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Abstract In this paper, we propose a class of parameterized upper and lower tri-
angular splitting (denoted by PULTS) methods for solving nonsingular saddle point
problems. The eigenvalues and eigenvectors of iteration matrix of the proposed iter-
ation methods are analyzed. It is shown that the proposed methods converge to the
unique solution of linear equations under certain conditions. Besides, the optimal
iteration parameters and corresponding convergence factors are obtained with some
special cases of the PULTSmethods. Numerical experiments are presented to confirm
the theoretical results, which implies that PULTS methods are effective and feasible
for saddle point problems.
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1 Introduction

In this paper, we consider the following large and sparse saddle point problems of the
form: (

A B

B� O

) (
x

y

)
=

(
p

q

)
, (1.1)
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where A ∈ Rm×m is a symmetric positive definite matrix, B ∈ Rm×n is a matrix of
full column rank, p ∈ Rm and q ∈ Rn (m ≥ n) are two given vectors, B� denote
the transpose of B, these assumptions guarantee the existence and uniqueness of the
solution of saddle point problems (1.1). Many scientific computing and engineer-
ing applications can derive linear systems structured as (1.1), such as computational
fluid dynamics, image reconstruction, mixed finite element approximation of elliptic
PDEs, constrained least-squares problem, network computer graphics, and so forth.
See [1–7] and references therein.

Although the direct methods are very attractive in the form of preconditioners
embedded in an iterative framework for the saddle point problems (1.1), iteration
methods become more efficient than direct methods when the matrices A and B are
large and sparse. While matrix B of (1.1) is rank deficient, then we call linear (1.1) a
singular saddle point problem. Many authors proposed a variety of iteration methods
for singular saddle point problems. Yang et al. [14] proposed the Uzawa-HSS method
to solve singular saddle point problems; the Uzawa-HSS method converges to a solu-
tion of the singular saddle point problem under certain conditions. A number of other
efficient iteration methods have been proposed for singular saddle point problems,
including the HSS-type methods [16, 17], parameterized Uzawa (PU) methods [15],
Uzawa-type methods [18, 19], the matrix splitting iteration methods [20], and Krylov
subspace methods [8].

While rank (B) = n, then linear system (1.1) is called the nonsingular saddle point
problems. A number of efficient iteration methods have been studied in the litera-
ture, such as null space methods [9], Uzawa-type methods [21], HSS method and its
variants [22, 23], matrix splitting iteration method [24] and Krylov subspace meth-
ods [25], and so on. Bai and Wang [10] studied the parameterized inexact Uzawa
(PIU) methods for solving the nonsingular saddle point problems. Chen and Jiang
[11] generalized the PIU method and presented the generalized PIU method. More-
over, Liang and Zhang [12] presented some variants of the accelerated parameterized
inexact Uzawa (VAPIU) methods for nonsingular saddle point problems based on the
SOR and SSOR splitting of coefficient matrix of linear system (1.1). Bai et al. [13]
proposed the GSOR method for nonsingular saddle point problems, which includes
the classical Uzawa method [26] and SOR-like method [27] as special cases.

Recently, Zheng and Ma [29] proposed the upper and lower triangular (ULT) split-
ting iteration method for solving the nonsingular saddle point problems. In order to
have a faster computing speed, we generalized the ULT iteration method by intro-
ducing a new parameter. In this paper, we presented the parameterized ULT splitting
methods for the nonsingular saddle point problems; the proposed methods are based
on parameterized upper and lower triangular splitting of coefficient matrix of non-
singular saddle point problems (1.1). We call the new method as PULTS methods
for simplicity. The convergence of the new methods are analyzed. The optimal iter-
ation parameters and corresponding convergence factors are obtained with some
special cases of the PULTS iteration methods. Numerical experiments are provided
to confirm the theoretical results and illustrate the effectiveness of the new methods.

The paper is organized as follows: In Section 2, we propose the parameter-
ized upper and lower splitting methods for nonsingular saddle point problems.
In Section 3, we devote to investigate the convergence property for the proposed
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methods. Numerical results are presented in Section 4 to show the effectiveness of
the new methods. Finally, some conclusions are given in Section 5.

