in a more struc-
turally diverse team; this could facilitate exchanges between those who
are connected could also affect intergroup coupling. In addition, in-
tragroup tie density is measured by sum of intragroup ties over total
possible ties within a group.

= −− −totalpossibleties S user group S user group( | )·( ( | ) 1)/2t id id t id id1 1

(7)

Finally, we have to control for the group size, user group( | )id id , in
addition to number of projects associated with a user,

−S projects u er( | s )t id id1 , which could also affect the dependent variable.

3.3. Empirical results

We show the results obtained by applying the regression model on
the OSS data for Sep 2013, Jan 2014, May 2014 and Sep 2014. In the

Fig. 3. Illustration of three groups in two cases of a) no initial inter-
group link between groups 1 and 2, b) initial and subsequent inter-
group link between groups 1 and 2.
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regression model, we use lagged explanatory variables first because,
there is possible existence of simultaneity between dependent and in-
dependent variables. The simultaneity problem stems from possible
confusion in the direction of causality between dependent and in-
dependent variables. For example, network structures may influence
project performance but meanwhile performance are likely to influence
network structures.

Second, the specification of lagged structural variables is also based

on rationality that the impacts of group structure on intergroup cou-
pling require a certain time lag before they take place. But what is this
amount of time? If time t is set to Sep 2014, then time t-1 is 1 month
before, 1 year before or 4 months before. As we have checked the data,
there is very little change happing during 1 month in independent and
dependent variables; however this change is noticeable within 4
months. We then did the analysis for 8 months and 1 year lagged time
to examine its robustness.

As shown in Table 3, time lag: 05/2014–09/2014, intragroup den-
sity has positive and significant influence on intergroup coupling
(a1 = 0.107, and p-value = 0.007) within 4 months lagged time;
therefore, the hypothesis is supported. Moreover, betweenness has in-
significant influence on intergroup coupling (a2 = 0.237, and p-
value = 0.055); degree centrality has significant but negative influence
on intergroup coupling (a3 =−0.471, and p-value = 0.010), in-
dicating that users with high degree centrality do not participate in
intergroup projects, rather collaborate more with other developers for
projects within a group. Number of users has significant influence on
the dependent variable (a4 = 0.990, and p-value = 0.113). In addition,

Fig. 4. illustration of relationship between different tables in sourceforge including groups, project_task, project_group_list. This picture is adopted from http://srda.cse.nd.edu/
mediawiki/index.php/ER_diagrams.

Table 2
List of variables.

Variable Names Measures Notations

Dependent
variables

−S task user εinter groups( | )t id id

Y1

Independent
variables

−−S task user εintra groups( | )t id id1

X1

−S betweenness( )t 1

X2

−S degreecentrality( )t 1

X3

−S user group( | )t id id1

X4

−S projects user( | )t id id1

X5

Table 3
Calculation of coefficients 05/2014–09/2014.

Intergroup tie Coef. Std Error t Stat P-value Lower 95% Upper 95%

Intercept 5.409 17.840 0.303 0.762 −29.564 40.383
intragroup 0.107 0.040 2.695 0.007 0.029 0.185
betweenness 0.237 0.052 4.555 0.055 0.135 0.339
centrality −0.471 0.182 −2.583 0.010 −0.829 −0.114
#users 0.990 0.399 2.481 0.013 0.208 1.772
#projects −3.201 17.821 −0.180 0.857 −38.136 31.734
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number of projects associated with userid has insignificant influence on
intergroup coupling (a5 = −3.201, and p-value = 0.857).

This implies that more projects do not have any influence on in-
tergroup coupling.

As shown in Table 4, for lagged time of 01/2014–09/2014, again
intragroup density has positive and significant influence on intergroup
coupling (a1 = 0.186, and p-value = 0.000) within 8 months lagged
time; therefore, the hypothesis is supported. Similar to the case with 4
months lagged time, betweenness has insignificant influence on inter-
group coupling (a2 = 0.190, and p-value = 0.083); however degree
centrality has significant but negative influence on intergroup coupling
(a3 = −0.298, and p-value = 0.011), indicating that users with high
degree centrality do not participate in extra (inter) group projects.
Again, number of users has significant influence on the dependent
variable (a4 = 0.938, and p-value = 0.018), finally number of projects
associated with userid has insignificant influence on intergroup cou-
pling (a5 = 9.708, and p-value = 0.587).

