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Abstract 

 

This paper considers a problem of scheduling on parallel machines where each 

machine requires maintenance activity once over a given time window. The objective is 

to find a coordinated schedule for jobs and maintenance activities to minimize the 

scheduling cost represented by either one of several objective measures including 

makespan, (weighted) sum of completion times, maximum lateness and sum of lateness. 

The problem is proved to be NP-hard in the strong sense in each case of the objective 

measures. Some restricted cases of the problem are also characterized for their 

complexities, for which the associated dynamic programming algorithms are derived. 
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Parallel Machine Scheduling with Maintenance Activities 

 

Abstract 

 

This paper considers a problem of scheduling on parallel machines where each 

machine requires maintenance activity once over a given time window. The objective is 

to find a coordinated schedule for jobs and maintenance activities to minimize the 

scheduling cost represented by either one of several objective measures including 

makespan, (weighted) sum of completion times, maximum lateness and sum of lateness. 

The problem is proved to be NP-hard in the strong sense in each case of the objective 

measures. Some restricted cases of the problem are also characterized for their 

complexities, for which the associated dynamic programming algorithms are derived. 
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1. Introduction and Problem Description  

 

The majority of machine scheduling models often assume that machines are available 

all the time for processing jobs over their associated planning horizon. However, this 

assumption is not realistic in many manufacturing situations, since machines require 

maintenance activity periodically to prevent malfunctions. During the associated 

maintenance activity machines are not available for processing jobs. Maintenance 

encompasses activities including installation, vehicles, equipment, or some physical 

assets enabling effective work. Preventive maintenance is an activity  that a priori 

prevents potential faults resulting in malfunctions and also prevents critical non-

availability of the system. Note that maintenance costs cover a big percentage of the 

total operating costs, making it very reasonable to include maintenance activities in the 

production schedule (Ángel-Bello et al., 2011). 

In the airline industry, planned maintenance activities can reduce production time by 

as much as 15% (Laalaoui and M’Hallah, 2016). Moreover, especially in semiconductor 

manufacturing, it is often observed that machines are idle while waiting for maintenance 

personnel to do preventive maintenance, even though jobs are waiting. Thus, the 

operations managers have to create their production schedule carefully so as to 

minimize their costs while avoiding unexpected resource unavailability. Obviously, 

careful coordination between maintenance activity and job processing would result in a 

better schedule, which is the motivation for this study. Here, the authors consider a 

coordinated scheduling model that takes into account such associated machine 

maintenance activities.  

In the literature, scheduling problems with maintenance activities incorporated can be 

classified into “fixed” and “coordinated” models. The first model considers the 

maintenance activity durations, which are known and fixed in advance, so that the 

starting and completion times of the maintenance activity are given. The problem of 

scheduling jobs with this type of maintenance has often been referred to in the literature 

as “scheduling with machine availability constraints”. Ángel-Bello et al. (2011), 

Hfaiedh et al. (2015), Laalaoui and M’Hallah (2016), Molaee et al. (2011), and Sadfi et 

al. (2005) have studied various single machine problems subject to various types of 
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machine availability constraints. Fu et al. (2011), Gedik et al. (2016), Liao and Sheen 

(2008), Mellouli et al. (2009), and Wang and Cheng (2015) have studied various parallel 

machine problems allowing various types of unavailable intervals for machines. Cheng 

and Wang (1999, 2000), Kubiak et al. (2002), Kubzin et al. (2009) and Lee (1997, 

1999) have studied a two machine flow shop problem allowing various types of 

unavailable intervals for machines.  

The second model is concerned with simultaneously determining when to conduct 

each maintenance activity and when to process each job. Some research has been 

conducted on scheduling maintenance activities and jobs jointly. For example, Graves 

and Lee (1999) and Cassady and Kutanoglu (2003) have studied single machine 

problems allowing maintenance activities to be scheduled jointly with jobs. Aggoune 

(2004) has studied a flowshop machine problem allowing maintenance activities to be 

made within any given time window. Costa et al. (2016), Lee and Chen (2000), and Sun 

and Li (2010) have studied some parallel machine problems, subject to the constraint 

that maintenance activity on each machine should be made within a given time window. 

Specifically, Lee and Chen (2000) have studied a parallel machine problem to minimize 

the weighted sum of completion times of jobs. They have proved that the problem is 

NP-hard and have derived a branch and bound algorithm based on the column 

generation approach. Sun and Li (2010) have researched two two-machine parallel 

machines with the makespan or sum of completion times. Costa et al. (2016) have 

developed a genetic algorithm for a parallel machine problem.  

This paper considers a coordinated scheduling model on parallel machines where 

each machine requires maintenance activity once over a given time window, as in Lee 

and Chen (2000). Moreover, two different maintenance activities are considered. The 

first one allows more than one machine to be put under maintenance simultaneously if 

necessary and is called “independent case”. The second one, called “dependent case”, 

allows only one machine to be put under maintenance at any time point due to 

insufficient maintenance resources (equipment or person); hence, the maintenance 

activity duration on machines cannot be overlapped onto each other. The model 

proposed here considers several different objectives of minimizing scheduling costs, 

each being represented by either one of several objective measures including makespan, 

(weighted) sum of completion times, maximum lateness and sum of lateness. Each of 
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these scheduling problems is proved to be NP-hard in the strong sense and then some 

solution properties are characterized. Therewith, solution algorithms are derived using a 

dynamic programming (DP) approach. A few restricted cases of the problems are also 

analyzed for their complexities. 

The proposed problem is stated in detail as follows: there are n jobs available at time 

zero to be scheduled on m identical parallel machines without preemption. Maintenance 

on each machine must be completed exactly once within the given time length T, that is, 

during the given time window [0, T], where the maintenance activity requires a 

maintenance time length t, while any job processing is allowed after time T. It is 

assumed that T t and T mt in the independent and dependent cases, respectively. 

processing time, weight, due date, and completion time of job j are denoted by pj, wj, dj 

and Cj , respectively. It is assumed that t, T, pj’s, wj’s and dj’s have integer values. 

Moreover, this paper does not allow any preemption, so that a job should not be allowed 

to start until completing its associated maintenance activity if there is not enough time 

to complete any job processing before starting maintenance activity on the machine, 

which may incur an occurrence of machine idle time. 

The standard classification scheme for scheduling problems (Pinedo (1995))  |  |  

is adapted in this paper where   indicates the scheduling environment,   describes 

the job characteristics or restrictive requirements, and   defines the objective function 

to be minimized. Accordingly, the proposed problem is represented by an identical 

parallel machines problem with  = “P”. For  , the problem considers “ind”, “dep”, 

“pj=p”, “dj=d” and “m=q” constraints, where “ind”, “dep”, “pj=p”, “dj=d” and “m=q” 

indicate the independent case, the dependent case, all identical processing times case, all 

identical due dates case, and the q identical parallel machines case, respectively. 

