
Future Generation Computer Systems 67 (2017) 194–205
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Performance analysis and optimization for workflow authorization
Cheng Chang a, Ligang He b,a,∗, Nadeem Chaudhary b, Songling Fu c, Hao Chen a,
Jianhua Sun a, Kenli Li a, Zhangjie Fu d, Ming-Liang Xu e

a School of Information Science and Engineering, Hunan University, Changsha, 410082, China
b Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom
c College of Polytechnic, Hunan Normal University, Changsha, China
d School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
e Center for Interdisciplinary Information Science Research, Zhengzhou University, Zhengzhou, China

h i g h l i g h t s

• Propose the methods to investigate the performance impact of authorization constraints.
• Propose the optimal authorization methods to minimize the delay caused by authorization constraints.
• Propose a probability-based authorization method to handle stochastic workflows.

a r t i c l e i n f o

Article history:
Received 5 December 2015
Received in revised form
30 June 2016
Accepted 19 September 2016
Available online 23 September 2016

Keywords:
Workflow
Task execution
Authorization
Performance analysis

a b s t r a c t

Many workflow management systems have been developed to enhance the performance of workflow
executions. The authorization policies deployed in the system may restrict the task executions. The
common authorization constraints include role constraints, Separation of Duty (SoD), Binding of Duty
(BoD) and temporal constraints. This paper presents the methods to check the feasibility of these
constraints, and also determines the time durations when the temporal constraints will not impose
negative impact on performance. Further, this paper presents an optimal authorization method, which
is optimal in the sense that it can minimize a workflow’s delay caused by the temporal constraints.
The authorization analysis methods are also extended to analyze the stochastic workflows, in which the
tasks’ execution times are not known exactly, but follow certain probability distributions. Simulation
experiments have been conducted to verify the effectiveness of the proposed authorization methods.
The experimental results show that comparing with the intuitive authorization method, the optimal
authorization method can reduce the delay caused by the authorization constraints and consequently
reduce the workflows’ response time.

© 2016 Published by Elsevier B.V.
1. Introduction

Business processes or workflows are often used to model
enterprise applications [1–4]. A workflow consists of multiple
activities or tasks with precedence constraints. When we design
workflow management/scheduling strategies, or evaluate the
performance of workflow execution on target resources, it is
often assumed that when a task is allocated to a resource, the
resource will accept the task and start the execution once the

∗ Corresponding author at: Department of Computer Science, University of
Warwick, Coventry, CV4 7AL, United Kingdom.

E-mail address: liganghe@dcs.warwick.ac.uk (L. He).

http://dx.doi.org/10.1016/j.future.2016.09.011
0167-739X/© 2016 Published by Elsevier B.V.
processor becomes available. In reality, however, authorization
policies may be deployed in the organizations and used to specify
who is allowed to perform which tasks at what time. When these
authorization schemes are taken into account, the situation can
become complex.

A number of authorization schemes have been presented in
[5–7]. The RBAC (Role Based Access Control) scheme is one of most
popular authorization schemes. Under the RBAC scheme, users are
assigned to certain roles while the roles are associated with pre-
scribed permissions. Therefore, the organizations can control the
users permissions through these roles. The following example in
banking illustrates the effect of the RBAC scheme on the workflow
execution [8]. A bank often uses a variety of computing applica-
tions to support its business; these applications may be deployed

http://dx.doi.org/10.1016/j.future.2016.09.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.09.011&domain=pdf
mailto:liganghe@dcs.warwick.ac.uk
http://dx.doi.org/10.1016/j.future.2016.09.011


C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205 195
in a central resource pool (e.g., a cluster) of the bank. A workflow
may consist of tasks such as credit data checks, automated signa-
ture approval, risk analysis and so on. In each task, a particular ap-
plication has to be launched to perform the corresponding busi-
ness functions. Under RBAC, an application may only be launched
by certain users (i.e., the employees in the bank) assuming certain
roles (i.e., job positions, such as branch manager or financial ad-
visor). The following authorization constraints are often encoun-
tered in such scenarios: (1) Role constraints: A task may only be
performed by a particular role; (2) Temporal constraints: A role or
a user is only activated during certain time intervals (e.g., a staff
member only works in certain hours of a day); (3) Separation of
Duty constraints: If Task A is run by a role (or a user), then Task
B must not be run by the same role (or user); (4) Binding of Duty
constraints: If Task A is run by a role (or user), then Task B must
be run by the same role (or user). Since a valid and activated role
has to be assigned to a task before the task can start execution,
these authorization constraints may delay the start of a task in a
workflow, and consequently have negative impact on application
performance (e.g. mean response time of workflows). Similar au-
thorization constraints and situation also exist in other application
domains such as healthcare systems [9], the manufacturing com-
munity [10,11], and other business processes [12,13].

The focus of this paper is to investigate the performance impact
of the authorization constraints and the authorization method
(i.e., theway of selecting the roles to assign to the tasks). This paper
starts with investigating the issue of checking the feasibility of
the authorization constraints designed for workload management
systems. More specifically, this paper (1) checks whether all
tasks in a workflow can be authorized so that the authorization
constraints deployed in the system can be satisfied, (2) determines
such time durations in which the temporal constraints will not
have negative impact on the performance of workflow executions.
Then, the methods are developed to quantitatively determine (1)
the time duration for the arrivals of the workflows within which
the authorization constraints will not have negative impact on
the execution performance of the workflows, and (2) the delay
caused by the authorization constraints, if a workflow arrives
beyond the above duration. Based on the above analyses, this
paper further proposes an optimal authorization method under
which the delay caused by the authorization constraints can be
minimized. The methods of analyzing the authorization behavior
are then extended to handle stochastic workflows, in which the
tasks’ execution times are not exactly known, but follow certain
probability distributions.

Based on the discussions above, it is worth noting the
relation between workflow scheduling and authorization method.
Workflow scheduling typically refers to deciding the execution
order and the resource allocation of workflow tasks, namely,
in which order the workflow tasks should be run and which
computer node should be allocated to run a particular task.
Authorizationmethod refers to decidingwhich authorization roles
should be assumed to run individual workflow tasks. From the
processing order, the authorization method is enacted before
workflow scheduling. However, if authorization method and
workflow scheduling are treated separately, the authorization
method may have negative impact on the workflow performance.
This is because after the authorization method decides to run a
task under a particular role, it is possible that the role is not
activated when the task itself is ready to run from the scheduling
point of view, namely when the task is at the head of the queue
and the allocated computer node becomes available. Consequently,
the task has to wait for the assigned role to be activated and its
performance is then jeopardized. So a better strategy is that when
the authorization method makes the authorization decisions, it
takes the scheduling process into account and tries to mitigate
the above situation. In order to achieve this, it is necessary to
investigate the possible negative impact that the authorization
constraints and the authorization method may impose on the
workflowexecution. This is themotivation and essence of thework
presented in this paper.

The rest of this paper is organized as follows. The related work
in this topic is presented in 2. Section 3 presents the methods to
check the feasibility of role, SoD and BoD constraints deployed in
the system. Section 4 presents the method to determine the time
durations in which the workflow executions will not be delayed
by the authorization constraints in the system. Section 5 presents
an optimal authorization method to assign the roles to the tasks
in a workflow. Section 5 also proves the method is optimal in
the sense that the method generates the minimal delay caused by
the authorization constraints for workflow executions. Section 7
concludes the paper.

2. Related work

There is the existing work to check the satisfiability of the au-
thorization constraints in a workflow [14,15,8,16,17]. The work
in [15] conducted the theoretical analysis about the satisfiability of
the authorization constraints for a workflow. The work conducted
theoretical analysis and found out that in order to check whether
there is a valid the workflow authorization, it only needs to con-
sider a single linear extension (i.e., a linear ordering) of the tasks
in the workflow. There exists a valid workflow authorization if and
only if there is also a valid authorization solution for the linear ex-
tension. However, the approach proposed in our work is able to
obtain all valid authorization solutions. Based on this, our work
further develops the authorization methods, aiming to reduce the
negative impact imposed by the authorization constraints.

The work in [8] conducts the safety analysis, i.e., analyzes
whether a specified authorization state (i.e., the task–role assign-
ments) can be reached under a set of authorization constraints,
given an initial authorization state. The work uses the Color Timed
Petri Nets (CTPN) tomodel roles, SoDand temporal constraints, and
then converts the constructed CTPNmodel to an ordinary Petri-Net
(PN) model so that the established PN analysis techniques can be
applied to generate the results. The work can generate all possible
authorization solutions. However, the approach is a bit heavy since
it needs to construct the CPTN model, covert the CPTN model to
ordinary PN models, and analyze the PN models. In this paper, we
model the feasibility checking problem concisely as a Constraint
Satisfaction Problem (CSP).