2 The PULTS methods

In this section, we first propose the PULTS iteration methods to solve the saddle point
problem (1.1). Evidently, the linear system (1.1) can be rewritten as(

A B

−B� O

) (
x

y

)
=

(
p

−q

)
, (2.1)

where A ∈ Rm×m is a symmetric positive definite matrix, B ∈ Rm×n is a matrix of
full column rank. Let

Â =
(

A B

−B� O

)
, z =

(
x

y

)
, b =

(
p

−q

)
,

then (2.1) can be expressed as
Âz = b. (2.2)

For the coefficient matrix Â of the linear (2.1), we make the following matrix
splitting:

Â =
(

A B

−B� O

)
=

(
A O

−B� αQ

)
−

(
O −B

O αQ

)
:= M1 − N1

=
(

A B

O βQ

)
−

(
O O

B� βQ

)
:= M2 − N2, (2.3)

where Q is a symmetric and positive definite matrix and parameters α and β are
positive real numbers. Obviously, matrix M1, M2 are both invertible matrices. We
can find that M1, N2 are lower triangular matrices and M2, N1 are upper triangular
matrices.

Analogously to the classical alternating direction implicit iteration method, we
proposed the PULTS iteration methods to solve the linear (2.1) by making use of the
matrix splitting (2.3). And it follows that:

The PULTS methods Given an initial vectors z(0) ∈ Rm+n, and two positive real
parameters α, β, for k = 0, 1, 2, · · · , until the iteration sequence {zk} converges to
the exact solution of the linear (2.1), compute{

M1z
(k+ 1

2 ) = N1z
(k) + b

M2z
(k+1) = N2z

(k+ 1
2 ) + b

The convergence analysis of PULTS methods will be given in Section 3 of this
paper. On the basis of (2.3) and the above PULTS methods, we have proposed we
can obtain the following specific algorithmic procedures of the PULTS methods.

Specific algorithmic procedures of the PULTS method Let x(0) ∈ Rm, y(0) ∈ Rn,
Q is a symmetric and positive definite matrix, and we have an initial guess z(0) =
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(x(0)�, y(0)�)
�
. For k = 0, 1, 2, · · · , until the iteration sequence {(x(k)�, y(k)�)

�}
converges to the exact solution of the linear (2.1), we can compute the iterate z(k+1) =
(x(k+1)�, y(k+1)�)

�
according to the following procedure:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x

(
k+ 1

2

)
= x(k) + A−1(p − Ax(k) − By(k))

y

(
k+ 1

2

)
= y(k) + 1

α
Q−1(B�x

(
k+ 1

2

)
− q)

y(k+1) = y

(
k+ 1

2

)
+ 1

β
Q−1(B�x

(
k+ 1

2

)
− q)

x(k+1) = A−1(p − By(k+1))

(2.4)

Obviously, the PULTS iteration methods will reduce to ULT splitting iteration
method when α = β = 1.

3 Convergence analysis of the PULTS methods

In this section, we turn to study the convergence rate of the PULTS iteration methods.
Moreover, necessary and sufficient conditions for the convergence of the PULTS
methods are also provided.

Theorem 3.1 Let A ∈ Rm×m and Q ∈ Rn×n are symmetric and positive definite
matrix, B ∈ Rm×n is a column full rank matrix. Then, the iteration matrix T (α, β)

of the PULTS iteration methods is given by

T (α, β) = M−1
2 N2M

−1
1 N1 =

⎛
⎝ O −A−1B[I −

(
1
α

+ 1
β

)
Q−1B�A−1B]

O I −
(
1
α

+ 1
β

)
Q−1B�A−1B

⎞
⎠ .