Moreover, for , the objective function of the proposed problem may be represented by 

one of the following: 

Cmax = jnj C1max  (makespan), 

 

n

j jC
1

= sum of completion times, 

 

n

j jjCw
1

= weighted sum of completion times, 

Lmax =  0,max1 jjnj dC   (maximum lateness), 
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 

n

j jL
1

=   


n

j jj dC
1

0,max  (sum of lateness). 

 

Table 1 provides the complexities of all of the tested scheduling problems associated 

with various objective measures. In the table, the complexity orders represent the 

computational time complexities of the associated DP algorithms, which are derived in 

Sections 2.1 and 4, where R1, R2, R3 and R4 are derived in Theorems 10 and 11 in 

Section 2. 

 

>> Insert Table 1 << 

 

2. General case analysis 

 

This section will prove that the problems P|ind|   and P|dep|  are NP-hard in the 

strong sense, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

Theorem 1. The problem P|ind|Cmax is NP-hard in the strong sense. 

Proof. The proof is done by reduction from the 3-Partition Problem (Garey and Johnson, 

1979), which is known to be NP-hard in the strong sense. The 3-Partition Problem is 

stated as follows: 

Given 3q elements being integer size e1,…, e3q, where qBe
q

i i  

3

1
 and B/4 < ei < 

B/2 for i = 1,…, 3q, does there exist a partition S1,…, Sq of the index set {1,…, 3q} such 

that |Sj|=3 and Be
jSi i 

 for j = 1,…, q? 

Now, consider the following instance of the problem P|ind|Cmax;  

n = 3q, m = q, t=qB, T = (q+1)B,  

pj = ej, j = 1,…, 3q. 

Moreover, define a threshold value, Q, as 

Q = B 

Then, it will be proved that there exists a feasible schedule for the problem instance 

satisfying the relation Cmax  Q if and only if there exists a solution to the 3-Partition 
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Problem. 

a) For the if-part; suppose that there are q disjoint sets S1,…, Sq which comprise a 

solution to the 3-Partition Problem, such as {x11, x12, x13}, {x21, x22, x23},…, {xq1, xq2, 

xq3}, where {x11, x12, x13, x21, x22, x23,…, xq1, xq2, xq3} = {e1, e2, e3, e4, e5, e6,…, e3q-2, e3q-1, 

e3q} and Bx
i ji  

3

1
 for j = 1,…, q. Then, the associated job sets 1S ={J1, J2, J3},…, 

qS  ={J3q-2, J3q-1, J3q} have processing times {x11, x12, x13}, {x21, x22, x23},…, {xq1, xq2, xq3}, 

respectively. Consider the schedule   such that three jobs in kS   and the maintenance 

activity are scheduled on machine k during [0, B] and [B, (q+1)B], respectively, for each 

k =1,…, q, where the three jobs in each job set kS   can be scheduled in arbitrary order 

without machine idle time allowed. The structure of the schedule   is depicted as in 

Figure 1. Then, the schedule   has the makespan Cmax =B=Q. 

 

>> Insert Figure 1 << 

 

b) For the only if-part; suppose a schedule   is feasible as satisfying the relation 

Cmax  Q. Any job cannot be scheduled after completing maintenance activity on any 

machine in the schedule  , since the maintenance length t is larger than Q. Then, all 

the jobs should be completed before starting the maintenance activity on each machine 

in the schedule  , that is, completed on each machine within the time interval [0, B], 

since T - t =B. Since there are q parallel machines and the total processing times of all 

the jobs is qB, the schedule   has no machine idle time. This implies that there exists 

a solution to the 3-Partition Problem. ■ 

 

Theorem 2. The problem P|dep|Cmax is NP-hard in the strong sense. 

Proof. The proof is similar to that of Theorem 1. ■ 

 

Theorem 3. The problem P|ind| 

n

j jC
1

 is NP-hard in the strong sense. 

Proof. The proof is done by reduction from the Numerical 3-Dimensional Matching 

Problem (Garey and Johnson, 1979) which is known to be NP-hard in the strong sense. 

The problem is stated as follows; 
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Given three sets X, Y, Z of q positive integers X={x1, x2,…, xq}, Y={y1, y2,…, yq} and 

Z={z1, z2,…, zq} such that   qBzyx
q

i iii  1
, decide if there exist one-to-one 

functions   and   defined on the sets S1, S2,…, Sq such that Bzyx iii  )()(  , for 

all Si =  )()( ,, iii zyx  , i=1,…, q. 

Now, consider the following instance of the problem P|ind| 

n

j jC
1

;  

n = 3q, m = q, t=20qB, T = 4B(5q+2),  

pj = B + xj, j = 1,…, q,  

pj = 2B + yj-q, j = q+1,…, 2q,  

pj = 4B + zj-2q, j = 2q+1,…, 3q. 

Moreover, define a threshold value, Q, as 

Q = 11qB +   


q

i iii zyx
1

23 . 

Then it will be proved that there exists a feasible schedule for the problem instance 

satisfying the relation  

n

j jC
1

 Q if and only if there exists a solution to the Numerical 

3-Dimensional Matching Problem.  

a) For the if-part; suppose that there are q disjoint sets S1,…, Sq, which comprise a 

solution to the Numerical 3-Dimensional Matching Problem, such as {x1, )1(y , 

)1(z },…, {xq, )(qy , )(qz } where xj + )( jy  + )( jz  = B, for j =1,…, q. Then, the 

associated job sets 1S ={J1, )1(qJ , )1(2 qJ },…, qS  ={Jq, )(qqJ  , )(2 qqJ  } have the 

processing times {B+x1, 2B+ )1(y , 4B+ )1(z },…, {B+xq, 2B+ )(qy , 4B+ )(qz }, 

respectively. Then, the total processing time of the three jobs in kS   is 

pk+ )(kqp  + )(2 kqz  = 7B+(xk+ )(ky + )(kz ) = 8B, for k =1,…, q. Consider the schedule 

  such that three jobs in kS   and the maintenance activity are scheduled on machine k 

during [0, 8B] and [8B, 4B(5q+2)], respectively, for each k =1,…, q, where the three 

jobs in each job set kS   are scheduled in SPT order without machine idle time allowed. 