There are also studies to investigate the overhead caused by
authorization constraints [18,19]. The work in [18] also applies
CTPN to model various authorization constraints, and the inter-
actions between workflow authorization and workflow execution.
Then, the work analyzes and obtains the authorization overhead
and other associated performance data from the constructed CTPN
model. The work makes use of the modeling capability to capture
the dynamics in theworkflowauthorization and execution. The ap-
proach is experiment-oriented since the performance data is gath-
ered through running the constructed model in a Petri-Net simu-
lation toolkit, CPN Tools [20]. Also, the CTPN modeling is a heavy
approach, and the construction and running of the models could
be time consuming. In this paper, we adopt a theoretical approach
to analyzing the authorization overhead, and reveals some funda-
mental properties with regards to authorization overhead (i.e., the
delay caused by the authorization constraints). Based on the theo-
retical analysis of the overhead, this paper further presents an op-
timal authorization method that is able to minimize the overhead.



196 C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205
3. Checking feasibility of role, SoD and BoD constraints

S = {s1, . . . , sL} denotes the set of services running on the
resource pool.

F = (T , E) denotes a workflow, in which T = {t1, . . . , tN} is a
set of tasks in the workflow and E = {(ti, tj)|ti, tj ∈ T } is a set of
directed edges linking task ti to tj. A task invokes one of the services
in S.

R = {r1, . . . , rM} denotes the set of roles defined in the
authorization control system. The role constraint specifies the
set of roles that are permitted to run a particular service. Cr(si)
denotes the role constraint applied to service si. r(si) denotes the
role that is assigned to run si. The Separation of Duty (SoD) and the
Binding of Duty (BoD) constraint between si and sj are represented
as r(si) ≠ r(sj) and r(si) = r(sj), respectively.

In this paper, the problem of checking feasibility of role, SoD
and BoD constraints is formulated as a Constraint Satisfaction
Problem (CSP) [21]. A CSP consists of a triple ⟨V ,D, C⟩, where
V = {v1, v2, . . . , vn} is a set of variables, D = {Dv1 ,Dv2 , . . . ,Dvn},
where Dvi is the domain of the value of vi, C is a set of constraints
restricting the values that the variables can take. The Feasibility
Checking Problem (FCP) in this paper can be modeled as CSP in the
following way. The services in FCP are regarded as the variables in
CSP. The role constraint of a service is regarded as the domain of
the value of the service. The BoD and SoD constraints are regarded
as the constraints restricting the values that the services can take.

An example is given below to illustrate the modeling. Assume
there are 7 services, s1 − s7, and 6 roles, r1 − r6 in the system.
The role constraints of service si, denoted as Cr(si), are Cr(s1) =

{r1}, Cr(s2) = {r2, r3, r4}, Cr(s3) = {r2, r3, r5}, Cr(s4) =

{r2, r3, r5}, Cr(s5) = {r2, r3, r5}, Cr(s6) = {r2, r4}, Cr(s7) =

{r4, r6}. The SoD constraints are r(t2) ≠ r(t5), r(t2) ≠

r(t7), r(t6) ≠ r(t7). The BoD constraints are r(t2) =

r(t4), r(t3) = r(t5). Then the problem of checking feasibility
of these authorization constraints can be formulated as CSP as
follows.
CSP = ⟨V ,D, C⟩,

V = {s1, s2, s3, s4, s5, s6, s7},
D = {Ds1 ,Ds2 , . . . ,Ds7},

C = {C1, C2, C3, C4, C5},

Ds1 = {r1},
Ds2 = {r2, r3, r4},
Ds3 = {r2, r3, r5},
Ds4 = {r2, r3, r5},
Ds5 = {r2, r3, r5},
Ds6 = {r2, r4},
Ds7 = {r4, r6},
C1 : r(t2) = r(t4);
C2 : r(t2) ≠ r(t5);
C3 : r(t2) ≠ r(t7);
C4 : r(t6) ≠ r(t7);
C5 : r(t3) = r(t5).

There are the existing solvers to solve the CSP problem [21]. The
solutions are the feasible role assignments to the tasks so that all
SoD, BoD and role constraints are satisfied.

4. Analyzing the coverage of temporal constraints

4.1. Calculating the coverage of temporal constraints based on exact
values of execution times

Roles have temporal constraints. It is useful to check the
coverage of roles’ temporal availability in a given security setting.
We can use the CSP solver to obtain all feasible role assignment
solutions for the tasks in aworkflow.Adenotes the set of all feasible
role assignments for the workflow, and Ak = {(ti, rj)|ti ∈ T }

denotes the kth feasible role assignment, in which ti is a task in
the workflow and rj is the role assigned to ti. In most cases, a role
is activated periodically. For example, the role of bank manager is
only activated from 9 am to 12 pm, and from 2 pm to 4 pm in a day.
Therefore, the temporal constraint of role ri, denoted as Ct(ri) can
be expressed as Eq. (1), where Pi is the period, Di = {[lij, uij]|i ∈ N}

is the time duration when ri is activated in the period Pi, and Si and
Ei are the start and end time pointswhen this period pattern begins
and ends. Ei can be ∞, meaning the periodic pattern continues
indefinitely.

Ct(ri) = (Pi, Di, Si, Ei). (1)

Assume that the exact execution times of the tasks in a DAG
(and the scheduling algorithm used to schedule the tasks) are
known. Therefore, if we know the arrival time of the entry task
in the DAG, we can calculate the start time of every task in the
DAG. sti denotes the start time of task ti, r(ti, Ak) denotes the role
assigned to task ti in Ak. Assume r(ti, Ak) = rq. Assume t0 is the
entry task. Given Ak = {(ti, rj)|ti ∈ T }, Ct(r(t0, Ak)) represents the
temporal constraint of the role assigned to t0. Assume r(t0, Ak) =

rp. T (rq) denotes the time durations when r(ti) has to be activated
to run ti so that ti can start execution without being delayed by the
temporal constraints. GivenCt(rp), T (rq) can be determined by Eq.
(2), where Dj is determined in Eq. (3). However, rq is subject to the
temporal constraint, Ct(rq). Therefore, The intersection of T (rq)
and Ct(rq), denoted by I(ti, Ak) = (P I

ki,D
I
ki, S

I
ki, E

I
ki), is the time

durations when task ti can start execution immediately without
being delayed by the temporal constraints, given a role assignment
Ak. P I

ki is lcm(Pp, Pq), i.e., the least common multiple of Pp and Pq.
S Iki = max(Sp, Sq). E I

ki = min(Ep, Eq). Let DI
ki = {[lIkij, u

I
kij]|j ∈ N}.

T (r(ti, Ak)) = (P0,Dj, S0 + (sti − st0), E0 + (sti − st0)) (2)

Dj = {[l0k + (sti − st0), u0k + (sti − st0)]|k ∈ N}. (3)

As shown above, we calculate T (r(ti, Ak)) from Ct(r(t0, Ak)),
and then calculate I(ti, Ak) from T (r(ti, Ak)). I(ti, Ak) is a subset of
T (r(ti, Ak)). This means that only when t0 arrives in a subset of
the time durations in Ct(r(t0, Ak)), ti’s start time falls into I(ti, Ak).
Such a subset of time durations in Ct(r(t0, Ak)) is called r(t0, Ak)’s
effective time durations for ti in the role assignment Ak, which is
denoted by ET k(t0, ti). ET k(t0, ti) can be determined by Eq. (4).