Suppose λ is an eigenvalue of the iteration matrix T (α, β) of the PULTS method,
λ = 0 with multiple m. The remaining n eigenvalues of T (α, β) satisfy the following
equation:

λ − 1 +
(
1

α
+ 1

β

)
μi = 0, (3.1)

here, μi (i = 1, 2, · · · , n) are the eigenvalues of the matrix Q−1B�A−1B. So,we
know that

ρ(T (α, β)) = max

{∣∣∣∣1 −
(
1

α
+ 1

β

)
μmin

∣∣∣∣,
∣∣∣∣1 −

(
1

α
+ 1

β

)
μmax

∣∣∣∣
}
,

where μmax and μmin are the largest and smallest eigenvalues of the matrix
Q−1B�A−1B, respectively.

Proof According to the equations⎧⎨
⎩

M1z

(
k+ 1

2

)
= N1z

(k) + b,

M2z
(k+1) = N2z

(
k+ 1

2

)
+ b,
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the PULTS methods can be descried as follows:

z(k+1) = M−1
2 N2M

−1
1 N1z

(k) + M−1
2 (I + N2M

−1
1 )b

= T (α, β)z(k) + M(α, β)−1b, (3.2)

where the iteration matrix of the PULTS iteration methods is

T (α, β) = M−1
2 N2M

−1
1 N1

=
(

A B
O βQ

)−1
(

O O

B� βQ

)(
A O

−B� αQ

)−1 (
O −B
O αQ

)

=
(

A−1 − 1
β
A−1BQ−1

O 1
β
Q−1

) (
O O

B� βQ

)(
A−1 O

1
α
Q−1B�A−1 1

α
Q−1

) (
O −B
O αQ

)

=
(

− 1
β
A−1BQ−1B� −A−1B
1
β
Q−1B I

) (
O −A−1B

O I − 1
α
Q−1B�A−1B

)

=
⎛
⎝ O −A−1B

[
I −

(
1
α

+ 1
β

)
Q−1B�A−1B

]
O I −

(
1
α

+ 1
β

)
Q−1B�A−1B

⎞
⎠ ,

If λ is an eigenvalue of the T (α, β), then we have

det(λI − T (α, β)) = det

⎛
⎝ λIm A−1B[In −

(
1
α

+ 1
β

)
Q−1B�A−1B]

O (λ − 1)In +
(
1
α

+ 1
β

)
Q−1B�A−1B

⎞
⎠

= λm det
(
(λ − 1)In +

(
1

α
+ 1

β

)
Q−1B�A−1B

)

= 0.

Here, we denote the m-by-m and n-by-n identity matrix by Im and In. Then, λ = 0
is eigenvalue of the iteration matrix with multiply m, and we can easily find that the
remaining n eigenvalues of the iteration matrix T (α, β) satisfy (3.1). It is easy to

see that matrix Q−1B�A−1B is similar to matrix Q− 1
2 B�A−1BQ− 1

2 , and we can
introduce matrix Q− 1

2 B�A−1BQ− 1
2 that is symmetric and positive definite, so μi

are positive real (i = 1, 2, · · · , n). Finally, according to the definition of spectral
radius, we have

ρ(T (α, β)) = max

{
|1 −

(
1

α
+ 1

β

)
μmin

∣∣∣, ∣∣∣1 −
(
1

α
+ 1

β

)
μmax

∣∣∣
}

.

This completes the proof.

Corollary 3.1 The PULTS iteration schemes (3.2) can be induced by the matrix
splitting Â = M(α, β) − N(α, β), where

N(α, β) =
(

O O

O
αβ

α+β
Q − B�A−1B

)
.
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Proof According to (3.2), we have

M(α, β) = M1(M1 + N2)
−1M2

=
(

A O

−B� αQ

)(
A−1 O

O 1
α+β

Q−1

) (
A B

O βQ

)

=
(

A B

−B� αβ
α+β

Q − B�A−1B

)
,

in fact, if we let

N(α, β) = M(α, β) − Â

=
(

O O

O
αβ

α+β
Q − B�A−1B

)
,

then

Â = M(α, β) − N(α, β),

is a splitting of coefficient matrix Â, and PULTS methods also can be induced by this
matrix splitting.