The structure of the schedule   is depicted as in Figure 2. Then, the schedule   has 

the sum of completion times,  

q

j jC
3

1
=11qB +   


q

i iii zyx
1

23 =Q. 
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>> Insert Figure 2 << 

 

b) For the only if-part; suppose a schedule   is feasible as satisfying the relation 

 

n

j jC
1

 Q. Any job cannot be scheduled after completing maintenance activity on any 

machine in the schedule   since the maintenance length t is larger than Q. Then, all 

the jobs should be completed before starting the maintenance activity on each machine 

in the schedule  , that is, completed on each machine within the time interval [0, 8B], 

since T - t =8B. Since there are q parallel machines and the total processing times of all 

the jobs is 8qB, the schedule   has no machine idle time.  

Now, the following claims can be made for the schedule  ; 

Claim 1. In the schedule  , q jobs J2q+1,…, J3q are scheduled separately on q 

machines during [0, 8B]. Suppose, to the contrary, that there are two jobs Ji and Jj 

among J2q+1,…, J3q which are processed on the same machine during [0, 8B]. Then, the 

sum of their processing times is 8B +zi-2q+zj-2q, which is larger than the interval length 

8B, since 1  zi-2q, zj-2q <B, which is contradiction. 

Claim 2. In the schedule  , q jobs Jq+1,…, J2q are scheduled separately on q 

machines during [0, 8B]. Suppose, to the contrary, that there are two jobs Ji and Jj 

among Jq+1,…, J2q which are processed on the same machine during [0, 8B]. According 

to Claim 1, J2q+k is already scheduled on the machine, so that the sum of processing 

times of three jobs Ji, Jj, and J2q+k is 8B+yi-q+yj-q+zk, which is larger than the interval 

length 8B, since 1 yi-q, yj-q <B, which is a contradiction. 

Claim 3. In the schedule  , q jobs J1,…, Jq should be scheduled separately on q 

machines during [0, 8B]. Suppose, to the contrary, that there are two jobs Ji and Jj 

among J1,…, Jq which are processed on the same machine during [0, 8B]. According to 

Claims 1 and 2, Jq+l and J2q+k are already scheduled on the machine, so that the sum of 

processing times of four jobs Ji, Jj, Jq+l and J2q+k is 8B+xi+xj+yl+zk, which is larger than 

the interval length 8B, since 1  xi, xj <B, which is a contradiction. 

According to Claims 1, 2 and 3, each set of exactly three jobs selected from among 

J1,…, J3q should be scheduled (in SPT order) on each machine during [0, 8B]. This 

implies the existence of a solution to the Numerical 3-Dimensional Matching Problem. 

■ 
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Theorem 4. The problem P|dep| 

n

j jC
1

 is NP-hard in the strong sense. 

Proof. The proof is similar to that of Theorem 3. ■ 

 

Corollary 1. The problems P|ind| 

n

j jjCw
1

 and P|dep| 

n

j jjCw
1

 are also NP-hard in 

the strong sense. 

Proof. According to the result of Theorem 3 and 4, it is obvious. ■ 

 

Theorem 5. The problems P|ind|Lmax, P|dep|Lmax, P|ind| 

n

j jL
1

 and P|dep| 

n

j jL
1

 are 

NP-hard in the strong sense even if all the due dates are identical. 

Proof. Consider a special situation such that the value 0 is assigned to each due date dj’s, 

for j=1,…, n. Then, the problems P|ind|Lmax, P|dep|Lmax, P|ind|  

n

j jL
1

 and 

P|dep| 

n

j jL
1

 will be equivalent to the problems P|ind|Cmax, P|dep|Cmax, P|ind| 

n

j jC
1

 

and P|dep| 

n

j jC
1

, respectively. This implies that these problems are NP-hard in the 

strong sense even if all the due dates are identical, since their special cases are NP-hard 

in the strong sense. ■ 

 

As proved above, the problems P|ind|  and P|dep|   are NP-hard in the strong sense, 

where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. Now, this section provides 

non-dominated sequencing properties for the problems P|ind|   as in Theorem 6, where 

 {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

Theorem 6. For the problems P|ind|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, there exists an optimal schedule such that  

(1) for  {Cmax,  

n

j jC
1

}, all the scheduled jobs on each machine, as depicted in 

Figure 3-a), are in SPT (Shortest Processing Time) order, and no machine is idle. 
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(2) for  {Lmax,  

n

j jL
1

}, all the scheduled jobs on each machine, as depicted in 

Figure 3-a), are in EDD (Earliest Due Date) order, and no machine is idle. 

(3) for  = 

n

j jjCw
1

, all the scheduled jobs in each of the sets Bk and Ak (k=1,…, 

m) are in WSPT (Weighted Shortest Processing Time) order, where Bk and Ak 

denote sets of all the scheduled jobs before and after the maintenance activity, 

respectively, on machine k. Moreover, no machine is idle, as depicted in Figure 

3-b). 

Proof. This can be proved using interchange arguments. ■ 

 

>> Insert Figure 3 << 

 

Furthermore, non-dominated sequencing properties for the problems P|dep|  are 

provided as in Theorem 7, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

Theorem 7. For the problems P|dep| , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, and Bk and Ak are defined as in Theorem 6, there exists an optimal schedule 

such that  

(1) for  {Cmax,  

n

j jC
1

}, all the scheduled jobs in each of the sets Bk and Ak 

(k=1,…, m) are in SPT order. 

(2) for  {Lmax,  

n

j jL
1

}, all the scheduled jobs in each of the sets Bk and Ak 

(k=1,…, m) are in EDD order. 

(3) for  = 

n

j jjCw
1

, all the scheduled jobs in each of the sets Bk and Ak (k=1,…, 

m) are in WSPT order. 

Proof. This can be proved using interchange arguments. ■ 

 

Note that for the problems P|dep|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, there may exist idle time on any machine in an optimal schedule. Since it is 
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important to decide when to start a job-processing, when to start the maintenance 

activity and when to keep the machine idle, this paper provides the following theorem 

associated with the possible start-times of job-processing, maintenance activity and 

machine idle duration. 

 

Theorem 8. For the problems P|dep| , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, there exists an optimal schedule such that for each job j (j=1,…, n) and 

machine k (k=1,…, m), 

(1) the processing of job j starts at the completion time of another job or 

maintenance activity on a machine. 

(2) the maintenance activity on machine k starts at the completion time of any job 

on machine k or the maintenance activity on another machine. 

(3) there exists at most one idle time on each machine only before starting the 

maintenance activity. 

Proof. For (1), if all the machines are under process of other jobs or under maintenance 

activity, then job j should wait until at least one machine becomes available. For (2), if 

machine k is under process of any job or if another machine is under maintenance 

activity, then the maintenance activity on the machine cannot be made due to the 

dependent case assumption. For (3), suppose that there exists an optimal schedule *  

which has at least one idle time on machine k. Therewith, the following three cases need 

be discussed.  