As shown in Table 5, for lagged time of 09/2013–09/2014, similar
to both lagged time of 4 months and 8 months, the positive influence of
intragroup density on intergroup coupling is supported with a close
value coefficient (a1 = 0.111, and p-value = 0.005). Degree centrality
has negative influence on the dependent variable, whereas number of
users has positive influence on the dependent variable. Based on the
results within the three tables provided, there is no big difference in the
outcome based on the three lagged times of 4 months, 8 months and
1 year, however in the 1 year lagged time, the influence of betweenness
on intergroup coupling becomes significant (a1 = 0.132, and p-
value = 0.011), which we doubt its precision, and therefore we pro-
pose 8 months lagged time as appropriate.

As discussed in the model design section, we expect that the higher
the density inside a group is, the more probable it is that intergroup
coupling grows.

A summary of the results is that, when users in a group have a lot of
intragroup tasks to contribute to, given constant number of users (i.e.
intragroup tie density is high), the users would be more likely to con-
tribute to tasks in other groups. In other words, tie density or knowl-
edge transfer within dense groups positively influence on intergroup
coupling or knowledge transfer between sparse groups.

In the case of scarcity of resources, e.g. if number of users increases,
given same number of tasks to contribute to, the group tie density de-
creases. This will negatively influence on intergroup coupling, i.e. users
would less likely contribute to tasks in other groups.

Some variables such as intragroup density have direct impact on the

output, intergroup coupling or knowledge transfer, whereas some
others such as group size might have indirect influence on the output.
As shown in Fig. 1, the number of developers within a group
user group( | )id id directly influence on intragroup density, in addition it
could influence on intergroup coupling. This result corresponds to the
outcome of a statistical paper by Behfar and Behfar (2016), which
statistically discusses impact of intragroup tie on intergroup tie
strength.

These results have also implications for project managers in open
source environment, such as IBM and Sun Microsystems actively
working in open source projects with decision to sponsor project tasks
for the purpose of more knowledge transfer between groups, i.e. in
order to achieve more knowledge transfer between groups, the project
manager needs to target number of developers within each group.
Moreover, more degree centrality of developers has negative influence
on intergroup coupling or knowledge transfer between groups. In ad-
dition, the number of developers contributing to particular project tasks
implies how popular each project task is; therefore attracting more
number of developers contributing to particular tasks which indicates
more intragroup coupling, leads to more knowledge transfer between
groups.

4. Conclusion

Knowledge management among open-source-software (OSS) teams
has been noticed in the literature e.g. Joshi and Sarker (2006) discussed
factors influencing knowledge transfer within development teams. Ojha
(2005) also discussed knowledge sharing between team members based
on similarity-attraction paradigm. In this study, we attempted to dis-
tinguish between the factors affecting knowledge transfer within groups
as opposed to between groups. To our best knowledge, there has been
no study to investigate the relationship between dense and sparse
network structures and whether knowledge transfer in dense network
(inside groups) has an influence on knowledge transfer in sparse net-
work (between groups). This study demonstrates that knowledge
transfer within groups could influence knowledge transfer between
groups.

In order to investigate how intragroup density affects intergroup
coupling, we used the link cost/benefit method introduced by Jackson
and Wolinsky (1996) using utility function for each project based on
benefit and cost of new link formation. We showed that when initial
link is formed between two groups, subsequent link formation is always
cost-wise beneficial to be formed, when there is a higher intragroup
density. One can explore this more, and investigate the causal re-
lationship in more detail in that how dense a group should be? Is there a
threshold, upon that all intergroup connections are automatically
formed; and below that threshold, no extra intergroup connection is
formed. Jackson and Wolinsky (1996) discussed unique strongly effi-
cient network where for the case of a complete or fully connected
graph, ρ− ρ2 > c should hold true, however for a condition that all
nodes of a network is directly connected (a start encompassing ev-
eryone) but is not a complete graph, then ρ− ρ2 < c< ρ + ((N-2)/
2)ρ2 should hold true. This is the threshold which shows how dense a
group should be, within which all nodes are directly connected.

Another important contribution of our paper is an empirical analysis
validating the relationship between intragroup density and intergroup
coupling. For this purpose, we used the complex network of open
source software (OSS) as the domain of interest, and collected OSS
project data from SourceForge.Net. We showed the results obtained by
applying the regression model on the OSS data for Sep 2013, Jan 2014,
May 2014 and Sep 2014. In the regression model, we used lagged ex-
planatory variables because of possible existence of simultaneity be-
tween dependent and independent as well as rationality that the im-
pacts of group structure on intergroup coupling require a certain time
lag before they take place. The results of the regression model showed
that intragroup density has a positive and significant influence on

Table 4
Calculation of coefficients 01/2014 − 09/2014.

