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a b s t r a c t

Spermatogenesis is completely dependent on the pituitary hormone follicle-stimulating hormone (FSH)
and androgens locally produced in response to luteinising hormone (LH). This dual control has been
known since the 1930s and 1940s but more recent work, particularly using transgenic mice, has allowed
us to determine which parts of the spermatogenic pathway are regulated by each hormone. During the
first spermatogenic cycle after puberty both FSH and androgen act to limit the massive wave of germ cell
apoptosis which occurs at this time. The established role of FSH in all cycles is to increase spermatogonial
and subsequent spermatocyte numbers with a likely effect also on spermiation. Mice lacking FSH or its
receptor are fertile, albeit with reduced germ cell numbers, and so this hormone is not an essential reg-
ulator of spermatogenesis but acts to optimise germ cell production Androgens also appear to regulate
spermatogonial proliferation but, crucially, they are also required to allow spermatocytes to complete
meiosis and form spermatids. Animals lacking androgen receptors fail to generate post-meiotic germ
cells, therefore, and are infertile. There is also strong evidence that androgens act to ensure appropriate
spermiation of mature spermatids. Androgen regulation of spermatogenesis is dependent upon action on
the Sertoli cell but recent studies have shown that androgenic stimulation of the peritubular myoid cells
is also essential for normal germ cells development. While FSH or androgen alone will both stimulate
germ cell development, together they act synergistically to maximise germ cell number. The other hor-

mones/local factors which can regulate spermatogenesis include activins and estrogens although their
role in normal physiological regulation of this process needs to be more clearly established. Regulation
of spermatogenesis in primates appears to be similar to that in rodents although the role of FSH may be
greater. While our knowledge of hormone function during spermatogenesis is now well developed we
still lack understanding of the mechanisms by which these hormones act to regulate this process.

© 2014 Elsevier Ltd. All rights reserved.
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. Introduction

Development and maintenance of spermatogenesis in the adult
s critically dependent upon the actions of follicle-stimulating hor-

one (FSH) and androgen. This has been clear since the early
ioneering studies by Smith, Greep and others in the 1920s and
930s who used hypophysectomy and hormone replacement tech-
iques to identify the pituitary and testicular factors involved [1–3].

n the intervening years hormone ablation/replacement techniques
ave become more refined but the fundamental story remains the
ame and most recently it has been shown that in animals lacking
eceptors for both follicle-stimulating hormone (FSH) and andro-
en only 3% of normal germ cell numbers are present at day 20
4]. Improved techniques for hormone ablation/replacement and
he development of transgenic models mean that we are now able
o identify the stages of spermatogenic development and mainte-
ance that are affected by each hormone. In addition we can show
ow these hormones interact and we are starting to understand the
ellular mechanisms that regulate hormone action on spermatoge-
esis.

The Sertoli cells are critical for all aspects of spermatogenesis
rom maintenance of the spermatogonial stem cell niche to the final
rocess of spermiogenesis. Indeed, recent studies have shown that
pecific ablation of a single protein (Dicer) from the Sertoli cells
ill lead to loss of all germ cell types in the adult testis [5]. Both

SH and androgen act to regulate spermatogenesis through recep-
ors on the Sertoli cells and this appears to be the only way that
SH directly influences the process. Androgens also act through
eritubular myoid cells (PTMC) to maintain spermatogenesis [6]
lthough this effect is probably mediated via the Sertoli cells. Total
erm cell numbers in the adult testis are dependent upon Sertoli cell
umbers [7] and, overall, it is clear that the course of spermatogen-
sis is completely dependent on the development and maturation
f the Sertoli cells.