Firstly, consider the case where machine idle time is inserted between two jobs j1 and j2 

such that job j1 precedes job j2 on machine k. Then, a non-dominated schedule ~  can 

be found by processing the two jobs consecutively without any idle time inserted, so 

that *~
   . This implies that the idle time can be eliminated in this case.  

Secondly, consider the case where machine idle time is inserted between maintenance 

activity and job j such that the maintenance activity precedes job j on machine k. Then, 

a non-dominated schedule ~  can be found by doing the maintenance activity and 

processing the job j consecutively without any idle time inserted on machine k, so that 

*~
   . This implies that the idle time can be eliminated in this case.  
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Thirdly, consider the case where machine idle time is inserted between job j and 

maintenance activity such that job j precedes the maintenance activity on machine k, 

where *
js  and *

jC  denote the starting and completion times of job j, respectively, and 

*

iMs  and *

iMC  denote the starting and completion times of the maintenance activity on 

machine i, for i=1,…, m, respectively. Then, from the result of (2), a non-dominated 

schedule ~  can be found by doing the maintenance activity on machine k during 

[
kMs~ ,

kMC
~

], where 
kMs~ = *

kMs , 
kMC

~
= *

kMC  and 

 =   ***
1

*** max,min
kiikk MMMmiMjM sCCsCs   , so that *~

   . If the relation 

 =  **
jM Cs

k
  holds, then the machine idle time will be eliminated. However, if the 

relation  <  **
jM Cs

k
  holds, then the machine idle time occurs at the amount, ( *

kMs -

*
jC -  ). This implies that the machine idle time can appear only before starting 

maintenance activity on machine k. Furthermore, there exists at most one idle time on 

each machine, since there is at most one maintenance activity on each machine during 

the planning horizon. ■ 

 

Without loss of generality, this paper assumes that the maintenance activity on 

machine k is made at the k-th order among m machines. Then, based on the result of 

Theorem 8, more specific non-dominated properties associated with the sets Bk and Ak, 

and the amount of the idle time can be provided for the problems P|dep|   as in 

Theorem 9, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

Theorem 9. For the problems P|dep| , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, there exists an optimal schedule such that 

(1) Sum(Bk) Sum(Bk+1) and ak ak+1, for k=1,…, m-1, where Sum(Bk)=  kBj jp , 

ak  0, akZ and ak denotes the number of scheduled jobs in Ak, for k =1,…, m. 

(2) the amount of idle time on machine k cannot be larger than the value   tk 1 , 

for k=1,…, m. 
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(3) Considering the relations yk=   tytBSum kk  1,max , for k = 2,…, m, where y1 

=  1BSum + t and yk denotes the start-time of the first-starting job in Ak (on 

machine k), that is, the completion time of the maintenance activity on machine 

k; if the relation yk =  kBSum + t holds, then there is no idle time on machine k, 

while if the relation yk >  kBSum + t holds, then there exists idle time on machine 

k. 

Proof. For (1), this can be proved using interchange arguments. For (2), there is no idle 

time on machine 1; otherwise, a non-dominated schedule can be found by eliminating 

the idle time on machine 1. Then, consider the situation where idle time does not appear 

on machine j (1 j<k), but appears on machines j+1,…, k consecutively, as depicted in 

Figure 4. Since Sum(Bj)  Sum(Bj+1) … Sum(Bk), the amount of the idle time on 

machine k cannot be larger than the value   tjk     tk 1  (due to 1 j<k). For (3), 

referring to Theorem 8 and Figure 4, it is obvious. ■ 

 

>> Insert Figure 4 << 

 

For the problems P|ind|   and P|dep|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, 

Lmax,  

n

j jL
1

}, non-dominated properties are provided to be used to restrict the search 

space, as in Theorems 10 and 11. 

 

Theorem 10. For the problems P|ind|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, there exists an optimal schedule such that on each machine,  


n

j jpP
1

 and 

 jnj pp  1max max , 

(1) the last scheduled job in Bk is completed no later than the time 

     maxmax1 1,min pmptmPtTR  , for k=1,…, m. 

(2) the first scheduled job in Ak starts no earlier than t and no later than (R1+t), and 

the last scheduled job in Ak is completed no later than the time 

  maxmax2 ptmpPR  , for k=1,…, m. 

Proof. For (1), the first term (T-t) implies that the maintenance activity should be 



  

 15 

completed before time T, so that the last scheduled job in Bk should be completed before 

(T-t), and the second term    maxmax1 pmptmP   can be derived. For (2), since 

the maintenance activity on each machine requires time duration t, the first scheduled 

job in Ak starts no earlier than t. Moreover, since there does not exist idle time in an 

optimal schedule (as in Theorem 6), the first scheduled job in Ak starts no later than 

(R1+t), from the result of (1). ■ 

 

Theorem 11. For the problems P|dep|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, there exists an optimal schedule such that on each machine,  

(1) the last scheduled job in Bk is completed no later than the time 

        maxmax3 21,1min pmpmtmPtkmTR  , for k=1,…, m. 

(2) the first scheduled job in Ak starts no earlier than tk   and no later than 

  tkmT  , and the last scheduled job in Ak is completed no later than the 

time    maxmax4 1 ptmpmPR  , for k=1,…, m. 

Proof. The proof is similar to that of Theorem 10. ■ 

 

In summary, for the problems P|ind|  , the associated optimal schedule needs to 

satisfy the properties specified as in Theorems 6 and 10, while for the problems P|dep|  , 

the associated optimal schedule needs to satisfy the properties specified as in Theorems 

7, 8, 9 and 11, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

2.1. DP algorithms 

 

This section derives DP Algorithm A for the problems P|ind|   based on Theorems 6 

and 10, where  {Cmax,  

n

j jC
1

, Lmax,  

n

j jL
1

}. 

 

DP Algorithm A 

Indexing: Index all the jobs in SPT order for the problems P|ind|Cmax and P|ind| 

n

j jC
1

, 
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and index all the jobs in EDD order for the problems P|ind|Lmax and P|ind| 

n

j jL
1

. 

Value Function: fj(u1,..., um, v1,…, vm) = minimum objective value of a partial schedule 

for jobs 1,…, j such that the total operation time (including job-processing or 

maintenance times) on machine k is uk, for k =1,…, m, where if vk=1, the 

maintenance activity on machine k is made during the time interval [0, uk], or if vk=0, 

the maintenance activity on machine k is not made during [0, uk]. 

Boundary Condition: f0(0,…, 0, 0,…, 0) = 0. 

