
Evolution of carbonic anhydrase in C4 plants
Martha Ludwig

Available online at www.sciencedirect.com

ScienceDirect
During the evolution of C4 photosynthesis, the intracellular

location with most carbonic anhydrase (CA) activity has

changed. In Flaveria, the loss of the sequence encoding a

chloroplast transit peptide from an ancestral C3 CA ortholog

confined the C4 isoform to the mesophyll cell cytosol. Recent

studies indicate that sequence elements and histone

modifications controlling the expression of C4-associated CAs

were likely present in the C3 ancestral chromatin, enabling the

evolution of the C4 pathway. Almost complete abolishment of

maize CA activity yields no obvious phenotype at ambient CO2

levels. This contrasts with results for Flaveria CA mutants, and

has opened discussion on the role of CA in the C4 carbon

concentrating mechanism.
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Introduction
Multiple genes encoding distinct carbonic anhydrase

(CA; EC 4.2.1.1) isoforms are found in all higher plants

so far examined [1–3]. These proteins are divided into

three diverse families, a, b, g, with members of all the

families shown to play roles in CO2 uptake, fixation or

recycling, or there is evidence implicating them in these

functions [1–4]. The b-CAs are the most abundant CAs in

higher plants, with cytosolic, membrane-associated, and

organelle-specific isoforms identified. The evolution of

b-CAs involved in the C4 photosynthetic pathway will be

the focus of this review.

In the leaves of C4 plants, the highest b-CA activity is

found in the cytosol of mesophyll cells [5,6]. Like all other

known CAs, these C4-associated isoforms catalyze the

reversible conversion of carbon dioxide and bicarbonate

(CO2 + H2O , HCO3
� + H+). In the C4 mesophyll,
Current Opinion in Plant Biology 2016, 31:16–22 
the enzyme converts atmospheric CO2 to bicarbonate,

which is then used to carboxylate phosphoenolpyruvate

(PEP) by the primary carboxylase of C4 plants, PEP

carboxylase (PEPC). This reaction initiates the C4 acid

transfer cycle that is integral to the carbon concentrating

mechanism (CCM) of C4 plants, and leads to CO2 con-

centrations surrounding ribulose-1,5-bisphospahte car-

boxylase/oxygenase (Rubisco) in neighboring bundle-

sheath cells (BSC) that are at least 10-times that of the

surrounding atmosphere [7].

C3 plants do contain orthologs of the gene encoding the

cytosolic C4 CA isoform; however, in the leaves of C3

plants, most b-CA activity localizes to the chloroplast

stroma of the mesophyll cells [8,9]. This indicates that

unlike what is seen for other enzymes in C4 photosynthe-

sis, the intracellular location with the highest CA activity

changed during the evolution of the C4 pathway from the

ancestral C3 biochemistry.

Interestingly, a significant role for b-CAs in C3 photosyn-

thesis remains unsettled. It has been suggested that in C3

plants, a stromal CA would facilitate CO2 diffusion across

the chloroplast envelope and ensure adequate supply of

CO2 to Rubisco [10]. However, mature tobacco [11–13]

and Arabidopsis thaliana [14] plants with reduced levels of

the major stromal b-CA, generated through antisense or

knockout technologies, showed no obvious phenotype, or

changes in photosynthetic characteristics [11–14]. In-

stead, C3 stromal b-CAs have been shown to be involved

in pathogen resistance [15–17], seedling survival [14], and

lipid biosynthesis [18]. In A. thaliana, stromal (AtbCA1)

and membrane-associated (AtbCA4) b-CA isoforms func-

tion in stomatal development through a CO2-controlled

signaling pathway [19,20�]. Overexpression of the mito-

chondrial b-CA (AtbCA6; [21]) in Arabidopsis resulted in

an increase in plant biomass, but the transformants dem-

onstrated no significant change in photosynthetic rates

compared to wild type plants [22�]. The AtbCA6 over-

expression lines, however, did show a decrease in respi-

ration rates. These results support the idea of a basal

CCM in C3 plants whereby CO2 released from respiration

(or photorespiration) is converted to bicarbonate by a

mitochondrial b-CA, and then transported to the chloro-

plast for re-fixation [4].