Theorem 3.2 Let A ∈ Rm×m and Q ∈ Rn×n are symmetric and positive definite
matrix; B ∈ Rm×n is a column full rank matrix. Suppose λ �= 0 is an eigenvalue
of iteration matrix T (α, β) of the PULTS iteration methods and (u�, v�)� be the
corresponding eigenvector, then u = −A−1Bv (v �= 0), where u ∈ Cm and v ∈ Cn

are two complex vectors.

Proof From the proof of Theorem 3.1, we have⎛
⎝ O −A−1B[I −

(
1
α

+ 1
β

)
Q−1B�A−1B]

O I −
(
1
α

+ 1
β

)
Q−1B�A−1B

⎞
⎠ (

u

v

)
= λ

(
u

v

)
,

this means ⎧⎨
⎩

−A−1B[I −
(
1
α

+ 1
β

)
Q−1B�A−1B]v = λu

v −
(
1
α

+ 1
β

)
Q−1B�A−1Bv = λv.

(3.3)

Substituting the second equality in (3.3) into the first equality in (3.3), we get
−λA−1Bv = λu. Due to λ �= 0, it holds u = −A−1Bv. Notice that when v = 0,
we have u = 0. So, according to the definition of eigenvector, we have v �= 0. The
proof is completed.

The following result will give the sufficient and necessary conditions of the
convergence of the PULTS iteration methods.
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Theorem 3.3 If matrixA ∈ Rm×m and matrixQ ∈ Rn×n are symmetric and positive
definite, B ∈ Rm×n is a column full rank matrix. Then, the PULTS iteration methods
are convergent if and only if

μmax <
2αβ

α + β
.

Proof Suppose λ �= 0 is an eigenvalue of iteration matrix T (α, β) of the PULTS iter-
ation methods. PULTS iteration methods are convergent if and only if ρ(T (α, β)) <

1. Combining with linear equation (3.1), we can see that the PULTS iteration methods
are convergent if and only if

|λ| =
∣∣∣1 −

( 1

α
+ 1

β

)
μi

∣∣∣ < 1.

it is equivalent to

0 < μi <
2αβ

α + β
.

From the proof of Theorem 3.1, we have μi is positive real, so the PULTS iteration
methods are convergent if and only if μi <

2αβ
α+β

. It means μmax <
2αβ
α+β

. The proof
is completed.

From the proof of above theorem, we know PULTS iteration methods are conver-
gent if and only if μmax <

2αβ
α+β

. Although the size of the μmax is closely related to

the matrix Q, we can make the μmax <
2αβ
α+β

by selecting the appropriate parameters
α and β, this means we can ensure that PULTS iteration methods are convergent.

Corollary 3.2 Suppose matrix A ∈ Rm×m is symmetric and positive definite, B ∈
Rm×n is a column full rank matrix. Let Q = θI (θ > 0), then the PULTS iteration
methods are convergent if and only if

λmax(B
�A−1B) <

2αβθ

α + β
,

Proof By using the conclusion of the above theorem, we know the PULTS iteration
methods are convergent if and only if μmax <

2αβ
α+β

. If Q = θI (θ > 0), we can easily
draw the conclusion. The proof is completed.

The following theorem gives the optimal iteration parameter and corresponding
convergence factors of the PULTS iteration methods for Q = θI (θ > 0).

Theorem 3.4 If matrix A ∈ Rm×m is symmetric and positive definite, B ∈ Rm×n

is a column full rank matrix and Q = θI (θ > 0). The γmax and γmin denote the
largest and smallest eigenvalues of the matrix B�A−1B, respectively. Then, optimal
iteration parameters of the PULTS iteration methods are

θopt = (α + β)(γmax + γmin)

2αβ
, (3.4)
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and corresponding convergence factors is

ρ(Topt(α, β)) = γmax − γmin

γmax + γmin
. (3.5)

Proof Let λ �= 0 be the eigenvalue of T (α, β), if Q = θI (θ > 0). Then, according
to (3.1), we can have λ = 1 − ( 1