Optimal Solution Value: 
 

 1,...,1,,...,min 1
,,...,1,,...,

1121

mn
tmpumkRutuu

uuf
n

j j

m

k kkm














   

 

Recurrence Relation: fj(u1,..., um, v1,…, vm) =  

 a) for the problem P|ind|Cmax ; 

 

   
 

     

    
































mkkmkkkjmkvtuTk

kmmkjkkjmkpuk

kk

jkkjkk

vvvvuutuuuf

uvvuupuuuf

Rmkvuif

ptmkvuandpmkvuif

kk

jk

,...,,0,,...,,,...,,,,...,min

,,...,,,...,,,,...,maxmin
min

1,0max,

1,1max1,0max,

1111111,1,

111111,

1

, 

b) for the problem P|ind| 

n

j jC
1

;  

 

   
 

    

    
































mkkmkkkjmkvtuTk

kmmkjkkjmkpuk

kk

jkkjkk

vvvvuutuuuf

uvvuupuuuf

Rmkvuif

ptmkvuandpmkvuif

kk

jk

,...,,0,,...,,,...,,,,...,min

,...,,,...,,,,...,min
min

1,0max,

1,1max1,0max,

1111111,1,

111111,

1

,  

c) for the problem P|ind|Lmax ;  

 

   
 

     

    
































mkkmkkkjmkvtuTk

jkmmkjkkjmkpuk

kk

jkkjkk

vvvvuutuuuf

duvvuupuuuf

Rmkvuif

ptmkvuandpmkvuif

kk

jk

,...,,0,,...,,,...,,,,...,min

,,...,,,...,,,,...,maxmin
min

1,0max,

1,1max1,0max,

1111111,1,

111111,

1

, 

d) for the problem P|ind| 

n

j jL
1

; 
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   
 

    

    
































mkkmkkkjmkvtuTk

jkmmkjkkjmkpuk

kk

jkkjkk

vvvvuutuuuf

duvvuupuuuf

Rmkvuif

ptmkvuandpmkvuif

kk

jk

,...,,0,,...,,,...,,,,...,min

,...,,,...,,,,...,min
min

1,0max,

1,1max1,0max,

1111111,1,

111111,

1

. 

 

In each recurrence relation, the first term represents an infeasible case such that there 

is no space to schedule job j on any machine. The second term represents that the 

associated partial schedule (u1,..., um, v1,…, vm) can be dominated according to Theorem 

10. The third term represents that job Jj is scheduled during [uk-pj, uk] on machine k, as 

depicted in Figure 5-a). The fourth term represents that the maintenance activity on 

machine k is made during [uk-t, uk], as depicted in Figure 5-b). 

In DP Algorithm A, there are a total of O(n(R1+R2)
m
) states and the function value of 

each state is calculated in O(m) time, so that DP Algorithm A can be applied to the 

problems P|ind|   in the complexity order of O(nm(R1+R2)
m
), where  {Cmax, 

 

n

j jC
1

, Lmax,  

n

j jL
1

}. 

 

>> Insert Figure 5 << 

 

Now, DP Algorithm B is also derived for the problem P|ind| 

n

j jjCw
1

 based on 

Theorems 6 and 10. Denote by xk the completion time of the last-starting job in Bk, and 

by yk the start-time of the first-starting job in Ak, and by zk the completion time of the 

last-starting job in Ak, where 0  xk R1, t yk R1+t, t zk R2, for k =1,…, m, as in 

Theorem 10. Then, the maintenance activity on machine k is made during [yk - t, yk]. 

 

DP Algorithm B 

Indexing: Index all the jobs in WSPT order. 

Value Function: fj(x1,..., xm, y1,…, ym, z1,…, zm) = minimum objective value of a partial 

schedule for jobs 1,…, j such that the scheduled jobs in Bk are processed during [0, 

xk] and the scheduled jobs in Ak are processed during [yk, zk], for k =1,…, m. 

Boundary Condition: f0(0,…, 0, y1,…, ym, z1,…, zm) = 0, if t  yk=zk  R1+t for k =1,…, m, 
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f0(x1,..., xm, y1,…, ym, z1,…, zm) = , if xk > 0 or yk < zk for k =1,…, m. 

Optimal Solution Value: 

 
   

 mmmn

pyzxmkytxzy

RzttRytRxzzyyxx
zzyyxxf

n

j j

m

k kkkkkkk

kkkmmm
,...,,,...,,,...,min 111

,,...,1,,

,,,0,...,,,...,,,...,

11

211111

 



 

Recurrence Relation: fj(x1,..., xm, y1,…, ym, z1,…, zm) =  

   

    

     


























kjmkjkkmmjmkpyzk

kjmmmkjkkjmkpxk

jkkmkjkmk

zwzzpzzzyyxxf

xwzzyyxxpxxxf

pyzandpxif

jkk

jk

,...,,,,...,,,...,,,...,min

,...,,,...,,,...,,,,...,min
min

maxmax,

1111111,

1111111,

11

. 

 

The relation xk = 0 represents the situation where any job cannot be scheduled in Bk, 

while the relation xk > 0 represents the situation where more jobs should be scheduled in 

Bk. Furthermore, the relation yk = zk represents the situation where any job cannot be 

scheduled in Ak, while the relation yk < zk represents the situation where more jobs 

should be scheduled in Ak. 

In the equation associated with the optimal solution value, the relation xk + t = yk 

represents that there does not exist machine idle time on machine k in an optimal 

schedule as in Theorem 6. 

In the recurrence relation, the first term represents an infeasible case such that there is 

no space to schedule job j on any machine. The second term represents that job Jj is 

scheduled in Bk during [xk-pj, xk], as depicted in Figure 6-a). The third term represents 

that job Jj is scheduled in Ak during [zk-pj, zk], as depicted in Figure 6-b).  

In DP Algorithm B, there are a total of O(nR1
2m

R2
m
) states and the function value of 

each state is calculated in O(m) time, so that DP Algorithm B can be applied to the 

problem P|ind| 

n

j jjCw
1

 in the complexity order of O(nmR1
2m

R2
m
). 

 

>> Insert Figure 6 << 

 

Moreover, DP Algorithm C is derived for the problems P|dep|  based on Theorems 7, 

8, 9 and 11, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. Recall that the 

maintenance activity on machine k is made at the k-th order among m machines. From 
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the result of Theorem 11, 0 xk R3, tk   yk   tkmT  , tk   zk  R4, where xk, yk 

and zk are defined as in DP Algorithm B. Then, the maintenance activity on machine k is 

made during [yk - t, yk]. 