ET k(t0, ti) = (P0, {[lIkij − (sti − st0), uI
kij

− (sti − st0)]|j ∈ N}, S0, E0). (4)

We can calculate ET k(t0, ti) for every task ti in the DAG.
ti∈T ET k(t0, ti) is the time durations in Ct(r(t0, Ak)) that can

ensure the start time of every task ti ∈ T (i ≠ 0) in the DAG
falls into the times durations specified in Ct(r(ti, Ak)). Only when
t0 arrives in these time durations, can every task in the DAG starts
execution without being delayed by the authorization constraints
of the role assigned to run the task in Ak.


ti∈T ET k(t0, ti) is

called t0’s effective arrival time when the role assignment is Ak,
denoted by EAk(t0). Note that according to the calculation method
of EAk(t0), EAk(t0) is a subset of Ct(r(t0, Ak)). Therefore, we also
call EAk(t0) the effective temporal constraint of r(t0, Ak) for the
DAG in the role assignment Ak. Assume EAk(t0) = {[l0j, u0j]|j ∈ N}.
We can further determine the set of time durations which the start
time of ti falls into, denoted by EAk(ti), using Eq. (5). Note that
EAk(ti) is a subset of Ct(r(ti, Ak)). Therefore, we call EAk(ti) the
effective temporal constraint of r(ti, Ak).

EAk(ti) = {[l0j + (sti − st0), u0j + (sti − st0)]|j ∈ N}. (5)



C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205 197
Fig. 1. The workflow in the case study.

Fig. 2. The temporal constraints of the roles in the case study, the shaded area is
the duration when the roles are not activated.

Table 1
Execution times of the workflow tasks in the case study.

Task Execution time Task Execution time

t0 30 t1 30
t2 36 t3 42
t4 48 t5 42
t6 30 t7 36
t8 42

We can calculate EAk(t0) for every feasible role assignment.
Assume [S, E] is the time duration for which we want to check
the Coverage of the Temporal Constraints (CTC). If


Ak∈A EAk(t0)

cover the entire range of [S, E], then nomatter when the workflow
instance is initiated, we can always find a role assignment so that
all tasks in the workflow can start execution without delay due to
the roles’ temporal constraints. Otherwise, [S, E]−


Ak∈A EAk(t0) is

the time gap duringwhich the execution of at least one task in DAG
will be delayed by the current setting of the temporal constraints.

A case study:
A case study is given below to illustrate the method of

calculating the coverage of the temporal constraints.
Fig. 1 shows the workflow in the case study, in which there are

9 tasks and the execution time of each task is given in Table 1.
There are 4 roles in the system, and the temporal constraint of

each role is given in Table 2 and illustrated in Fig. 2 (for brevity, we
assume the temporal constraints of all roles have the same period
P of 8 h, and only show the element Di in the temporal constraint
of a role). Also for simplicity andwithout compromising the clarity
of the illustration, we assume the role constraints are applied to
tasks directly in this case study (in the example in Section 3, the
tasks call one of the services in the system and the role constraints
are applied on services).

Assume that all feasible authorization solutions are as in
Table 3, after applying the feasibility checking method presented
in Section 3.

Let us first show how to calculate EA1(t0). Since (1) t0 is
authorized to r1 in A1, (2) r1 is activated during [09 : 00, 17 : 00],
Table 2
Temporal constraints of the roles in the case study.

Role Temporal Role Temporal constraint

r1 {[09:00, 17:00]} r2 {[12:00, 17:00]}
r3 {[11:00, 17:00]} r4 {[09:00, 12:00], [14:00, 17:00]}

Table 3
All feasible authorization solutions in the case study.

A1 A2 A3 A4 A5 A6 A7 A8

t0 r1 r1 r1 r1 r1 r1 r1 r1
t1 r3 r3 r3 r3 r4 r4 r4 r4
t2 r1 r1 r2 r2 r1 r1 r2 r2
t3 r1 r1 r1 r1 r1 r1 r1 r1
t4 r2 r2 r2 r2 r2 r2 r2 r2
t5 r3 r3 r3 r3 r4 r4 r4 r4
t6 r2 r2 r2 r2 r2 r2 r2 r2
t7 r2 r3 r2 r3 r2 r3 r2 r3
t8 r2 r2 r2 r2 r2 r2 r2 r2

Table 4
The values of ET 1(t0, ti) in the case study.

ET 1(t0, t1) {[10 : 30, 16 : 30]}
ET 1(t0, t2) {[09 : 00, 16 : 30]}
ET 1(t0, t3) {[09 : 00, 16 : 00]}
ET 1(t0, t4) {[10 : 54, 15 : 54]}
ET 1(t0, t5) {[09 : 54, 15 : 54]}
ET 1(t0, t6) {[10 : 06, 15 : 06]}
ET 1(t0, t7) {[10 : 12, 15 : 12]}
ET 1(t0, t8) {[09 : 36, 14 : 36]}

and (3) the execution time of t0 is 30 min (therefore st1 − st0 =

30 min), the possible start time of t1 can be calculated as below
after applying Eq. (2), which is also the duration when the role
assigned to t1 in A1 (i.e., r3) has to be activated in order for t1 to
start execution without being delayed by the temporal constraints
(i.e., T (r3)).

T (r(t1, A1)) = T (r3) = {[09 : 30, 17 : 30]}.

However, the temporal constraint of r3 is

Ct(r3) = [11 : 00, 17 : 00].

Consequently,

I(t1, A1) = Ct(r3)


T (r3) = {[11 : 00, 17 : 00]}.

Then,

ET 1(t0, t1) = {[11 : 00 − 30 min, 17 : 00 − 30 min]}

= {[1030, 1630]}.

Similarly, t2 is authorized to run under r1 in A1.

T (r1) = {[09 : 30, 17 : 30]},

I(t2, A1) = Ct(r1)


T (r1) = {[09 : 30, 17 : 00]}.

Therefore,

ET 1(t0, t2) = {[09 : 00, 16 : 30]}.

Similarly, ET 1(t0, ti) for tasks t3 − t8 can also be calculated,
which are all summarized in Table 4.

Then, the effective arrival time of t0 (i.e., the arrival time of the
workflow), EA1(t0), can be calculated as follows.

EA1(t0) =


ti∈T

ET k(t0, ti) = {[10 : 54, 14 : 36]}.

This means that if the workflow arrives during [10 : 54, 14 :

36] and A1 is used as the authorization solution, all tasks in
the workflow can start execution without being delayed by the
temporal constraints.



198 C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205
Table 5
The values of ET k(t0) in the case study.

EA1(t0) {[10 : 54, 14 : 36]}
EA2(t0) {[10 : 54, 14 : 36]}
EA3(t0) {[11 : 30, 14 : 36]}
EA4(t0) {[11 : 30, 14 : 36]}
EA5(t0) {[14 : 00, 14 : 36]}
EA6(t0) {[13 : 30, 14 : 36]}
EA7(t0) {[13 : 30, 14 : 36]}
EA8(t0) {[13 : 30, 14 : 36]}

Similarly, we can calculate the value of EAk(t0), (2k8) (i.e., other
authorization solutions A2 −A8), which are summarized in Table 5.
Ak∈A

EAk(t0) = {[10 : 54, 14 : 36]}.

This suggests that whenever the workflow arrives in the time
duration of [10:54, 14:36], there exists an authorization solution
under which all tasks in the workflow can start execution without
being delayed by the authorization constraints.

4.2. Calculating the probability of immediate execution

The derivation in previous section is based on the assumption
that the exact execution times of the tasks in a DAG are known
(therefore the exact value of sti, i.e., the start time of task ti, can
be determined). However, in some cases, it is difficult to know
the precise execution time of a task in advance. Instead, maybe
only the probability distribution of the task’s execution time is
known. In this subsection, a method is proposed to calculate the
probability that all tasks in a DAG can start execution immediately
without being delayed by the authorization constraints. We call
this probability IEP (Immediate Execution Probability). Essentially,
IEP is the probability that the authorization constraints will not
pose negative performance impact on the workflow execution.

Assume the execution time eti of task ti (0 ≤ i ≤ N − 1) is a
random variable. xi denotes the total execution time of all tasks on
the path from t0 to ti The completion time cti can be expressed as
Eq. (6).

cti = sti + eti. (6)

In a DAG, sti of task ti depends on the completion times
of all direct predecessors (denoted by prec(ti)). Only after all
predecessors of a task are completed, the task becomes ready to
execute. Therefore, sti can be calculated by Eq. (7).

sti = MAX tj∈pred(ti)

ctj

. (7)

From another perspective, sti can be calculated as the total
execution time of all tasks in the longest path from the entry task
to ti in the DAG. Let xi denote the sumof execution times of all tasks
on the longest path from the entry task t0 to ti. sti can be calculated
by Eq. (8).

sti = st0 + xi. (8)

4.2.1. Maximizing IEP for workflow execution
r(ti) denotes the role assigned to task ti in an authorization

solution. Assume that theworkflow arrives at a time point τ that is
within the temporal constraints of the role assigned to task t0 (i.e.,
r(t0)). t0 can start execution immediatelywithout the delay caused
by the temporal constraint of r(t0), namely, st0 = l0,k. Based on Eq.
(8), sti is then τ+xi since xi is the total execution timeof the tasks on
the longest path from t0 to ti. If τ + xi is within one of the intervals
in the temporal constraint of r(ti) (i.e., the role assigned to task ti),
ti can start execution without delay (i.e., the probability that ti can
start execution without delay is 1). Otherwise, the probability is 0.
We now present the method to derive the IEP of the workflow
under an authorization solution when a workflow arrives at a
certain time point.