α
+ 1

β
)μi = 1 − ( 1

α
+ 1

β
)
γ
θ
; here, we denote the

eigenvalue of the matrix B�A−1B by γ and we can easily see that γ is positive real.
The selection of the optimal parameters θopt depends on the solution of the following
problem

min
θ

max
γmin≤γ≤γmax

|λ| = min
θ

max
γmin≤γ≤γmax

∣∣∣1 − α + β

αβθ
γ

∣∣∣.
Evidently, we can see that the optimal parameter θopt is attained when

1 − α + β

αβθ
γmin = −

(
1 − α + β

αβθ
γmax

)
,

through calculation have

θopt = (α + β)(γmax + γmin)

2αβ
,

which implies

ρ(Topt(α, β)) = γmax − γmin

γmax + γmin
.

This completes the proof.

4 Numerical results

In this section, we will perform two numerical examples to examine the effectiveness
of the PULTS iteration methods for solving the nonsingular saddle point problems
(1.1), from the point of view of the number of iteration steps (denoted as “IT”) and
the elapsed CPU time in seconds (denoted as “CPU”).

In actual computations, the initial vector was set to the zero vector. We choose
the right-hand-side vector b ∈ Rm+n such that the exact solution of the nonsingular
saddle point problems (1.1) is z = (1, 1, . . . , 1)� ∈ Rm+n. Moreover, all runs are
terminated if ERR ≤ 10−6 or the number of the prescribed iteration steps kmax =
1000 is exceeded, where

ERR =
√

||p − Ax(k) − By(k)||22 + ||q − B�x(k)||22√
||p − Ax(0) − By(0)||22 + ||q − B�x(0)||22

.

All numerical tests are carried out on the personal computer using MATLAB 2014a
under the AMD A8-4500M 1.9GHz CPU and 4G RAM Win7 operating system.
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Example 1 [28] Consider the following Stokes problems: find u and p such that⎧⎪⎪⎨
⎪⎪⎩

−ν	u + ∇p = f̃ , in 
,

∇ · u = g̃, in 
,

u = 0, on ∂
,∫



p(x)dx = 0.

(4.1)

Here, 
 = [0, 1] × [0, 1] ⊂ R2, ∂
 is the boundary of 
, ν denotes the viscous
coefficient of fluid, 	 denotes the componentwise Laplace operator, u is a vector-
valued function, and p is a scalar function; they represent the velocity and pressure
of fluid.

By discrete equation (4.1) with difference scheme, we obtain the following linear
system (

A B

−B� O

) (
u

p

)
=

(
p

−q

)
, (4.2)

where

A =
(

I ⊗ T + T ⊗ I O

O I ⊗ T + T ⊗ I

)
∈ R2l2×2l2 , B =

(
I ⊗ F

F ⊗ I

)
∈ R2l2×l2 ,

which

T = 1

h2
T ridiag(−1, 2, −1) ∈ Rl×l , F = 1

h
T ridiag(−1, 1, 0) ∈ Rl×l ,

Table 1 Numerical results about different methods for Example 4.1

l 8 16 24 32

α 0.79 0.78 0.81 0.88

β 1.24 1.23 1.18 1.11

PULTS IT 25 34 40 45

CPU 0.019 0.202 1.027 5.171

ERR 7.3786e-7 8.3976e-7 9.2608e-7 9.1304e-7

IT 108 208 311 445

MSSOR CPU 0.531 0.932 4.763 23.411

ERR 7.0432e-7 8.9574e-7 9.3365e-7 9.2317e-7

IT 25 34 40 45

ULT CPU 0.020 0.227 1.172 5.965

ERR 7.3786e-7 8.3976e-7 9.2608e-7 9.1304e-7

IT 32 49 64 78

Uzawa CPU 0.020 0.251 1.396 6.973

ERR 7.3774e-7 9.6455e-7 9.7402e-7 9.1639e-7

IT 25 36 45 52

GSOR CPU 0.057 0.665 3.472 14.719

ERR 6.2964e-7 8.5226e-7 8.0255e-7 9.5615e-7
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with ⊗ being the Kronecker product and h = 1
l+1 the denotes mesh size. Here, we

set m = 2l2 and n = l2, then the total number of variables is 3l2.
We compared the PULTS iteration methods with the MSSOR [30] methods,