 

DP Algorithm C 

Indexing: Index all the jobs in SPT order for the problems P|dep|Cmax and P|dep| 

n

j jC
1

, 

and index all the jobs in WSPT order for the problem P|dep| 

n

j jjCw
1

, and index all 

the jobs in EDD order for the problems P|dep|Lmax and P|dep| 

n

j jL
1

. 

Value Function: fj(x1,..., xm, y1,…, ym, z1,…, zm) = minimum objective value of a partial 

schedule for jobs 1,…, j such that the scheduled jobs in Bk are processed during [0, 

xk] and the scheduled jobs in Ak are processed during [yk, zk], for k =1,…, m. 

Boundary Condition: f0(0,…, 0, y1,…, ym, z1,…, zm) = 0, if tk   yk=zk   tkmT   

for k =1,…, m, f0(x1,..., xm, y1,…, ym, z1,…, zm) = , if xk > 0 or yk < zk for k =1,…, m. 

Optimal Solution Value:  

 

    
     

 mmmn

pyzxmktktxytyy

xxzyRztktkmTytkRxzzyyxx
zzyyxxf

n

j j

m

k kkkkkkk

kkkkkkkmmm
,...,,,...,,,...,min 111

,,...,1,10,

,,,,,0,...,,,...,,,...,

111

143111

 







 

Recurrence Relation: fj(x1,..., xm, y1,…, ym, z1,…, zm) =  

 a) for the problem P|dep|Cmax ; 

 

   

     

      


























kmkjkkmmjmkpyzk

kmmmkjkkjmkpxk

jkkmkjkmk

zzzpzzzyyxxf

xzzyyxxpxxxf

pyzandpxif

jkk

jk

,,...,,,,...,,,...,,,...,maxmin

,,...,,,...,,,...,,,,...,maxmin
min

maxmax,

1111111,

1111111,

11

, 

b) for the problem P|dep| 

n

j jC
1

;  

 

   

    

     


























kmkjkkmmjmkpyzk

kmmmkjkkjmkpxk

jkkmkjkmk

zzzpzzzyyxxf

xzzyyxxpxxxf

pyzandpxif

jkk

jk

,...,,,,...,,,...,,,...,min

,...,,,...,,,...,,,,...,min
min

maxmax,

1111111,

1111111,

11

,

  

c) for the problem P|dep| 

n

j jjCw
1

;  
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   

    

     


























kjmkjkkmmjmkpyzk

kjmmmkjkkjmkpxk

jkkmkjkmk

zwzzpzzzyyxxf

xwzzyyxxpxxxf

pyzandpxif

jkk

jk

,...,,,,...,,,...,,,...,min

,...,,,...,,,...,,,,...,min
min

maxmax,

1111111,

1111111,

11

. 

d) for the problem P|dep|Lmax ;  

 

   
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
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
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jkmkjkkmmjmkpyzk

jkmmmkjkkjmkpxk

jkkmkjkmk

dzzzpzzzyyxxf
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pyzandpxif

jkk

jk

,,...,,,,...,,,...,,,...,maxmin

,,...,,,...,,,...,,,,...,maxmin
min

maxmax,

1111111,

1111111,

11

, 

e) for the problem P|dep| 

n

j jL
1

; 

 

   

    

     










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
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





jkmkjkkmmjmkpyzk

jkmmmkjkkjmkpxk

jkkmkjkmk

dzzzpzzzyyxxf

dxzzyyxxpxxxf

pyzandpxif

jkk

jk

,...,,,,...,,,...,,,...,min

,...,,,...,,,...,,,,...,min
min

maxmax,

1111111,

1111111,

11

. 

 

In the equation associated with the optimal solution value, the relation xk  xk+1 

implies the relation Sum(Bk) Sum(Bk+1) in Theorem 9, and the relation 0 yk - xk – 

t   tk 1  represents that the amount of idle time on machine k cannot be larger than 

the value   tk 1  as in Theorem 9, and the relation yk yk+1 - t represents that the 

maintenance activity on machine k precedes that on machine (k+1). 

In the recurrence relation, the first term represents an infeasible case such that there is 

no space to schedule job j on any machine. The second term represents that job Jj is 

scheduled in Bk during [xk-pj, xk], as depicted in Figure 6-a). The third term represents 

that job Jj is scheduled in Ak during [zk-pj, zk], as depicted in Figure 6-b).  

In DP Algorithm C, there are a total of O(nR3
m
R4

m
T

m
) states and the function value of 

each state is calculated in O(m) time, so that DP Algorithm C can be applied to the 

problems P|dep|   in the complexity order of O(nmR3
m
R4

m
T

m
), where  {Cmax, 

 

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

This section has derived three DP Algorithms A, B and C for the problems 

P|ind|  and P|dep|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. Some of 

their restricted cases will be characterized in the following sections. 
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3. Fixed number of machines case 

 

This section shows first that the proposed scheduling problems with only two 

machines, P|ind, m=2|  and P|dep, m=2|   are NP-hard, where  {Cmax,  

n

j jC
1

, 

 

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

Theorem 12. The problems P|ind, m=2| 

n

j jC
1

and P|dep, m=2| 

n

j jC
1

 are NP-hard. 

Proof. Lee and Chen (2000) have proved that the problems P|ind, m=2| 

n

j jC
1

 and 

P|dep, m=2| 

n

j jC
1

 are NP-hard by reduction from the Partition Problem.  

 

Corollary 2. The problems P|ind, m=2| 

n

j jjCw
1

 and P|dep, m=2| 

n

j jjCw
1

 are also 

NP-hard. 

Proof. According to the result of Theorem 12, it is obvious. ■ 

 

Theorem 13. The problems P|ind, m=2|Cmax and P|dep, m=2|Cmax are NP-hard. 

Proof. The proof is similar to that of Lee and Chen (2000) associated with Theorem 12. 

■ 

 

Theorem 14. The problems P|ind, m=2|Lmax, P|dep, m=2|Lmax, P|ind, m=2| 

n

j jL
1

 and 

P|dep, m=2| 

n

j jL
1

 are NP-hard even if all the due dates are identical. 

Proof. The proof is similar to that of Theorem 5. ■ 

 

The results of Theorems 12, 13 and 14 imply that the problems P|ind, m=q( 2)| and 

P|dep, m=q(  2)|   are NP-hard, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}. Now, it will be proved that the problems P|ind, m=q(  2)|  and P|dep, 
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m=q( 2)|  are NP-hard in the ordinary sense, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, 

Lmax,  

n

j jL
1

}. 