Assume a workflow is assigned the roles according to an
authorization solution, Ak. When the workflow arrives beyond
Ct(r(t0)), it is impossible that the workflow can start execution
immediately. Assume theworkflow arrives at a time point τ within
Ct(r(t0)). Then the IEP of task ti under the authorization Ak can be
calculated by Eq. (9), where the value of function p(τ +x) is 1when
li,k ≤ τ + x ≤ ui,k and is 0 otherwise.

IEPk(ti, τ ) =


∞

0
f (xi) × p(τ + xi)dxi. (9)

We can calculate IEPk(ti, τ ) for every task in the workflow. The
minimal IEPk(ti, τ ) among them all can be regarded as the IEP of
the workflow when it arrives at the time point τ and the tasks
in the workflow are assigned roles according to the authorization
solution Ak, denoted by IEPk(τ ), which can be expressed as Eq. (10).

IEPk(τ ) = MIN{IEPk(ti, τ )|1 ≤ i ≤ N}. (10)

With Eq. (10), we can calculate IEPk(τ ) for every authorization
solution. Namely, we can determine that when a workflow arrives
at time τ , the probability that all tasks in the workflow can start
execution without delay under any authorization solution. Eq.
(11) calculates the maximum value of IEP obtained among all
feasible authorization solutions (denoted by IEP(τ )), which can be
regarded as the IEP that the workflow can achieve when it arrives
at time τ .

IEP(τ ) = MAX{IEPk(τ )|Ak ∈ A}. (11)

We can also apply Eq. (10) to calculate such arriving times
of the workflow that the IEP of the workflow is no less than a
desired value when the workflow is authorized with a particular
authorization solution. These arriving times form a time duration
in which the workflow can achieve the desired IEP (denoted by
IEPD) under that authorization solution. Ik(IEPD) denotes such
time duration for the authorization solution Ak. Then when the
workflow can be assigned to any of the possible authorization
solutions, the time durations in which the workflow can achieve
IEPD can be calculated by Eq. (12).

I(IEPD) =


Ak∈A

Ik(IEPD). (12)

If the result of I(IEPD) in Eq. (12) covers the entire period, then
we can conclude that whenever the workflow arrives, there is at
least the probability of IEPD that all tasks in the workflow can start
execution without delay caused by the specified authorization
constraints.

Eqs. (10)–(12) can be utilized to design the authorization
method, i.e., to determine the assignment of the authorization
solution to an arriving workflow, which is presented in Section 5.

Note that we do not specify any particular form of probability
distribution for the execution time of workflow tasks. In theory,
any probability distribution can be used. However, we can only
conduct the mathematical derivation with certain probability
distributions to obtain the probability distribution function of f (xi)
in Eq. (9). In Section 4.2.2, we will derive how to derive f (xi) when
the execution times of tasks follow the normal distribution. For the
forms of probability distribution that cannot be mathematically
derived, we can resort to the numerical methods to calculate the
value of Eq. (9).



C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205 199
Table 6
The mean and standard deviation of the execution times of the workflow tasks in
the case study.

Task µ σ Task µ σ

t0 30 3 t1 30 3
t2 36 2 t3 42 3
t4 48 1 t5 42 1
t6 30 2 t7 36 2
t8 42 5

Fig. 3. The IEP result for A1 , the interval [217, 316] is optimal arrival time for
workflow.

4.2.2. A case study:
To demonstrate the process of calculating the IEPs for the tasks

in aworkflow,we present a case study assuming that the execution
time of a task in a workflow follows a normal distribution and
that the expected value and variance of the normal distribution are
known. Many real applications and research studies [22–24] have
justified the assumption of normal distribution, which makes the
analysis of many random variables tractable analytically. Note that
the calculation method does not limit the probability distribution
of the tasks’ execution time. The execution times can also follow
other probability distributions.

Theworkflow topology in this case study is sameas that in Fig. 1.
The settings of the temporal constraints in this case study are also
same as those in Fig. 2. All feasible authorization solutions are the
same as those in Table 3.

In Fig. 1, the tasks’ execution times have exact values as shown
in Table 1. In this case study, the execution times of the tasks follow
the normal distributions with their means being the same values
as those in Table 1 and but with the deviation being the values in
Table 6.

Let N(µ, σ ) denote a normal distribution with mean µ and
variance σ 2. The execution time of task ti, eti, following the normal
distribution is expressed by eti ∼ N(µ, σ 2). Before calculating
the IEP, we explain two properties of normally distributed random
variables.

First, if Xi is normally distributed with expected value µi and
variance σ 2

i (i = 1, 2, 3 . . . , n), then X =
i

n Xi is also normally
distributed, with the mean of

i
n µi and the variance of

i
n σ 2

i .
Namely, Eq. (13) holds.

X ∼ N


i
n

µi,

i
n

σ 2
i


. (13)

Second, we need to calculate the maximum of a set of random
variables in Eq. (7). Unfortunately, the maximum value of a set
of normal random variable is no longer normally distributed.
However, Clark et al. developed a method [25–27] to recursively
estimate the expected value and variance of the maximum value
among a finite set of random variables with normal distribution.
Based on the estimated expected value and variance, we can obtain
the normal distribution which is close to the actual distribution of
the random variable defined by theMAX operator. In other words,
xi in Eq. (8) can be approximated as a normal random variable
and f (xi) in Eq. (9) is a normal probability density function (PDF)
function.

Fig. 3 depicts the value of IEP of each task (calculated by Eq.
(9)) as the workflow arrives at different times, being authorized
with A1 in Table 3. When the desired value of IEP is set to be 95%
(i.e., IEPD = 95%), we can obtain the interval of the workflow’s
arrival time for each task in which the value of IEP is no less
than 95%. Consequently, we can obtain the interval of the arrival
times in which all tasks in the workflow can achieve the IEP of
no less than 95% under the authorization A1 (i.e., I1(IEPD)), which
is [217, 316] as shown in Fig. 3. This result indicates that when
the workflow arrives between 217 and 316 s, there is at least
95% of probability that when the workflow is authorized with
A1, all tasks in the workflow can start execution without delay
caused by the authorization constraints. Similarly, we can obtain
Ik(IEPD) for each Ak. Fig. 4 shows the IEP curves for all possible Ak.

Ak∈A Ik(IEPD) (i.e., Eq. (12)) is then the interval of the workflow’s
arrival times in which there is at least 95% of probability that all
tasks in the workflow can start execution without delay caused by
the authorization constraints.

5. The workflow authorization methods

Section 4.1 calculates the time durations when the executions
of all tasks in a workflow will not be delayed by the authorization
constraints, which is


Ak∈A EAk(t0). The delay caused by the

authorization constraints for a task is defined as the time that
a ready task (a task in a workflow is ready when all of its
predecessors have been completed) has to wait until the role
assigned to the task becomes activated. The delay caused by the
authorization constraints for a workflow (denoted by td) is defined
as the total delay caused by the authorization constraints for
the workflow. When a workflow arrives beyond


Ak∈A EAk(t0),

it is useful to quantitatively determine td. Further, it is desired
to develop an authorization method that can minimize td. This
section strives to achieve these.

In this section, we first propose an intuitive policy of
authorizing the tasks in a workflow, called the EAF (Earliest
Activation First) method. Then we conduct quantitative analysis
about the delay caused by temporal constraints. Based on the delay
analysis, we further propose a optimized method of authorizing
the tasks in a workflow, called the GAA (Global Authorization-
Aware) method. The GAA method is optimal in the sense that
the method can minimize the delay caused by the temporal
constraints. GAA is designed for the scenario where the exact
execution times of the workflow tasks are known. In last
subsection, we extend the GAAmethod toworkwith the stochastic
workflows, where we only know the probability distributions of
the tasks’ execution times.