ULT method [29] and the Uzawa method [26] as well as the GSOR methods [13].
The preconditioner matrix of the GSOR methods, Uzawa method and the MSSOR
methods are taken as B�ȦB, B�A−1B and B�ÄB, where Ȧ = tridiag(A) and
Ä = diag(A). The preconditioner matrix Q of the PULTS methods and ULT method
are taken as θI (θ > 0). Moreover, the optimal parameters α and β are selected by
computer.

In Table 1, we list the IT, CPU, and ERR of the PULTS, MSSOR, ULT,Uzawa, and
GSOR methods in relation to different sizes of the coefficient matrix. From Table 1,
we can see that PULTSmethods perform better than Uzawa method and ULTmethod,
perform very well as compared with MSOR methods and GSOR methods, since it
requires much less CPU time and IT to achieve the stopping criterion than other
methods.

In Fig. 1, we compare the spectral radius of the Uzawa methods with PULTS
methods; we observe that the spectral radius of the iteration matrix of the PULTS
methods is less than the spectral radius of the iteration matrix of the Uzawa methods
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Fig. 1 The spectral radius of PULTS method and the spectral radius of Uzawa method of the iteration
matrices for different l
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in most cases. In order to demonstrate the trait of the PULTS methods, in Fig. 2, we
also plot the eigenvalues distribution of the iteration matrices of the PULTS methods
for different l when θ = θopt. As observed from Fig. 2, most eigenvalues of the
iteration matrices are quite clustered; it means that the PULTS methods have good
convergence properties.

Example 2 Consider the linear system like the form (1.1) with the following matrix
blocks

A = (aij )m×m =
{

aij = i + j, i = j,

aij = − 1
m

, i �= j,

B = (bij )m×n =
{

bij = 1, i = j,

bij = 0, i �= j,

For this numerical test, we compared the PULTS iteration methods with the Uzawa
method [26]; the corresponding numerical results are listed in Table 2.

The preconditioner matrix Q of the PULTS and the Uzawa methods are taken as
θI and B�A−1B. From Table 2, we can see that PULTS methods perform better
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Fig. 2 The eigenvalue distributions of the iteration matrices of the PULTS methods for diffierent l when
θ = θopt
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Table 2 Numerical results about different methods for Example 2

m 128 200 512 800

n 64 100 256 400

τopt 3.938 3.9603 3.9844 3.9900

IT 228 323 646 874

Uzawa CPU 0.2768 0.4915 2.5016 6.3837

ERR 9.9525e-7 9.9083e-7 9.9295e-7 9.9989e-7

α 1.11 1.15 1.18 1.25

β 0.88 0.85 0.79 0.72

θopt 0.5173 0.5166 0.5304 0.5486

PULTS IT 182 252 464 591

CPU 0.1024 0.2206 1.6362 4.3463

ERR 9.9965e-07 9.8380e-07 9.9415e-07 9.9571e-7

than Uzawa method, since the PULTS iteration methods need much less CPU and
IT to achieve the stopping criterion than Uzawa method, which further confirms the
feasibility of PULTS methods.

5 Conclusions

In this paper, we studied a class of new iterative methods for large sparse nonsingu-
lar saddle point problems (1.1) based on the parametered upper and lower triangular
splitting (PULTS) of the coefficient matrix. The property of eigenvectors and eigen-
values of the iteration matrix of PULTS iteration methods are analyzed. We verified
that these new methods are convergent under some conditions; sufficient and nec-
essary conditions for the convergence of PULTS methods are provided in the paper.
Moreover, the optimal iteration parameters and corresponding convergence factors
are obtained with some special cases of the PULTS methods. Numerical experiments
are given to confirm the theoretical results, which implies that PULTS methods are
effective and feasible for nonsingular saddle point problems.
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