Until recently the main experimental approaches to the study
f FSH and androgen action have been hypophysectomy, treat-
ent with a gonadotrophin-releasing hormone (GnRH) agonist or

ntagonist (each followed by hormone replacement), injection of
thanedimethane sulfonate (EDS) (which ablates Leydig cells) or
mmunization against the hormone or receptor. Each has significant
rawbacks: hypophysectomy will clearly disrupt other hormones
including LH and, thereby, testosterone), GnRH antagonists are not
ompletely effective, particularly against FSH, EDS is a cytotoxin
hich may have off-target effects while immunization also has lim-

ted effectiveness and in many of the older studies is not specific
o FSH (12;13). The field is currently, however, in a second period
f major progress using mouse models which was started ini-
ially by study of the testicular feminised (tfm) mouse which lacks
unctional androgen receptors (AR) [8] and the hypogonadal (hpg)

ouse which has a severe deficiency in circulating gonadotrophins
9]. Study of these natural mutants was then enhanced by the
eneration of transgenic mice lacking specific hormones or their
eceptors either ubiquitously or on specific cell types. We now
ave available animals lacking FSH-receptors (FSHRKO), androgen
eceptors (ARKO), androgen receptors specifically on the Sertoli
ells (SCARKO) and androgen receptors specifically on the PTMs
PTM-ARKO). These models, however, suffer the weakness that
he hormone is lacking throughout development and, therefore,
ell us more about the initiation of spermatogenesis than they do
bout normal maintenance. So far there is only one report of an
nducible model of hormone/receptor knockout in the testis [10]
nd this review is based largely on what we know from non-
Please cite this article in press as: O’Shaughnessy PJ. Hormonal contro
Biol (2014), http://dx.doi.org/10.1016/j.semcdb.2014.02.010

nducible models and from older, interventionist studies in the
at
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2. Gonocyte development

Early gonocyte development in the mouse occurs before for-
mation and functional maturity of the pituitary and so will not be
under regulation by the gonadotrophins. This has been confirmed
by study of hpg and FSHRKO mice [4,11]. The fetal Leydig cells, the
source of testicular androgen, start producing testosterone soon
after testis formation [12,13] but data from the ARKO mouse shows
that germ cell numbers are normal at birth in the absence of andro-
gen action [4]. Similarly, in mice lacking both AR and FSHR gonocyte
numbers are normal at birth [4]. Between the day of birth and day
5 in the mouse there is a marked proliferation of the gonocytes
[11,14] and the cells migrate from the lumen of the seminiferous
tubule to rest on the basement membrane as spermatogonial stem
cells (SSC) and spermatogonia [11,15]. In hpg, ARKO, SCARKO and
FSHRKO mice (and combined FSHRKO.ARKO and FSHRKO.SCARKO
mice) there is a significant (∼45%) reduction in testicular germ cells
at day 5 although germ cell migration is normal [4,11]. This suggests
that gonocyte proliferation/survival just prior to SSC development
is hormone-dependent although there is redundancy of action
between the hormones. Platelet-derived growth factor (PDGF) and
NOTCH signalling from the Sertoli cells appear also to be involved in
gonocyte proliferation [16,17]. It is possible that FSH and androgen
act through secretion of PDGF but gonocyte migration and differ-
entiation are also affected in the absence of this factor [16] and
these events appear to hormone-independent. Interpretation of
hormonal effects on gonocyte numbers in this period is complicated
by the simultaneous increase in Sertoli cell number and it is pos-
sible that the increase in gonocyte numbers is, in part, a response
to increased Sertoli cell numbers. Neonatal changes in Sertoli cell
number are androgen-dependent but probably not FSH-dependent
(although there are conflicting data) [11,18,19] which would sug-
gest that effects of FSH on germ cell numbers in this period are
not mediated through Sertoli cell proliferation. An earlier study has
reported that gonocyte/spermatogonial numbers are unaffected by
FSH suppression through passive immunisation during a similar
period in the rat [20]. The reason for this discrepancy with the
mouse data is not clear, it may indicate a species-dependent differ-
ence or it may be due to incomplete FSH suppression in the neonatal
rats.