5.1. The EAF authorization method

The EAF method is intuitive. Its fundamental idea is that when
a task in the workflow is ready to run (i.e., all predecessors of
the task have completed the executions), but all roles that can
be assigned to the task (i.e., satisfy the authorization constraints)
are not activated, a role with the earliest activation time will be
assigned. The EAF method is outlined in Algorithm 1.

The workflows with different arrival times may have different
delay, td, caused by the authorization constraints for a workflow.
td(τ )denotes the delay experiencedby theworkflowwhose arrival
time is τ . tdEAF (τ ) denotes the delay experienced by all tasks in
the workflow whose arrival time is τ when the EAF authorization
method is applied.



200 C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205
Fig. 4. The IEP curves for all feasible authorizations in the case study.
Algorithm 1: The EAF authorization method
1 Obtain all feasible authorization solutions using the CSP (

Constraint Satisfaction Program) formulation;

2 for a ready task ti in the workflow

3 Search the set of feasible authorization solutions to

obtain a set of roles (denoted by CA(ti)) that can be

assigned to ti;
4 if all roles in CA(ti) are not activated,

5 Assign to ti a role with the earliest activation time;

6 if there are the roles in CA(ti) that are activated,

7 A role is randomly selected and assigned to ti;

5.2. The GAA authorization method

Assume a workflow arrives at time τ . EAk(t0).next(τ ) denotes
the beginning of the next duration after τ in EAk(t0). If the
workflow waits for (EAk(t0).next(τ ) − τ), then Ak can be used
as the authorization solution of the workflow and the workflow
execution can progress without further delay caused by the
temporal constraints.

The GAA authorization method is proposed based on the
above discussion. The GAA method takes as input the set of
all feasible authorization solutions. It finds from the set such
a authorization solution, Ak, that Ak generates the minimal
value of (EAk(t0).next(τ ) − τ), and authorizes the tasks in
the workflow according to Ak. The time complexity of GAA
is the number of feasible authorization solutions solved by
the CSP (Constraint Satisfaction Problem) formulation, since the
authorizationmethods presented in this paper, nomatter whether
it is EAF or GAA, checks all feasible authorization solutions to find
most appropriate one.

Let tdGAA(τ ) denote the delay caused by the temporal con-
straints for a workflow whose arrival time is τ under the GAA
method. Then tdGAA(τ ) equals to (EAk(t0).next(τ )−τ). Assume that
a workflow arrives at the time point τ , and assume that it turns out
that Ak is the authorization solution used for the workflow under
the EAF method. We can prove that the delay caused by the tem-
poral constraints for theworkflow under the EAFmethod equals to
(EAk(t0).next(τ ) − τ), as shown in Theorem 1.

Theorem 1. If a workflow arriving at time τ is authorized using the
EAF method and the outcome is that the roles are assigned to the tasks
in theworkflow as in the authorization solution Ak, then Eq. (14) holds.

tdEAF (τ ) = (EAk(t0).next(τ ) − τ). (14)

Proof. If the role assigned to t0 in Ak (i.e., r(t0)) is only activated
at time EAk(t0).next(τ ), then t0 starts execution at EAk(t0).next(τ )
under the EAF method. Consequently, the delay caused by the
temporal constraints on t0 is EAk(t0).next(τ ) − τ , and according
to the definition of EAk(t0).next(τ ), all successors of t0 can
start execution without further delay caused by the temporal
constraints. Then

tdEAF (τ ) = (EAk(t0).next(τ ) − τ).

Therefore, Eq. (14) holds. We call EAk(t0).next(τ )t0’s effective
start time (denoted by est0).

When t0 starts at EAk(t0).next(τ ), we can calculate the start
time of t0’s any successor ti, which is called ti’s effective start time
(denoted by est i) because if ti starts at time est i, all successors
of ti can start execution without being delay by the temporal
constraints of the roles assigned to the successors in Ak. est i equals
est0 plus the length of the longest path from t0 to ti in theworkflow.

If task t0 starts execution at time τ ′

0 when the role assigned to
t0 in Ak becomes activated, then the delay caused by the temporal
constraints on t0 is τ ′

0 − τ . Assume tk is t0’s child. If t0 starts
execution at τ ′

0, then tk can be ready for execution (tk’s ready time
is denoted by τk) at time τ ′

0 plus the length of the longest path
from t0 to tk (i.e., all its predecessors have been completed), that
is, τ ′

0 + (estk − est0), only subject to the availability of role r(tk).
If r(tk) is activated only at estk, then tk’s delay caused by r(tk)’s

temporal constraints is estk − (τ ′

0 + (estk − est0)) = est0 − τ ′

0, and
all successors of tk can start executions without being delayed by
temporal constraints. Therefore, tdEAF (τ ) can be calculated as

tdEAF (τ ) = (est0 − τ ′

0) + (τ ′

0 − τ)

= est0 − τ

= EAk(t0).next(τ ) − τ .

It shows Eq. (14) holds.
If r(tk) is activated at time τ ′

k (τ
′

k < estk), then tk starts execution
at τ ′

k in the EAFmethod.We can repeat the analysis similar as above
only replacing t0 with tk, τ with τk and est0 with estk. Similarly, we
can recursively conduct the analysis for the rest of all tasks in the
workflow. It can be shown that Eq. (14) holds. �

Besides the EAF method, other authorization method can be
used to assign the roles to the tasks in a workflow. Based
on Theorem 1, however, we can prove that no matter what
authorization method is used to authorize the workflow, if it turns
out that theworkflow is authorized as in the authorization solution
Ak, then the delay caused by the authorization constraints under
the authorizationmethodwill be no less than the delaywhen using
the EAFmethod to assign the roles to the tasks as inAk. This relation
is stated in Theorem 2. The proof of the theorem takes the similar
steps as those in Theorem 1. The difference is that when using
the EAF method to authorize the tasks as Ak, a task is authorized



C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205 201
as soon as the role assigned to the task in Ak becomes activated,
while under other authorizationmethod, a taskmay be authorized
(therefore start execution) later than the role’s activation time.

Theorem 2. No matter what authorization method is used to assign
the roles to the tasks in a workflow, if the outcome is that the tasks are
authorized as in the authorization solution Ak, then the delay caused
by the authorization constraints under the authorizationmethod is no
less than the delay when using the EAF method to authorize the tasks
as in Ak.

Proof. Assume that a workflow arrives at time τ . Similar to
Theorem 1, we can determine est i for every task in the workflow.

If r(t0) in Ak is activated at time EAk(t0).next(τ ), then
the minimal delay caused by the authorization constraints is
EAk(t0).next(τ ) − τ , which equals to the delay generated when
using the EAF method to authorize t0. Any method that authorizes
t0 later than EAk(t0).next(τ )will generate a delay greater than that
generated by the EAF method. The theorem holds.

If r(t0) becomes activated at time τ ′

0, but under the authorize
method, task t0 is authorized and starts execution at a later time
τ ′

0 + δ0 (δ0 > 0), then the delay caused by the authorization
constraints on t0 is τ ′

0 + δ0 − τ .
Assume tk is t0’s child. If t0 starts execution at τ ′

0 + δ0, then tk
can be ready for execution at time τk = τ ′

0 + δ0 + (estk − est0).
Assume τ ′

0+δ0+(estk−est0) ≥ estk. Then tk can be authorized
and start execution immediately and further, all successors of tk
can be authorized and start execution immediately when they are
ready for execution. Therefore, theminimal delay for theworkflow
is τ ′

0 + δ0 − τ . Since τ ′

0 + δ0 + (estk − est0) ≥ estk, we can have
δ0 > est0 − τ ′

0. Then the following inequality holds, which shows
that the EAF method generates the minimal delay.

τ ′

0 + δ0 − τ > est0 − τ

= EAk(t0).next(τ ) − τ

= tdEAF (τ ).

Assume τ ′

0 + δ0 + (estk − est0) < estk. We can repeat the same
analysis on tk as that on t0, only replacing t0 with tk, τ with τk and
est0 with estk. Similarly, we can recursively conduct the analysis
for the rest of all tasks in the workflow. It can be shown that the
theorem holds. �

Based on Theorems 1 and 2, we can further prove that the
GAA method is the optimal authorization method, as shown in
Theorem 3.

Theorem 3. The GAA authorization method is optimal in the sense
that under the GAA method, the delay caused by the authorization
constraints for a workflow is not more than that under any other
authorization method.