In addition to the cytosolic b-CA that catalyzes the first

step in the C4 pathway, C4 plants contain other cytosolic

and organellar CA isoforms [3,23]. Although little direct

work has been done on the functions of these non-C4-

associated forms of b-CA, it is likely that they carry out at

least some of the ancestral C3 roles described above.
www.sciencedirect.com
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This review will summarize our current knowledge of the

molecular changes that occurred during the evolution of

C4 b-CAs from their C3 ancestors. Recent work on the

regulation of CA expression in C4 plants, and the signifi-

cance of the enzyme for the C4 CCM will also be

considered.

Molecular evolution of C4 b-carbonic
anhydrases
To date, insights into the evolution of a b-CA involved in

C4 photosynthesis, and dissection of the alterations that

occurred at the molecular level to give rise to this cyto-

solic isoform have been obtained from only a single C4

lineage. This work was done using the genus Flaveria,

which contains congeners representing the evolutionary

continuum from C3 to C4, including proto-Kranz, C3–C4

intermediates, and C4-like species [24,25,26�].

In the C4 species Flaveria bidentis and C3 congener

Flaveria pringlei, cDNAs encoding three distinct b-CAs

(CA1, CA2, CA3) have been isolated from leaf tissue and

characterized [23,27]. Transcript analyses showed CA3

mRNA was at least 50-times more abundant than CA1 or

CA2 transcripts in mature leaves of F. bidentis, while

transcripts encoding CA1 were the most abundant in

the leaves of the C3 F. pringlei. Localization experiments

using isolated pea chloroplasts and radiolabelled CA

precursor proteins showed that CA1 from both F. bidentis
and F. pringlei were imported into chloroplasts [23,27],

whereas the CA2 isoforms from both species were not

[23,27], and consequently appear to be cytosolic CAs in

both species. The localization results for the CA3 iso-

forms were enlightening with respect to the evolution of

the C4 form of CA3: F. pringlei CA3 was imported into

isolated pea chloroplasts, whereas F. bidentis CA3 was not

[23,27]. Comparison of the predicted amino acid

sequences of the two CA3 isoforms showed that F. bidentis
CA3 lacks the first 71 residues relative to the CA3 of

F. pringlei; however, the predicted polypeptides show

95% amino acid identity over the region they do share

[27]. A high proportion of Ser and Thr residues and a low

number of charged amino acids are predicted in the

F. pringlei CA3 N-terminus — properties consistent with

the region encoding a chloroplast transit peptide. These

results as well as those of the localization experiments

were supported by in silico protein localization analyses

[3]. Taken together, these results indicate that the highly

abundant CA3 transcripts in F. bidentis code for the

cytosolic CA that catalyzes the first committed step of

C4 photosynthesis, and that during evolution of the C4

pathway, the ancestral C3 CA3 gene lost the sequence

encoding the chloroplast transit peptide, essentially trap-

ping the protein in the cytosol of C4 mesophyll cells [27].

In subsequent work, the predicted amino acid sequences

of the cDNAs encoding CA3 from two other C3 Flaveria
species, F. cronquistii [3] and F. robusta (Figure 1), were
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found to be homologous with that of F. pringlei, suggest-

ing a chloroplast location for these proteins. The putative

amino acid sequence of CA3 in the C4 Flaveria trinervia
contains an N-terminus homologous to that of F. bidentis
CA3, with no evidence of a chloroplast transit peptide,

and consequently a cytosolic location is predicted

(Figure 1). The predicted N-terminal sequences of the

CA3 isoforms from all Flaveria C3–C4 intermediate spe-

cies sequenced to date appear to encode chloroplast

transit peptides, and therefore are likely to be chloroplast

isoforms ([3]; Figure 1). In the C4-like species, Flaveria
palmeri (Figure 1) and Flaveria vaginata [3], the putative