 

Theorem 15. The problems P|ind, m=q( 2)| and P|dep, m=q( 2)|  are NP-hard in 

the ordinary sense, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

Proof. It has been shown that those problems are NP-hard as shown in Theorems 12, 13, 

14 and Corollary 2. DP Algorithm A can be applied to the problems P|ind, m=q( 2)|  

in the pseudo-polynomial complexity order of O(nq(R1+R2)
q
), where  {Cmax, 

 

n

j jC
1

, Lmax,  

n

j jL
1

}. DP Algorithm B can be applied to the problem P|ind, 

m=q( 2)| 

n

j jjCw
1

 in the pseudo-polynomial complexity order of O(nqR1
2q

R2
q
). DP 

Algorithm C can be applied to the problems P|dep, m=q(  2)|   in the pseudo-

polynomial complexity order of O(nqR3
q
R4

q
T

q
), where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, 

Lmax,  

n

j jL
1

}. Thus, those problems are NP-hard in the ordinary sense. ■ 

 

4. Identical processing time case  

 

This section considers the case when all the processing times are identical. Firstly, for 

the problems P|ind, pj=p|   non-dominated properties are provided as in Theorem 16, 

where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

Theorem 16. For the problems P|ind, pj=p|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, 

Lmax,  

n

j jL
1

}, there exists an optimal schedule such that  

(1) for  {Cmax,  

n

j jC
1

}, all the scheduled jobs on each machine are in 

arbitrary order without machine idle time allowed. 
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(2) for  = 

n

j jjCw
1

, all the scheduled jobs on each machine are in non-increasing 

weight order without machine idle time allowed. 

(3) For  {Lmax,  

n

j jL
1

}, all the scheduled jobs on each machine are in EDD 

order without machine idle time allowed. 

Proof. This can be proved using interchange arguments. ■ 

 

Now, this paper derives an optimal Algorithm D for the problems P|ind, pj=p|  

based on Theorems 16, where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}. 

 

Algorithm D 

Indexing: index all the jobs in arbitrary order for the problems P|ind, pj=p|Cmax and P|ind, 

pj=p| 

n

j jC
1

, and index all the jobs in non-increasing weight order for the problem 

P|ind, pj=p| 

n

j jjCw
1

, and index all the jobs in EDD order for the problems P|ind, 

pj=p|Lmax and P|ind, pj=p| 

n

j jL
1

. 

Schedule Construction 

Step 1. Set k=1. If the relation k    ptT   holds, then go to Step 2. Otherwise, go 

to Step 4. 

Step 2. If mk   n, then m jobs are scheduled on m machines separately and go to 

Step 3. Otherwise, go to Step 7. 

Step 3. Set k = k +1. If the relation k    ptT   holds, then go to Step 2. 

Otherwise, go to Step 4.  

Step 4. The maintenance activities on all the machines are made simultaneously 

during [   pptT  ,   pptT  + t].  

Step 5. If mk   n, then m jobs are scheduled on m machines separately and go to 

Step 6. Otherwise, go to Step 7.  

Step 6. Set k = k +1 and go to Step 5. 

Step 7. The remaining   mkn  1  jobs are scheduled on m machines separately. 
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For the problems P|ind, pj=p|  , where  {Cmax,  

n

j jC
1

}, the complexity of the 

optimal Algorithm D is in the order of O(n). For the problems P|ind, pj=p| , where 

 { 

n

j jjCw
1

, Lmax,  

n

j jL
1

}, the complexity of the optimal Algorithm D is in the 

order of  nnO log .  

Now, for the problems P|dep, pj=p|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, non-dominated sequencing properties are provided as in Theorem 17. 

 

Theorem 17. For the problems P|dep, pj=p|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, 

Lmax,  

n

j jL
1

}, there exists an optimal schedule such that 

(1) for  {Cmax,  

n

j jC
1

}, all the scheduled jobs on each machine are in 

arbitrary order. 

(2) for  = 

n

j jjCw
1

, all the scheduled jobs on each machine are in non-increasing 

weight order. 

(3) For  {Lmax,  

n

j jL
1

}, all the scheduled jobs on each machine are in EDD 

order. 

Proof. This can be proved using interchange arguments. ■ 

 

Note that for the problems P|dep, pj=p|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, 

Lmax,  

n

j jL
1

}, there may exist idle time in an optimal schedule, so that Theorem 8 in 

Section 2 still holds. Furthermore, non-dominated properties are provided as in Theorem 

18, which is similar to Theorem 9 in Section 2. 

 

Theorem 18. For the problems P|dep|  , where  {Cmax,  

n

j jC
1

,  

n

j jjCw
1

, Lmax, 

 

n

j jL
1

}, there exists an optimal schedule such that 

(1) bk  bk+1 and ak ak+1, for k=1,…, m-1, where bk and ak denote the number of 
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scheduled jobs in Bk and Ak, respectively, and bk, ak 0, and ak, bkZ, for k 

=1,…, m. 

(2) the amount of idle time on machine k cannot be larger than the value   tk 1 , 

for k=1,…, m. 

(3) Considering the relations yk =  tytbp kk  1,max , for k = 2,…, m, where y1 

= 1bp  + t, tk   yk   tkmT   and yk is defined as in Theorem 9; if the 

relation yk = kbp  + t holds, then there is no idle time on machine k, while if the 

relation yk > kbp  + t holds, then there exists idle time on machine k. 

(4) the total number of all the combinations (y1,…, ym) cannot be larger than the 

value (n+1)
m
. 

Proof. For (1), (2) and (3), the proof is similar to that of Theorem 9. For (4), the 

following relations hold; 

y1 = 1bp  + t, 

y2 =  tytbp  12 ,max =  tbptbp 2,max 12   

y3 =  tytbp  23 ,max =   ttbptbptbp  2,max,max 123  

… 

yk 

=  tytbp kk  1,max =

    ttttbptbptbp kkk   .....max,max,max,max 21 . 

Then, the total number of values of y1 is (n+1), since 0  b1 n. Given any value of y1, 

the total number of values of y2 cannot be larger than the value (n+1), since 0 b2 n, so 

that the total number of all the possible (y1, y2) pairs cannot be larger than the value 

(n+1)
2
. Furthermore, if the values of y1,…, yk-1 are given at any values, then the total 

number of values of yk cannot be larger than the value (n+1), since 0 bk n, for k=2,…, 

m, so that the total number of all the possible (y1,…, yk) tuples cannot be larger than the 

value (n+1)
k
. Therefore, the total number of all the combinations (y1,…, ym) cannot be 

larger than the value (n+1)
m
. ■ 

 

In summary, the associated optimal schedule needs to satisfy the properties specified 

as in Theorems 17 and 18. Now, this paper derives DP Algorithm E for the problems 
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P|dep, pj=p|   based on Theorems 8, 11, 17 and 18, where  {Cmax,  

n

j jC
1

, 

 

n

j jjCw
1

, Lmax,  

n

j jL
1

}. bk, ak and yk are defined as in Theorem 18, where y1 

= 1bp  + t, yr =  tytbp rr  1,max , for r =2,…, m, tk   yk   tkmT  , and bk, 

ak  0, and ak, bkZ, for k =1,…, m, and   nba
m

k kk  1
. Then, the maintenance 

activity on machine k is made during [yk - t, yk]. 