Proof. Given an authorization method and a workflow arriving
at time τ , assume that the method authorizes the tasks as in the
authorization solution Ak. From Theorem 2, we know that the
delay generated by the authorization method is no less than the
delay when using the EAF method to authorize the tasks as in
Ak. From Theorem 1, we know that the delay generated by the
EAF method can be calculated as EAk(t0).next(τ ) − τ . Therefore,
the given authorization method generates a delay greater than
EAk(t0).next(τ )−τ . According to the algorithmof the GAAmethod,
the GAA method selects the authorization solution Aj that has the
least value of (EAj(t0).next(τ ) − τ) from all possible authorization
solutions. Therefore, the theorem holds. �
5.3. Extending the GAA method to stochastic workflows

The previous subsections present the methods for authorizing
the workflows in which the tasks’ execution times are exactly
known. In this subsection, we extend the GAAmethod to authorize
theworkflowwhose constituent tasks have statistically distributed
execution times.

When a workflow arrives at time point τ , we apply Eqs. (10)
and (11) to calculate which authorization solution provides the
highest value of IEP(τ ). The calculated authorization solution is
then used to authorize the workflow. We call this method the
MinIEP method.

In some cases, we want to maximize the opportunity that the
arriving workflows can achieve the desired IEP. In order to achieve
this, we propose the SGAA (Statistic Global Authorization-Aware)
method. In SGAA, we first apply Eqs. (10) and (12) to calculate
the intervals in which the workflow can acquire the desired IEPD
and also record the corresponding authorization solution that can
realize the IEPD.

Assume aworkflow arrives at a time point τ . If τ is within one of
the calculated intervals, the workflow is immediately authorized
with the corresponding authorization solution. Otherwise, the
workflow waits until the start of next nearest interval in I(IEPD)
before it is authorized using the corresponding authorization
solution.

6. Simulation experiments

We conducted the simulation experiments to evaluate the
performance of the GAA method against that of the EAF method.
The performancemetrics evaluated in the experiments include the
delay caused by the authorization constraints for a workflow (i.e.,
td defined in the first paragraph of Section 5) and the response
time of aworkflow (denoted as rt), which is defined as the duration
between the timewhen a first task of the workflow arrives and the
time when the last tasks of the workflow is completed.

We also compared the performance among the SGAA, the
GAA and the EAF methods. Since SGAA makes authorization
decisions based on probability, we adopted the following strategy
to compare these threemethods. First, a large number of workflow
instances are generatedwith the tasks’ execution times following a
particular probability distribution. The generated execution times
of each task are recorded. We then employ the GAA method
to make the authorization decisions for the generated workflow
instances. GAA can access the exact execution times of the
workflow tasks. GAA is supposed to select the best authorization
solution which produces the minimum delay as discussed in
Section 5.2. Next, we employ the SGAA method to process the
same batch of workflow instances. SGAA makes the authorization
decisions only based on the probability distributions of the tasks’
execution times (without knowing the exact execution times).
When SGAA makes the same authorization decision as GAA for
a workflow instance (i.e., SGAA makes an optimal authorization
decision), we call it a hit. We record the proportion of theworkflow
instances for which the authorization decisions made by SGAA hit,
which we call the hit ratio. Finally, we employ EAF to process these
workflow instances and record its hit ratio. A better authorization
method should have a higher hit ratio.

In the experiments, the workflow is randomly generated. Each
workflow containing TNUM tasks and each task in a workflow
having themaximumofMAX_DG children. RNUM roles are assume
to exist in the system. The tasks’ role constraints (i.e., the set of
roles that a task can assume) are set in the following fashion.
The simulation sets a maximum number of roles that any task
can assume in the role constraints, denoted as MAX_RCST , which
represents the level of restrictions imposed on the role assignment



202 C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205
Table 7
Experimental settings.

Parameter Value Parameter Value

TNUM 15 MAX_DG 3
EXH 5 RNUM 5
MAX_RCST 3 NUM_SoD 4
NUM_BoD 4 P 480
TEMP 20%

Fig. 5. td under different TEMP.

for tasks. When setting the role constraint for task ti, the number
of roles that can run ti is randomly selected from [1, MAX_RCST ],
and then that number of roles are randomly selected from the role
set.

NUM_SoD and NUM_BoD denote the number of tasks that
are associated with SoD and BoD constraints, respectively. Duty
constraints were set as follows. Each time, two tasks are randomly
selected from the workflow to establish the BoD constraint
between them until NUM_BoD tasks are covered. And then the
same procedure is applied to establish the SoD constraints among
tasks. In this process, the method presented in Section 3 is used to
make sure that the designated duty constraints on these selected
tasks can be satisfied. We assume that the tasks execution times
follow an exponential distribution. The average execution time of
the tasks is the EX_H time units. In order to examine the delay
caused by the authorization constraints, a workflow instance is
only issued after the previous instance has been completed in the
experiments. Unless otherwise stated, the value of dt or rt depicted
in the figure is the value averaged over all workflow instances
issued within the period of the temporal constraints, which are set
below.

The temporal constraints on roles are set in the following way.
For each role, a time duration is selected from a period of P time
units. The selected time duration occupies the specified percentage
of the P time units, which is denoted as TEMP. The starting time
of the selected duration is chosen randomly from the range of [0,
P × (1 − TEMP)]. For example, if P = 100 and TEMP = 10%, the
starting point is randomly selected from 0 to 90% × 100.

Unless otherwise stated, the parameters are set to be the values
shown in Table 7.

6.1. Temporal constraints

Fig. 5 shows the change of td as the temporal constraints (TEMP)
changes. It can be seen from this figure that in all cases the GAA
method achieves smaller td than EAF. For example, when TEMP
is 10%, td is 0 under GAA while it is about 10 under EAF. The
discrepancy becomes even bigger when TEMP increases. These
results verify that the authorization method indeed matters and
the GAA method is superior to the intuitive EAF method.

Fig. 6 compares rt achieved by GAA and EAF under different
TEMP. It can be seen that GAA achieves the shorter rt than EAF in all
cases. This is because GAA causes less delay and therefore achieves
less response time than that under EAF.
Fig. 6. rt under different TEMP.

Fig. 7. td under different workflow arrival times.

Fig. 8. rt under different workflow arrival times.

6.2. Arrival times of workflows

The work in this paper presents the method to determine
the duration of the time for workflow arrivals within which
the authorization constraints will not have negative performance
impact. This shows that the arrival time of a workflow has impact
onworkflow performance. Fig. 7 shows the value of td for different
workflow arrival times under GAA and EAF. In these experiments,
we set the period of all roles (i.e., P) as 480 time units, and
then issue the workflow instances at the time points from 0 to
300 time units with increment of 60. It can be seen that once
again, GAA incurs less td than EAF in all cases, except when the
arrival time is 300 (whose will be explained later). Further, when
the workflows arrive after 120, the GAA method does not cause
any delay on workflow executions. These results verify that there
indeed exist the durations for the workflow arrivals when the
authorization constraints will not delay the workflow executions.
Themethod proposed in this paper is able to theoretically calculate
such durations. A point to note is that when the arrival time is 300,
no delay is caused under the EAF method either. This is because
the time point 300 happens to be within the intersection of EAk(t0)
of all feasible authorization solutions. Therefore, the system can
always find an activated role for any task to enable its execution.

Fig. 8 shows that rt of the workflows with different arrival
times. Again, GAA outperforms EAF in all cases. The rt trend is
consistent with the td trend shown in Fig. 7.



C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205 203
Fig. 9. rt under different average execution times of workflow tasks.

Fig. 10. The coverage of temporal constraints (CTC) under different average
execution times of workflow tasks.

6.3. Execution times of the workflow tasks

Obviously, increasing the execution times of the tasks in a
workflowwill increase the schedule length of theworkflow. But do
the execution times affect the authorization-related delay? Fig. 9
shows the impact of the average execution time of the tasks in a
workflow on the coverage of the temporal constraints (CTC), i.e.,

Ak∈A EAk(t0). As can be seen from this figure, CTC decreases as the
average execution time increases. A reasonable explanation for this
is that given a set of temporal constraints, the bigger the execution
time of the tasks in a workflow is, the less likely the duration of the
workflow execution fits into the temporal constraints. Therefore,
CTC may become shorter. This result suggests that given a set of
temporal constraints, a workflow with longer tasks may be more
likely to be delayed by the temporal constraints that a workflow
with shorter tasks, which can be verified by the results presented
in Fig. 10.