3. The first wave of spermatogenesis

Spermatogenesis starts soon after SSC differentiation and the
first wave of spermatogenesis completes around day 40–45 in the
rodent [21]. This first wave develops, therefore, in an environment
which differs from subsequent waves in both the structure/activity
of the testis and the hormonal environment. A further difference is a
marked, BAX-regulated surge of apoptosis which occurs in the germ
cells, particularly the pachytene spermatocytes, during the first
wave [22,23]. This apoptotic event appears to be essential for sub-
sequent waves of spermatogenesis, perhaps through synchronising
the Sertoli cell/germ cell ratio [22]. Reduction in FSH levels during
this period causes a marked increase in germ cell death suggesting
that FSH normally acts to limit the apoptotic wave [20,24,25]. It has
been reported that systemic injection of testosterone also inhibits
apoptosis [22] suggesting a role for androgens in this process but
it is not clear from this study whether intratesticular testosterone
levels or circulating FSH were affected. Other evidence, however,
also suggests that androgens will reduce spermatocyte apoptosis in
the pre-pubertal rat consistent with a role for androgens in limiting
l of germ cell development and spermatogenesis. Semin Cell Dev

and SCARKO mice have shown that there is a significant decrease in
germ cell numbers in both groups at 20 days of age, during the first

dx.doi.org/10.1016/j.semcdb.2014.02.010
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Fig. 1. Role of FSHR and AR in determining germ cell number during development. Total germ cell number per testis was measured in normal, FSHRKO, SCARKO,
FSHRKO.SCARKO, ARKO and FSHRKO.ARKO mice during post-natal development. The data shows that gonocyte numbers are unaffected by loss of hormone action on
day 1 but by day 5, when spermatogonia are present there is a similar loss of germ cells in most groups. By day 20, when spermatocytes are present and shortly before
they enter meiosis, loss of FSHR (FSHRKO) was more marked than loss of AR in the Sertoli cells (SCARKO). Total loss of AR (ARKO) had the most marked effect of the single
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nockouts. Double knockouts (FSHRKO.SCARKO and FSHRKO.ARKO) had a greater e
esults show the mean ± SEM of 3–6 animals per group at each individual age.

eproduced from [4] and see this reference for analysis details.

permatogenic wave but before completion of meiosis [4] (Fig. 1).
his is also consistent with the hypothesis that both hormones act
o limit apoptosis although reduced germ cell proliferation is also
ikely to contribute to the effects seen. What is interesting from
his data, however, is that there is a more marked loss of germ
ells in the FSHRKO mouse than in the SCARKO mouse while the
reatest loss (not including double knockouts) was in the ARKO
ouse (Fig. 1) This data shows that androgen action is critical at

his age but also that the effects are largely mediated through cells
ther than the Sertoli cells–the most likely candidates at this age
eing the PTMC [6]. With respect to Sertoli cell-dependent hor-
onal regulation of germ cell development, this appears to be
ost sensitive to FSH in the prepubertal period. It is also worth

oting that even before germ cells complete meiosis there is an
dditive and, possibly, synergistic effect of both hormones (seen
n the double knockout FSHRKO.SCARKO and FSHRKO.ARKO mice)
4]. The first wave of spermatogenesis is somewhat unusual, there-
ore, compared to subsequent waves. It has been suggested that
he apoptotic surge may be critical to ensure normal spermato-
enesis in the adult and this may be a contributory cause of the
ub-maximal fertility seen in the adult FSHRKO mouse [27].

. Spermatogenesis in the adult

.1. Follicle-stimulating hormone

Until the mid 1990s the general consensus was that FSH is essen-
ial for the initiation of spermatogenesis and that in the adult it
s required to maintain normal quantitative germ cell production
28,29]. It was contrary to expectations at the time, therefore, when
ransgenic mice lacking FSH or its receptor (FSHR) were shown
Please cite this article in press as: O’Shaughnessy PJ. Hormonal contro
Biol (2014), http://dx.doi.org/10.1016/j.semcdb.2014.02.010

o be fertile, albeit with a reduced germ cell number [30–34].
loser study of FSHRKO and FSH�KO mice showed a reduction in
umbers of spermatogonia, spermatocytes and spermatids [30,34]

rom which it could be concluded that FSH acts to increase the
han either knockout alone. A more detailed analysis of adult data is shown in Fig. 4.