CA3 polypeptide sequences have N-termini that are

homologous to those of C4 Flaveria congeners, and are

expected to be cytosolic proteins. In contrast, the CA3

cDNA from Flaveria brownii, also considered to be a

C4-like species, encodes a C3-type N-terminus, suggest-

ing that F. brownii may represent an earlier step in the

Flaveria C3 to C4 evolutionary continuum [3]. These

results are consistent with the more C4-like leaf anatomy

[28] and gas exchange properties [29] demonstrated by

F. vaginata than F. brownii.

Other groups containing closely related species demon-

strating different photosynthetic biochemistries do exist

[25]. However somewhat surprisingly, comparative char-

acterization of the b-CA orthologs, the mRNAs and iso-

forms they encode has not been done. Consequently,

there is no information as to whether the mechanism for

the evolution of the C4-associated CA in Flaveria is

common to other lineages, or if alternative processes were

used. Currently no information exists regarding the mech-

anism of C4 CA evolution in monocots, which to some

extent is due to the lack of lineages containing congeners

using different photosynthetic pathways. In this regard,

the Australian grass tribe Neurachninae, which contains

C3, C4 and C3–C4 species, holds great promise [30].

Insights into the evolution of C4 b-CA gene
expression
A comparison of the leaf transcriptomes of the Cleoma-

ceae C4 species Gynandropsis gynandra and the closely

related C3 Tarenaya hassleriana found transcripts encoding

the homolog of the Arabidopsis membrane-associated

b-CA (AtbCA4; [21]) exhibited an increase in abundance

of the same level as transcripts of genes encoding C4

pathway proteins [31]. Analysis of the G. gynandra 50-
untranslated and 30-untranslated regions (UTRs) using

b-glucuronidase (GUS) fusion constructs showed ele-

ments in these regions contained information for the

mesophyll-specific accumulation of GUS in G. gynandra
[32]. Information in either UTR was sufficient for this

activity. Interestingly, cis-elements in the homologous 50-
UTR and 30-UTR of AtbCA4 were also able to indepen-

dently direct the accumulation of GUS in the mesophyll

of G. gynandra. These results suggest that, for at least

some lineages, and some genes encoding C4-associated
Current Opinion in Plant Biology 2016, 31:16–22
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Figure 1
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The types of CA3 and their predicted intracellular locations mapped to the Flaveria phylogeny. Based on the results of CA3 targeting experiments,

the enzymes from all C4 species are predicted to localize to the mesophyll cytosol (cy) [23], whereas CA3 isoforms from all C3 species are

mesophyll chloroplast (cp) proteins [27]. Sequence analyses indicate all Flaveria C3–C4 intermediate species contain a C3-type CA3 and are

predicted to have a chloroplast location. For the three C4-like Flaveria species examined, the CA3 homolog from F. brownii is also a C3-type CA,

with most likely a chloroplast location; however, F. vaginata and F. palmeri have C4-type CA3s that are predicted to be cytosolic proteins. Flaveria

phylogeny modified from Lyu et al. [26�].
CAs, the information for cell-specific expression is pres-

ent in the orthologous genes of close C3 relatives

(Figure 2), and this may have expedited the evolution

of the C4 syndrome [32].

A recent study looked at the levels of histone H3 with

K9ac and K4me3 modifications, and their positioning

relative to the transcription initiation site (TIS) of genes

encoding several C4-associated proteins, including CA1
(GRMZM2G121878), in maize leaves [33��]. These mod-

ified histones, along with H4K5ac, had been shown

previously to be associated with the activation of the

gene encoding the maize C4 PEPC [34–36]. Like the

C4 PEPC gene, CA1 showed enrichment of H3K9ac and

H3K4me3 and comparable positioning of the nucleo-

somes containing them. In addition, CA1 demonstrated

H3K9ac and H4K5ac enhancement both at and upstream

of the TIS in response to light, and the distribution

patterns were similar to those of five other genes encoding

C4-associated proteins. In chromatin from mesophyll

cells, enrichment of trimethylated H3K4 relative to the

dimethylated protein was found at sites downstream of

the CA1 gene TIS, which correlated with the findings for

genes encoding other C4-associated proteins showing

mesophyll-specific expression. These are intriguing
Current Opinion in Plant Biology 2016, 31:16–22 
results regarding the evolution of maize genes coding

for C4-associated enzymes, including CA1, as they suggest

that the chromatin containing these genes share a com-

mon histone code (Figure 2), and therefore some common

mechanism controlling gene expression with respect to

environmental signals and cell specificity [33��].