Fig. 10 demonstrates td under different average execution time
of workflow tasks. Again, GAA causes less delay than EAF in all
cases. It can also be observed from this figure that td increases as
the average execution time ofworkflow tasks increases. The results
coincides with the results in Fig. 9. Indeed, When the execution
times increases, CTC decreases. Then more workflow instances
issued in the period of the temporal constraints will experience td.
Consequently, td, which is the delay averaged over all workflow
instances issued, is bigger.

Fig. 11 shows rt generated by the GAA and the EAF method
under different average execution time of workflow tasks. As can
be observed, the GAA method generates shorter rt than EAF in all
cases. This again verifies GAA causes less delay than EAF.

6.4. Hit ratio

In this subsection, we first generate 1000 instances of the
workflow in Fig. 1 with the tasks’ execution times following the
normal distribution. The values of themean and standard deviation
of the distribution for each workflow task are listed in Table 6.

Fig. 12 shows the comparison between SGAA and EAF in terms
of the hit ratio. Although The hit ratio curves show the similar trend
for the two method, SGAA produces much higher hit count than
Fig. 11. rt under different average execution times of workflow tasks.

Fig. 12. Comparing the hit ratio between SGAA and EAF.

Fig. 13. The hit ratio comparison under different TEMP .

EAF and in some places (i.e., in the time interval of [217, 316]) the
hit counts of SGAA is nearly 100%. This result indicates that there
are much higher proportion of authorization decisions made by
SGAA that are the same as those made by GAA, compared with
EAF. As can be seen from the figure, the hit count of EAF becomes
unstable in some places (the dip in the EAF curve) and lower than
other places. This may be because of the local optimum nature of
the EAF method. Namely, some authorization solutions may enter
the wrong ‘‘branches’’ of the workflow (e.g., t1 as shown in our
experimental records). In contrast, the performance of SGAA is
almost always stable. These experimental results also show that
IEP and the optimal interval are effectivemetrics formeasuring the
impacts of authorization constraints on workflow executions.

We then change the temporal constraints using the way
presented at the beginning of this section. Fig. 13 shows the mean
hit ratio achieved by SGAA and EAF under different TEMP . It can be
seen again that SGAA achieves the higher hit ratio than EAF in all
cases. This is because SGAA takes into account the situation of the
entire workflow and seek for global optimization and therefore is
able to make better decisions than EAF.



204 C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205
7. Conclusions

This paper investigates the issue of feasibility checking for au-
thorization constraints deployed in workflow management sys-
tems. In this paper, the feasibility checking problem is modeled as
a constraint satisfaction problem. Further, this paper presents the
method to determine the time durations when the deployed tem-
poral constraints do not have negative impact on performance of
workflow executions. Moreover, an optimal method is proposed
to authorize a workflow, so that the delay caused by the autho-
rization constraints for the workflow executions is minimized. The
proposed analysis methods are further extended for the stochastic
workflows. The simulation experiments show that the effective-
ness of the proposed authorization methods.

Acknowledgment

The preliminary version of this work has been published in the
20th International Conference on High Performance Computing
(HiPC-2013) [28]. This work is partially supported by the Priority
Academic Program Development of Jiangsu Higer Education
Institutions (PAPD), Jiangsu Collaborative Innovation Center on
Atmospheric Environment and Equipment Technology (CICAEET),
the Natural Science Foundation of China (NSFC) under Grant
Nos. 61472370 and 61672469, and the open project of State Key
Laboratory of virtual reality technology and system under Grant
No. BUAA-VR-16KF-07.

References

[1] D. Chakraborty, V. Mankar, A. Nanavati, Enabling runtime adaptation
ofworkflows to external events in enterprise environments, in: Web Services,
2007. ICWS 2007. IEEE International Conference on, july 2007, pp. 1112–1119.

[2] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-science:
An overview of workflow system features and capabilities, Future
Gener. Comput. Syst. 25 (5) (2009) 528–540. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X08000861.

[3] A. Sfrent, F. Pop, Asymptotic scheduling for many task computing in big data
platforms, Inform. Sci. 319 (2015) 71–91. energy Efficient Data, Services and
Memory Management in Big Data Information Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025515002182.

[4] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, J. Koodziej, Resource-
aware hybrid scheduling algorithm in heterogeneous distributed
computing, Future Gener. Comput. Syst. 51 (2015) 61–71. special
Section: A Note on New Trends in Data-Aware Scheduling and Re-
source Provisioning in Modern {HPC} Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X14002532.

[5] G.-J. Ahn, R. Sandhu, Role-based authorization constraints specification,
ACM Trans. Inf. Syst. Secur. 3 (4) (2000) 207–226. [Online]. Available:
http://doi.acm.org/10.1145/382912.382913.

[6] J.B.D. Joshi, E. Bertino, U. Latif, A. Ghafoor, A generalized temporal role-
based access control model, IEEE Trans. Knowl. Data Eng. 17 (1) (2005) 4–23.
[Online]. Available: http://dx.doi.org/10.1109/TKDE.2005.1.

[7] D. Zou, L. He, H. Jin, X. Chen, Crbac: Imposing multi-grained con-
straints on the rbac model in the multi-application environment,
J. Netw. Comput. Appl. 32 (2) (2009) 402–411. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804508000520.

[8] V. Atluri, W. kuang Huang, A petri net based safety analysis of workflow
authorization models, 1999.

[9] M. Stuit, H. Wortmann, N. Szirbik, J. Roodenburg, Multi-view interactionmod-
elling of human collaboration processes: A business process study of head and
neck cancer care in a dutch academic hospital, J. Biomed. Inform. 44 (6) (2011)
1039–1055. [Online]. Available: http://dx.doi.org/10.1016/j.jbi.2011.08.007.

[10] T. Hara, T. Arai, Y. Shimomura, T. Sakao, Service cad system to inte-
grate product and human activity for total value, CIRP J. Manuf. Sci. Tech-
nol. 1 (4) (2009) 262–271. Life Cycle Engineering. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1755581709000078.

[11] J.Y. Choi, S. Reveliotis, A generalized stochastic petri net model for
performance analysis and control of capacitated reentrant lines, IEEE Trans.
Robot. Autom. 19 (3) (2003) 474–480.

[12] D.R. dos Santos, S.E. Ponta, S. Ranise, Modular synthesis of enforcement mech-
anisms for the workflow satisfiability problem: Scalability and reusability,
in: Proceedings of the 21st ACM on Symposium on Access Control Models and
Technologies, ser. SACMAT ’16, ACM,NewYork, NY, USA, 2016, pp. 89–99. [On-
line]. Available: http://doi.acm.org/10.1145/2914642.2914649.
[13] C. Bertolissi, D.R. dos Santos, S. Ranise, Automated synthesis of run-timemon-
itors to enforce authorization policies in business processes, in: Proceedings
of the 10th ACM Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’15, ACM, New York, NY, USA, 2015, pp. 297–308. [On-
line]. Available: http://doi.acm.org/10.1145/2714576.2714633.

[14] J. Crampton, G. Gutin, D. Karapetyan, Valued workflow satisfiability problem,
in: Proceedings of the 20th ACM Symposium on Access Control Models and
Technologies, ser. SACMAT ’15, ACM, New York, NY, USA, 2015, pp. 3–13.
[Online]. Available: http://doi.acm.org/10.1145/2752952.2752961.

[15] J. Crampton, A reference monitor for workflow systems with constrained task
execution, in: Proceedings of the Tenth ACM Symposium on Access Control
Models and Technologies, ser. SACMAT ’05, ACM, New York, NY, USA, 2005,
pp. 38–47. [Online]. Available: http://doi.acm.org/10.1145/1063979.1063986.

[16] Q.Wang, N. Li, Satisfiability and resiliency in workflow authorization systems,
ACM Trans. Inf. Syst. Secur. 13 (4) (2010) 40:1–40:35. [Online]. Available:
http://doi.acm.org/10.1145/1880022.1880034.

[17] Y. Lu, L. Zhang, J. Sun, Using colored petri nets to model and analyze workflow
with separation of duty constraints, Int. J. Adv. Manuf. Technol. 40 (2009)
179–192. [Online]. Available: http://dx.doi.org/10.1007/s00170-007-1316-1.

[18] L. He, C. Huang, K. Duan, K. Li, H. Chen, J. Sun, S.A. Jarvis, Modeling
and analyzing the impact of authorization on workflow executions, Fu-
ture Gener. Comput. Syst. 28 (8) (2012) 1177–1193. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2012.03.003.