number of spermatogonia and the entry of these cells into meiosis.
It was less clear whether FSH would also stimulate completion of
meiosis (ie formation of round spermatids) but comparison with
SCARKO mice showed that even in the presence of normal FSH
levels round spermatids would not form in the absence of AR on
the Sertoli cells [30,35]. Previous studies had shown that injec-
tion of hpg mice with FSH or transgenic expression of FSH in these
animals would increase numbers of spermatogonia and spermato-
cytes and induce round spermatid formation [36–39]. This effect
on spermatid formation was, however, subsequently shown to be
due to stimulation of testicular androgen levels since no effect of
FSH is seen in hpg.SCARKO or hpg.ARKO mice [36]. This also serves
to illustrate another problem when studying hormonal control of
spermatogenesis; the hormones that we now have available do not
suffer from cross contamination, as they once did, but it can be dif-
ficult to isolate the effects of a single hormone as they often affect
levels of other hormones which act on the testis (an interesting
example being stimulation of pituitary FSH secretion by estrogen
in the hpg male [40]).

While FSHRKO and FSH�KO mice show what happens to adult
spermatogenesis when there is lack of FSH action during develop-
ment we cannot be sure that they show the normal adult role of FSH
in maintaining this process. As discussed above, this is because the
hormone or its receptor are missing from the start of reproductive
development and it is not clear how much the adult phenotype
reflects abnormal development of spermatogenesis or abnormal
maintenance of the adult state. Lack of FSH, for example, during
the high apoptotic period of the first spermatogenic wave proba-
bly increases the overall number of cells dying which may have a
knock-on effect on adult spermatogenesis [22]. As yet we are unable
to study the effects of selective FSH ablation in the adult using trans-
l of germ cell development and spermatogenesis. Semin Cell Dev

genic models since no floxed Fshr animals are available. Previous
studies have achieved selective reductions in FSH levels through
passive immunisation or gonadotrophin ablation (using hypophy-
sectomy, GnRH agonists or enhanced steroid negative feedback)

dx.doi.org/10.1016/j.semcdb.2014.02.010
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ith or without androgen replacement. In hypophysectomised rats
reated with androgens, for example, sperm production is signifi-
antly reduced, presumably because of loss of FSH [41,42], while
SH immunoneutralisation significantly reduces germ cell num-
ers with a clear effect on spermatogonial survival [43]. Similarly, in
ypophysectomised or GnRH-immunised adult rats FSH-treatment
cts to increase spermatogonial and spermatocyte number but has
limited and incomplete effect on spermatogenesis [44,45]. While

hese results generally agree with the data from FSHRKO mice there
re, however, significant differences. In particular, it was postulated
n two of these studies that FSH acts to promote the completion of

eiosis in rats [41,44], an effect not seen in the transgenic mouse
odels (discussed above). This may be a species-dependent differ-

nce or may be related to issues with the particular models used
nd, certainly, most studies do not see any clear effect of FSH on for-
ation of post-meiotic cells in the rat. In addition to pre-meiotic

ffects, it has been suggested that FSH also plays a role in the normal
ompletion of spermiogenesis. In FSHRKO mice, study of ejaculated
perm shows alterations in DNA condensation and an increase in
orphological abnormalities [46,47]. Interpretation of these stud-

es, however, is complicated by the fact that testosterone levels
re reduced in FSHRKO mice [48]. In addition, the ratio of round
permatids to mature sperm in the FSHRKO mouse is similar to
ontrol [30,46] which suggests that FSH is not involved in the pro-
ess of spermiogenesis. Similarly, in FSH-treated GnRH-immunised
ats there is little or no progression from round to elongated sper-
atids [44] and no effect of FSH is seen in the hpg mouse [39].

here is evidence that FSH may be involved in the process of sper-
iation (release of mature spermatids from the Sertoli cells) [49]

ut androgens also appear to be the more important regulators of
his process [50].