Although Heimann et al. [33��] did not examine the CA1
orthologs of sorghum or Setaria, the finding that the

orthologs encoding C4 PEPC and NADP-malic enzyme

(NADP-ME) in the distinct maize/sorghum and Setaria
lineages have similar histone modification patterns led to

the suggestion that the modifications were present in

ancestral C3 grasses and were co-opted during the evo-

lution of the C4 pathway [33��]. This idea of predisposi-

tion of ancestral C3 gene regulatory components for

adoption into an evolving C4 pathway is consistent with

the results of the Cleomaceae CA study described above

[31], as well as the findings of other work focused on the

control of genes encoding C4-associated pyruvate, ortho-

phosphate dikinase, NAD-ME, and glycine decarboxyl-

ase [32,37,38�]. Changes in trans-acting or other

regulatory factors would enable the cell compartmenta-

tion and levels of expression seen in present day C4 plants

(Figure 2).
www.sciencedirect.com
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Figure 2
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Control elements and histone modifications in C3 CA genes were adopted for C4 CA gene expression. (a) Sequences in the 50-untranslated and

30-untranslated regions (UTRs) of CA genes control mesophyll cell expression in C3 and C4 plants [32]. The modification of trans-acting factors (TF)

is thought to have enabled expression in C4 species, for example, high levels of expression. (b) Common histone modifications are found in

several maize genes coding for C4-associated proteins, including CA, as a result of exposure to light and cell type expression [33��]. Similar

modifications were found in different C4 lineages, suggesting that the marks were present in the ancestral C3 genes. However, the histones of the

C3 orthologs have not been examined, which is indicated in the figure by the questions marks. Additional or modified control factors were likely

recruited to yield the expression pattern and levels seen for present day C4 CA genes.
Significance of b-CA in the C4 carbon
concentrating mechanism
To determine the importance of CA in C4 photosynthesis,

F. bidentis plants were transformed with a CA3 antisense

construct [39]. Transformants with 20% of wild type

F. bidentis CA activity had decreased rates of steady-state

CO2 assimilation at ambient levels of CO2, and those with

10% or less wild type CA activity required high CO2 for

growth (Figure 3). These results indicated that while CA

activity is not limiting in wild type F. bidentis, it is

a definite requirement for the C4 pathway to function

as a CCM in this dicotyledonous species.

Recently maize lines carrying single and double mutations

in two highly expressed genes encoding distinct b-CAs,

CA1 (GRMZM2G121878) and CA2 (GRMZM2G348512),

were generated through insertional mutagenesis [40��].
Homozygous ca1 mutants showed about 10% of wild type

maize CA activity, while the ca1ca2 double mutant con-

tained just 3% of wild type activity. These mutant lines
www.sciencedirect.com 
demonstrated no change in CO2 assimilation rates at

ambient (or higher) CO2 levels; however, at low intercel-

lular CO2 concentrations, assimilation rates of both

mutants were decreased relative to those of wild type

plants (Figure 3). A corresponding decrease in dry mass

was also detected in the single and double mutants com-

pared to wild type maize plants when grown under sub-

ambient CO2 conditions [40��].