[19] L. He, N. Chaudhary, S. Jarvis, K. Li, Allocating resources for workflows running
under authorization control, in: Grid Computing (GRID), 2012 ACM/IEEE 13th
International Conference on, 2012, pp. 58–65.

[20] K. Jensen, L.M. Kristensen, L. Wells, Coloured petri nets and cpn tools for mod-
elling and validation of concurrent systems, Int. J. Softw. Tools Technol. Trans.
9 (3) (2007) 213–254. [Online]. Available: http://dx.doi.org/10.1007/s10009-
007-0038-x.

[21] S.C. Brailsford, C.N. Potts, B.M. Smith, Constraint satisfac-
tion problems: Algorithms and applications, European J.
Oper. Res. 119 (3) (1999) 557–581. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221798003646.

[22] R.H. Möhring, A.S. Schulz, M. Uetz, Approximation in stochastic scheduling:
The power of lp-based priority policies, J. ACM46 (6) (1999) 924–942. [Online].
Available: http://doi.acm.org/10.1145/331524.331530.

[23] X. Tang, K. Li, G. Liao, K. Fang, F. Wu, A stochastic schedul-
ing algorithm for precedence constrained tasks on grid, Future
Gener. Comput. Syst. 27 (8) (2011) 1083–1091. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2011.04.007.

[24] J. Gu, X. Gu, M. Gu, A novel parallel quantum genetic algorithm for stochastic
job shop scheduling, J. Math. Anal. Appl. 355 (1) (2009) 63–81.

[25] S.C. Sarin, B. Nagarajan, L. Liao, Stochastic Scheduling. Expectation-Variance
Analysis of a Schedule, Cambridge University Press, Cambridge, 2010.

[26] V.J. Duko Leti, Thedistribution of time for clark flowand risk assessment for the
activities of pert network structure, Yugosl. J. Oper. Res. 37 (2009) 195–207.
[Online]. Available: http://eudml.org/doc/261518.

[27] C.E. Clark, The greatest of a finite set of random variables, Oper. Res. 9 (1961)
145–162.

[28] N. Chaudhary, L. He, Analyzing the performance impact of authorization
constraints and optimizing the authorization methods for workflows, in:
Proceedings of the 20th International Conference on High Performance
Computing, ser. HiPC 2013, Bangalore, India, 2013.

Cheng Chang is a Ph.D. student in School of Computer
Science and Electronic Engineering, Hunan University,
China. His research area is parallel and distributed
computing, Cloud computing.

Ligang He received the Ph.D degree in Computer Sci-
ence at the University of Warwick, United Kingdom, and
worked as a post-doctoral researcher at the University
of Cambridge, UK. From 2006, he worked in the Depart-
ment of Computer Science at the University of Warwick
as Assistant Professor and then Associate Professor. His
research interests focus on parallel and distributed pro-
cessing, Cluster, Grid and Cloud computing. He has pub-
lished more than 80 papers in international conferences
and journals, such as IEEE Transactions on Parallel andDis-
tributed Systems, IPDPS, CCGrid, MASCOTS. He has been a

co-chair or a member of the program committee for a number of international con-
ferences, and been the reviewers for many international journals, including IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers,
etc. He is a member of the IEEE.

http://www.sciencedirect.com/science/article/pii/S0167739X08000861
http://www.sciencedirect.com/science/article/pii/S0020025515002182
http://www.sciencedirect.com/science/article/pii/S0167739X14002532
http://doi.acm.org/10.1145/382912.382913
http://dx.doi.org/10.1109/TKDE.2005.1
http://www.sciencedirect.com/science/article/pii/S1084804508000520
http://dx.doi.org/10.1016/j.jbi.2011.08.007
http://www.sciencedirect.com/science/article/pii/S1755581709000078
http://refhub.elsevier.com/S0167-739X(16)30308-9/sbref11
http://doi.acm.org/10.1145/2914642.2914649
http://doi.acm.org/10.1145/2714576.2714633
http://doi.acm.org/10.1145/2752952.2752961
http://doi.acm.org/10.1145/1063979.1063986
http://doi.acm.org/10.1145/1880022.1880034
http://dx.doi.org/10.1007/s00170-007-1316-1
http://dx.doi.org/10.1016/j.future.2012.03.003
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/s10009-007-0038-x
http://www.sciencedirect.com/science/article/pii/S0377221798003646
http://doi.acm.org/10.1145/331524.331530
http://dx.doi.org/10.1016/j.future.2011.04.007
http://refhub.elsevier.com/S0167-739X(16)30308-9/sbref24
http://refhub.elsevier.com/S0167-739X(16)30308-9/sbref25
http://eudml.org/doc/261518
http://refhub.elsevier.com/S0167-739X(16)30308-9/sbref27


C. Chang et al. / Future Generation Computer Systems 67 (2017) 194–205 205
Nadeem Chaudhary received Ph.D. degree from the
Department of Computer Science at the University of
Warwick. His research area is parallel and distributed
processing and security.

Songling Fu received the B.S. degree in the department of
electronic science and technology from Harbin Institute of
Technology, Harbin, China, in 2001, and received the M.S.
and Ph.D. degree of computer science and technology from
National University of Defense Technology, Changsha,
China, in 2003 and 2014, respectively. In 2014, he joined
in the Department of Electronic Information Engineering
at the Hunan Normal University as an Assistant Professor.
His research interests include parallel and distributed
computing, big data, robot operating systems. He is a
member of the IEEE.

Hao Chen received the B.S. degree in chemical engineering
from Sichuan University, China, in 1998, and the Ph.D.
degree in computer science from Huazhong University
of Science and Technology, China in 2005. He is now
a Professor at the College of Computer Science and
Electronic Engineering, Hunan University, China. His
current research interests include parallel and distributed
systems, operating systems, cloud computing and systems
security. He has publishedmore than 70 papers in journals
and conferences, such as IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Computers,

IPDPS, IWQoS, and ICPP. He is a member of the IEEE and the ACM.

Jianhua Sun is an Associate Professor at the College
of Computer Science and Electronic Engineering, Hunan
University, China. She received the Ph.D. degree in
Computer Science from Huazhong University of Science
and Technology, China in 2005. Her research interests
are in security and operating systems. She has published
more than 70 papers in journals and conferences, such
as IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers.
Kenli Li received the Ph.D. degree in computer science
from Huazhong University of Science and Technology,
China, in 2003. He was a visiting scholar at University
of Illinois at Urbana-Champaign from 2004 to 2005. He
is currently a full professor of computer science and
technology at Hunan University and deputy director
of National Supercomputing Center in Changsha. His
major research areas include parallel computing, high-
performance computing, grid and cloud computing. He has
published more than 130 research papers in international
conferences and journals such as IEEE-TC, IEEE-TPDS, IEEE-

TSP, JPDC, ICPP, CCGrid. He is an outstanding member of CCF. He is a member of the
IEEE and serves on the editorial board of IEEE Transactions on Computers.

Zhangjie Fu received his Ph.D. in computer science from
the College of Computer, HunanUniversity, China, in 2012.
He is currently an Associate Professor at the College of
Computer and Software, NanjingUniversity of Information
Science and Technology, China. His research interests
include Cloud & Outsourcing Security, Digital Forensics,
Network and Information Security. His research has been
supported byNSFC, PAPD, andGYHY. Zhangjie is amember
of IEEE, and a member of ACM.

Dr. Ming-Liang Xu is an associate professor in the
School of Information Engineering of Zhengzhou Univer-
sity, China, and currently is the director of CIISR (Center
for Interdisciplinary Information Science Research). His re-
search interests include computer graphics and computer
vision. Xu got his Ph.D. degree in computer science and
technology from the State Key Lab of CAD & CG at Zhejiang
University.


	Performance analysis and optimization for workflow authorization
	Introduction
	Related work
	Checking feasibility of role, SoD and BoD constraints
	Analyzing the coverage of temporal constraints
	Calculating the coverage of temporal constraints based on exact values of execution times
	Calculating the probability of immediate execution
	Maximizing IEP for workflow execution
	A case study:


	The workflow authorization methods
	The EAF authorization method
	The GAA authorization method
	Extending the GAA method to stochastic workflows

	Simulation experiments
	Temporal constraints
	Arrival times of workflows
	Execution times of the workflow tasks
	Hit ratio

	Conclusions
	Acknowledgment
	References