Intergroup tie Coef. Std Error t Stat P-value Lower 95% Upper
95.0%

Intercept −7.059 17.912 −0.394 0.694 −42.175 28.056
intragroup 0.186 0.040 4.671 0.000 0.108 0.264
betweenness 0.190 0.052 1.734 0.083 −0.012 0.192
centrality −0.298 0.182 −1.638 0.011 −0.654 0.059
#users 0.938 0.398 2.359 0.018 0.159 1.717
#projects 9.708 17.890 0.543 0.587 −25.363 44.780

Table 5
Calculation of coefficients 09/2013 − 09/2014.

Intergroup tie Coef. Std Error t Stat P-value Lower 95% Upper 95%

Intercept −3.168 12.628 −0.251 0.802 −27.924 21.588
intragroup 0.111 0.040 2.787 0.005 0.033 0.188
betweenness 0.132 0.052 2.549 0.011 0.031 0.234
centrality −0.242 0.182 −1.331 0.020 −0.598 0.114
#users 1.707 0.397 4.294 0.000 0.928 2.486
#projects 4.588 12.599 0.364 0.716 −20.110 29.286
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intergroup coupling; therefore, the hypothesis is supported. Moreover,
betweenness has insignificant influence on intergroup coupling; and
degree centrality has a significant but negative influence on intergroup,
indicating that users with high degree centrality do not participate in
intergroup projects, rather collaborate more with other developers for
projects within a group. Moreover, number of users has a significant
influence on the dependent variable, wheras number of projects asso-
ciated with each group has insignificant influence on intergroup cou-
pling. Our results demonstrate that when users in a group have a lot of
in-group tasks to contribute to, given number of users constant, i.e.
intragroup tie density is high, the users would be, relatively speaking,
more likely to contribute to tasks in other groups. In other words, tie
density or knowledge transfer within dense groups positively influence
on intergroup coupling or knowledge transfer between sparse groups.

Acknowledgements

We collected data from SourceForge.net, which is the largest re-
pository of OSS projects. We appreciate access to this repository given
by prof. Greg Madey at the department of Computer
Science & Engineering, University of Notre Dame.

References

Abrahamson, E. (1991). Managerial fads and fashions – The diffusion and rejection of
innovations. The Academy of Management Review, 16(3), 586–612.

Ahuja, G. (2000). Collaboration networks, structural holes, and innovation: A long-
itudinal study. Administrative Science Quarterly, 45, 425–455.

Antwerp, M. V., & Madey, G. (2010). The importance of social network structure in the
open source software developer community. Proceeding of the 43rd Hawaii
International conference on system sciences.

Baer, M., Evan, K., Oldham, G. R., & Boasso, A. (2015). The social network side of in-
dividual innovation. A meta-analysis and path-analytic integration. Organizational
Psychology Review, 5, 3191–3223.

Baer, M. (2010). The strength-of-weak-ties perspective on creativity: A comprehensive
examination and extension. Journal of Applied Psychology, 95(3), 592–601.

Behfar, S. K., & Behfar, Q. (2016). Intragroup density predicting intergroup tie strength
within open-source-software collaboration network. Advances in Intelligent Systems
and Computing, 165–173.

Behfar, S. K., Turkina, E., & Burger-Helmchen, T. (2017). Network tie structure causing
OSS group innovation and growth. Journal of Problems and Perspectives in
Management, 15(1), 7–18.

Burt, R. S. (2000). The network structure of social capital. In I. Robert Sutton, & B. M.
Staw Greenwich (Eds.). Research in organizational behavior (pp. 345–423). Conn: JAI
Press.

Burt, R. S. (2002). The social capital of structural holes. In F. Mauro Guillén, R. Collins, P.
England, & M. Meyer (Eds.). The new economic sociology (pp. 148–192). New York:
Russell Sage Foundation.

Coleman, J. S. (1988). Social capital in the creation of human capital. The American

Journal of Sociology, Vol. 94, S95–S120 Supplement: Organizations and Institutions:
Sociological and Economic Approaches to the Analysis of Social Structure.

Crowston, K., Annabi, H., & Howison, J. (2003). Defining open source software project
success paper presented at the international conference on information systems (ICIS),
1–14.

Florida, R. (1995). Towards the learning regions. Futures, 27, 527–536.
Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78,

1360–1380.
Grewal, R., Lilien, G. L., & Mallapragada, G. (2006). Location, location, location: How

network embeddedness affects project success in open source systems. Management
Science, 52(7), 1043–1056.

Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing
knowledge across organization units. Administrative Science Quarterly, 44, 82–111.

Hinds, D., & Lee, R. M. (2008). Social network structure as a critical success condition for
virtual communities. HICSS’08: Proceeding of int. conf on system sciences p. 323.

Huber, G. P. (1991). Organizational learning: The contributing processes and the litera-
tures. Organization Science, 2, 88–115.

Jackson, M. O., & Wolinsky, A. (1996). A strategic model of social and economic net-
works. Journal of Economic Theory, 71, 44–74.

Jackson, M. O. (2004). A survey of models of network formation: Stability and efficiency.
In G. Demange, & M. Wooders (Eds.). Group formation in economics: Networks, clubs
and coalitions. (pp. 1–62). Cambridge: Cambridge University Press.

Joshi, K. D., & Sarker, S. (2006). Knowledge transfer within information system devel-
opment teams: Examining the role of knowledge source attributes. Decision Support
Systems, 43(2), 322–335.

Kogut, B., & Zander, U. (1995). Knowledge and the speed of the transfer and imitation of
organizational capabilities: An empirical test. Organization Science, 6(1), 76–92
Focused Issue: European Perspective on Organization Theory.

Montazemi, A. R., Siam, J. J., & Esfahanipour (2008). A. Effect of network relations on the
adoption of electronic trading systems. Journal of Management Information Systems,
25, 233–266.

Nelson, R. E. (1989). The strength of strong ties: Social networks and intergroup conflict
in organizations. Academy of Management Journal, 32(2), 377–401.

Ojha, A. K. (2005). Impact of team demography on knowledge sharing in software project
teams. South Asian Journal of Management, 12(3), 67–78.

Rost, K. (2011). The strength of strong ties in the creation of innovation. Research Policy,
40, 588–604.

Singh, P. V. (2011). The small world effect: The influence of macro level properties of
developer collaboration networks on open source project success. ACM Transactions
on Software Engineering and Methodology, 20(2).

Singh, P. V., Tan, Y., & Youn, N. (2011). A hidden Markov model of developer learning
dynamics in open source software projects. Information Systems Research, 22(4),
790–807.

Tsai, W. (2000). Social capital, strategic relatedness and the formation of intraorganiza-
tional linkages. Strategic Management Journal, 21(9), 925–939.

Tsai, W. (2001). Knowledge transfer in intra-organizational networks: Effects of network
position and absorptive capacity on business unit innovation and performance.
Academy of Management Journal, 44(5), 996–1004.

Van Oort, F. G., & Atzema, O. A. L. C. (2004). On the conceptualization of agglomeration
economies: The case of new firm formation in the Dutch ICT sector. The Annals of
Regional Science, 38(2), 263–290.

Walker, G., Kogut, B., & Shan, W. J. (1997). Social capital, structural holes and the for-
mation of an industry network. Organization Science, 8(2), 109–125.

Wang, J. (2007). The role of social networks in the success of open-Source-Software systems: A
theoretical framework and an empirical investigation. PhD Thesis at Kent State
University Graduate School of Management.

S.K. Behfar et al. International Journal of Information Management 38 (2018) 167–174

174

http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0005
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0005
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0010
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0010
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0015
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0015
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0015
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0020
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0020
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0020
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0025
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0025
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0030
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0030
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0030
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0035
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0035
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0035
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0040
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0040
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0040
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0045
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0045
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0045
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0050
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0050
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0050
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0055
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0055
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0055
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0060
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0065
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0065
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0070
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0070
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0070
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0075
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0075
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0080
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0080
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0085
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0085
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0090
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0090
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0095
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0095
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0095
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0100
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0100
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0100
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0105
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0105
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0105
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0110
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0110
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0110
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0115
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0115
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0120
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0120
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0125
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0125
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0130
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0130
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0130
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0135
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0135
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0135
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0140
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0140
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0145
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0145
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0145
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0150
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0150
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0150
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0155
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0155
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0160
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0160
http://refhub.elsevier.com/S0268-4012(17)30607-2/sbref0160

	Knowledge management in OSS communities: Relationship between dense and sparse network structures
	Introduction
	Theory development
	Network group structure
	Model design
	Theoretical analysis
	Visibility/popularity
	Common neighborhood/latent relevancy
	Awareness


	Empirical analysis
	Data collection
	Measures
	Empirical results

	Conclusion
	Acknowledgements
	References