Clearly, the results of the maize work contrast with those

of the F. bidentis study. While greatly reduced levels of CA

activity led to severe impairment of photosynthesis and

growth in F. bidentis at ambient CO2 levels [39], it was

only at sub-ambient CO2 concentrations that CA activity

appeared to be required for the maize C4 pathway to

operate as a CCM [40��]. All C4 plants are predicted to

have evolved within the last 30 million years, under

comparable low atmospheric CO2 conditions [41]. In this

low-CO2 world, a CA, working in tandem with PEPC in

the mesophyll cytosol, would have been advantageous to
Current Opinion in Plant Biology 2016, 31:16–22
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Figure 3
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The importance of CA in the C4 carbon concentrating mechanism differs between Flaveria bidentis and maize. F. bidentis plants containing

reduced amounts of the cytosolic C4-associated CA show impairment of photosynthesis and growth at ambient levels of CO2, indicating CA

activity is required for the proper functioning of the C4 pathway. In contrast, maize knockout mutants demonstrate reduced photosynthetic rates

and growth only when CO2 concentrations levels are below ambient levels. The mechanism underlying this difference is not clear, indicated by the

question marks in the figure. Some avenues of investigation that might resolve the discrepancy are listed. Note: The images are representative of

the species, not the mutants or the phenotypes resulting from the different CO2 levels.
maintain efficient and high rates of photosynthesis. How-

ever, the actual molecular mechanisms and influence of

local environmental factors underlying the evolution

of the C4 CA isoforms in maize and Flaveria are likely

to have differed. Future work should consider whether

the difference in CA contribution to the C4 CCM seen

between the species is species specific; or a difference

between C4 monocots and dicots; or is related to inherent

CA activity, which is quite variable among C4 monocots

and dicots ([42] and references therein), other C4 cycle

enzyme activities, leaf structure, specific CA location,

mesophyll conductance; or a combination of one or more

of these factors (Figure 3).

Conclusions
The intracellular location of the majority of CA activity

has changed during the evolution of C4 plants from their
Current Opinion in Plant Biology 2016, 31:16–22 
C3 ancestors. This has facilitated the provision of bicar-

bonate for the primary carboxylase of C4 plants in the

mesophyll cell cytosol, and the evolution of the C4 CCM.

Changes in coding and non-coding regions of CA genes

responsible for converting a C3 CA into a C4 enzyme are

only now being identified, as are differences in contribu-

tions of CA to the CCMs of diverse C4 lineages. Work

thus far allows the evolution of the CA isoform important

in the C4 pathway to be mapped on the recently described

five-stage model of C4 evolution [25]. Orthologs encoding

this CA can be identified in ancestral C3 and proto-Kranz

species and code for proteins with chloroplast transit

peptides (stages a and b [25]). C3–C4 intermediate species

that carry out C2 photosynthesis, with its photorespiratory

pump (stage c [25]), also express a chloroplast-located CA

homolog. Stages d and e [25] of the model are character-

ized by complete C4 acid transfer cycle activity, limitation
www.sciencedirect.com
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of Rubisco activity to the BSC, and overall optimization of

the C4 pathway. Advanced C4-like and full C4 species

represent these stages, and contain orthologs encoding

C4-associated CAs that do not have chloroplast transit

peptides and functions in the mesophyll cytosol, provid-

ing bicarbonate to PEPC. Multiple lineages with closely

related species that use different photosynthetic bio-

chemistries representing the continuum from C3 to C4

offer excellent opportunities to further pinpoint mecha-

nisms that account for the evolution of cytosolic C4 CAs

and their involvement in the C4 CCM, as well as distin-

guish elements that control expression of these enzymes

at the transcriptional and post transcriptional levels.

These studies will build on the knowledge of processes

already recognized in Flaveria, Cleomaceae, and maize,

and will determine whether common mechanisms gov-

erned the evolution of C4 CAs. This will inform us of the

extent of parallelism and convergence in C4 pathway

evolution, and contribute to efforts directed at identifying

the essential components with which to augment C3

plants for sustainable crop and biofuel production.

Acknowledgements
Funding from the Australian Research Council is gratefully acknowledged,
as are discussions with lab members and visiting colleagues.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Moroney JV, Bartlett SG, Samuelsson G: Carbonic anhydrase in
plants and algae. Plant Cell Environ 2001, 24:141-153.