 

DP Algorithm E 

Indexing: index all the jobs in arbitrary order for the problems P|dep, pj=p|Cmax and 

P|dep, pj=p| 

n

j jC
1

, and index all the jobs in non-increasing weight order for the 

problem P|dep, pj=p| 

n

j jjCw
1

, and index all the jobs in EDD order for the 

problems P|dep, pj=p|Lmax and P|dep, pj=p| 

n

j jL
1

. 

Value Function: fj(b1,..., bm, y1,…, ym, a1,…, am) = minimum objective value of a partial 

schedule for jobs 1,…, j such that bk jobs in Bk are processed during [0, kbp  ] and 

ak jobs in Ak are processed during [yk, yk+ kap  ], for k =1,…, m. 

Boundary Condition: f0(0,…, 0, y1,…, ym, 0,…, 0) = 0, if y1 = 1bp  + t, yr 

=  tytbp rr  1,min  for r =2,…, m, tk   yk   tkmT   and 0 bk n, for k 

=1,…, m. 

Optimal Solution Value: 

   

       
 mmmn

nabmkZbabaaabbtkpbytkmTytk

mrtytbpytbpyaayybb
aayybbf

m

k kkkkkkkkkkkkk

rrrmmm
,...,,,...,,,...,min 111

,,...,1,,,0,,,,1,

,,...,2,,max,,...,,,...,,,...,

111

111111





 



 

Recurrence Relation: fj(b1,..., bm, y1,…, ym, a1,…, am) =  

a) for the problem P|dep, pj=p|Cmax ; 

 
     
     













kkmkkkmmjmkak

kmmmkkkjmkbk

apyaaaaayybbf

bpaayybbbbbf

k

k

,,...,,1,,...,,,...,,,...,maxmin

,,...,,,...,,,...,,1,,...,maxmin
min

1111111,0

1111111,0
 

b) for the problem P|dep, pj=p| 

n

j jC
1

;  

 
    
    













kkmkkkmmjmkak

kmmmkkkjmkbk

apyaaaaayybbf

bpaayybbbbbf

k

k

,...,,1,,...,,,...,,,...,min

,...,,,...,,,...,,1,,...,min
min

1111111,0

1111111,0
 



  

 27 

c) for the problem P|dep, pj=p| 

n

j jjCw
1

;  

    
      













kkjmkkkmmjmkak

kjmmmkkkjmkbk

apywaaaaayybbf

bpwaayybbbbbf

k

k

,...,,1,,...,,,...,,,...,min

,...,,,...,,,...,,1,,...,min
min

1111111,0

1111111,0
 

d) for the problem P|dep, pj=p|Lmax ;  

 

     
     













jkkmkkkmmjmkak

jkmmmkkkjmkbk

dapyaaaaayybbf

dbpaayybbbbbf

k

k

,,...,,1,,...,,,...,,,...,maxmin

,,...,,,...,,,...,,1,,...,maxmin
min

1111111,0

1111111,0

 

 e) for the problem P|dep, pj=p| 

n

j jL
1

; 

 
    
    













jkkmkkkmmjmkak

jkmmmkkkjmkbk

dapyaaaaayybbf

dbpzzyybbbbbf

k

k

,...,,1,,...,,,...,,,...,min

,...,,,...,,,...,,1,,...,min
min

1111111,0

1111111,0
 

 

In the equation associated with the optimal solution value, the relation yk - 

pbk    tk 1  represents that the amount of idle time on machine k cannot be larger 

than the value   tk 1  as in Theorem 18. 

In the recurrence relation, the first term represents that job Jj is scheduled in Bk during 

[p(bk-1), pbk]. The second term represents that job Jj is scheduled in Ak during [yk+p(ak-

1), yk+pak]. 

In DP Algorithm E, since 0  bk  n, 0  ak  n, and the total number of all the 

combinations (y1,…, ym) cannot be larger than the value (n+1)
m
, there are a total of 

O((n+1)
3m

) states and the function value of each state is calculated in O(m) time, so that 

DP Algorithm E can be applied to the problems P|dep, pj=p|  , where  {Cmax, 

 

n

j jC
1

,  

n

j jjCw
1

, Lmax,  

n

j jL
1

}, in the complexity order of O(m(n+1)
3m

), which is 

a polynomial complexity order for any fixed m. However, their problem complexities 

remain open to prove for arbitrary value of m. 

 

5. Identical due date case  

 

As proved in Theorem 5 in Section 2, the problems P|ind, dj=d|  and P|dep, dj=d|  
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are NP-hard in the strong sense, where  {Lmax,  

n

j jL
1

}. However, DP Algorithm A 

can be applied to the problems P|ind, dj=d|   in the complexity order of O(nm(R1+R2)
m
), 

where  {Lmax,  

n

j jL
1

}. DP Algorithm C can be applied to the problems P|dep, 

dj=d|   in the complexity order of O(nmR3
m
R4

m
T

m
), where  {Lmax,  

n

j jL
1

}. 

6. Conclusion 

 

This paper considers the  problem of scheduling on parallel machines, where each 

machine requires maintenance activity once during a given time window. In the problem 

presented here, two different maintenance activities are considered, including the 

independent case and the dependent case. The first one allows more than one machine to 

be under maintenance activity simultaneously, if necessary The second one allows only 

one machine to be under maintenance activity at any time point. Thus, the complexities 

of various parallel machine problems are characterized with each of the two 

maintenance activities considered for various scheduling measures. Moreover, some 

restricted cases of the proposed problem are also characterized for their complexities, 

for which the associated DP algorithms are derived. 
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Table 1. Complexities of the scheduling problems. 
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Figure 1. The structure of the schedule  . 
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Figure 2. The structure of the schedule  . 
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Figure 3. Illustrative examples associated with Theorem 6. 
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Figure 4. Illustrative example associated with Theorem 9. 
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Figure 5. The possible cases in DP Algorithm A. 
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Figure 6. The possible cases in DP Algorithms B and C. 
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Highlights of this paper 

 

- Parallel machine scheduling with maintenance activity.  

- makespan, sum of completion times, maximum lateness and sum of lateness.  

- For each scheduling measure, the problem is proved to be strongly NP-hard.  

- Some restricted cases are also characterized for their complexities. 

 

 