2. Tiwari A, Kumar P, Singh S, Ansari SA: Carbonic anhydrase in
relation to higher plants. Photosynthetica 2005, 43:1-11.

3. Ludwig M: Carbonic anhydrase and the molecular evolution of
C4 photosynthesis. Plant Cell Environ 2012, 35:22-37.

4. Zabaleta E, Martin MV, Braun H-P: A basal carbon concentrating
mechanism in plants? Plant Sci 2012, 187:97-104.

5. Ku MSB, Edwards GE: Photosynthesis in mesophyll
protoplasts and bundle sheath cells of various types of C4

plants. V. Enzymes of respiratory metabolism and energy
utilizing enzymes of photosynthetic pathways. Z
Pflanzenphysiol 1975, 77:16-32.

6. Burnell JN, Hatch MD: Low bundle sheath carbonic anhydrase
is apparently essential for effective C4 pathway operation.
Plant Physiol 1998, 86:1252-1256.

7. Jenkins CLD, Furbank RT, Hatch MD: Mechanism of C4

photosynthesis. A model describing the inorganic carbon pool
in bundle sheath cells. Plant Physiol 1989, 91:1372-1381.

8. Everson RG, Slack CR: Distribution of carbonic anhydrase in
relation to the C4 pathway of photosynthesis. Phytochemistry
1968, 7:581-584.

9. Poincelot RP: Intracellular distribution of carbonic anhydrase
in spinach leaves. Biochim Biophys Acta 1972, 258:637-642.

10. Jacobson BS, Fong F, Heath RL: Carbonic anhydrase of
spinach. Studies on its location, inhibition, and physiological
function. Plant Physiol 1975, 55:468-474.

11. Majeau N, Arnoldo M, Coleman JR: Modification of carbonic
anhydrase activity by antisense and over-expression
www.sciencedirect.com 
constructs in transgenic tobacco. Plant Mol Biol 1994, 25:
377-385.

12. Price GD, von Caemmerer S, Evans JR, Yu J-W, Lloyd J, Oja V,
Kell P, Harrison K, Gallagher A, Badger MR: Specific reduction of
chloroplast carbonic anhydrase activity by antisense RNA in
transgenic tobacco plants has a minor effect on
photosynthetic CO2 assimilation. Planta 1994, 193:331-340.

13. Williams TG, Flanagan LB, Coleman JR: Photosynthetic gas
exchange and discrimination against 13CO2 and C18O16O in
tobacco plants modified by an antisense construct to have low
chloroplastic carbonic anhydrase. Plant Physiol 1996, 112:
319-326.

14. Ferreira FJ, Guo C, Coleman JR: Reduction of plastid-localized
carbonic anhydrase activity results in reduced Arabidopsis
seedling survivorship. Plant Physiol 2008, 147:585-594.

15. Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB,
Klessig DF: The tobacco salicylic acid-binding protein 3
(SABP3) is the chloroplast carbonic anhydrase, which exhibits
antioxidant activity and plays a role in the hypersensitive
defense response. Proc Natl Acad Sci U S A 2002, 99:
11640-11645.

16. Restrepo S, Myers KL, del Pozo O, Martin GB, Hart AL, Buell CR,
Fry WE, Smart CD: Gene profiling of a compatible interaction
between Phytophthora infestans and Solanum tuberosum
suggests a role for carbonic anhydrase. Mol Plant Microbe
Interact 2005, 18:913-922.

17. Wang Y-Q, Feechan A, Yun B-W, Shafiei R, Hofmann A, Taylor P,
Xue P, Yang F-Q, Xie Z-S, Pallas JA, Chu C-C, Loake GJ: S-
nitrosylation of AtSABP3 antagonizes the expression of plant
immunity. J Biol Chem 2009, 284:2131-2137.

18. Hoang CV, Chapman KD: Biochemical and molecular inhibition
of plastidial carbonic anhydrase reduces the incorporation of
acetate into lipids in cotton embryos and tobacco cell
suspensions and leaves. Plant Physiol 2002, 128:1417-1427.

19. Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M,
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