The mechanism of FSH action on spermatogenesis is uncertain
ut FSH can alter rates of germ cell apoptosis [25,51] and there is
lso evidence that FSH can act to increase spermatogonial differ-
ntiation/proliferation [52–54]. A number of studies have shown
hat glial cell line-derived neurotrophic factor (GDNF) and fibro-
last growth factor 2 (FGF2) are important for SSC self-renewal and
urvival [55,56] and it has been reported that FSH stimulates GDNF
nd FGF2 levels in Sertoli cells [57–60]. This suggests that one effect
f FSH may be at the SSC niche although in a study designed to look
t the effects of FSH on testicular function in the hpg mouse we did
ot see any change in Gdnf or Fgf2 levels [61] and effects of FSH at
he niche remain to be confirmed. A further role for FSH in the testis

ay be maintenance of Sertoli cell water balance as the cells show
ccumulations of fluid in FSHRKO mice [62]. This alters cell mor-
hology and interactions between the germ cells and Sertoli cells
nd might be expected to reduce normal spermatogenic efficiency.

.2. Androgen

The essential role that androgen plays in development and
aintenance of spermatogenesis has been known since the 1930s

63] and has been emphasised by a recent paper which shows
hat precocious expression of ARs in Sertoli cells leads to prema-
ure spermatogenic development [64]. The role of androgens can
lso be clearly seen in any animal model in which androgen levels
re severely reduced through hypophysectomy, GnRH-treatment,
DS-treatment or in gonadotrophin-deficient mice. In each case
here is massive loss of pachytene spermatocytes and round sper-

atids, particularly at stages VII and VIII of the cycle, which can be
eversed by treatment with testosterone [39,65–74]. Similarly, in
ice lacking functional androgen receptors (tfm or ARKO) there is
Please cite this article in press as: O’Shaughnessy PJ. Hormonal contro
Biol (2014), http://dx.doi.org/10.1016/j.semcdb.2014.02.010

significant loss of spermatocytes and failure of these cells to com-
lete meiosis and form round spermatids [4,8,18,35]. The major
ffects of androgen on meiosis appear to be ensuring survival of
achytene spermatocytes, particularly in the mid-spermatogenic
 PRESS
lopmental Biology xxx (2014) xxx–xxx

stages, and enabling diplotene spermatocytes to enter into meiotic
division [30,35,39]. As with study of FSH action on spermatoge-
nesis, however, some of the effects of AR ablation in the adult
may be related to changes in the first wave of spermatogenesis
and there is the added complication that tfm and ARKO mice are
cryptorchid which, by itself, will markedly affect spermatogene-
sis. One transgenic approach that can be used to address both of
these questions is that taken by Willems et al. [10] who developed
an inducible ARKO model. Induction of AR ablation in this iARKO
model is through the action of tamoxifen which, unfortunately, has
the potential drawback that, by itself, it can cause marked dis-
ruptive effects on spermatogenesis, albeit at high doses [75]. In
the study by Willems et al. [10] there were significant endocrine
changes and a reduction in testis weight associated with the actions
of tamoxifen [10] but the effects of tamoxifen on spermatogenesis
in control animals did not appear marked while there was clearly a
severe loss of spermatocytes and spermatids in iARKO mice (though
not explicitly reported in this study) [10]. Overall, therefore, both
transgenic and non-transgenic animal models show that the major
effects of androgens are to maintain the spermatocytes and to allow
these cells to complete meiosis.

Other effects of androgens on germ cell development are more
complex or more difficult to study. For example, the role that
androgens play in spermiogenesis and spermiation is not clear
from most genetically-modified models of AR ablation since the
germ cells do not reach the spermatid stage. The process can be
studies in androgen-withdrawal models, however, and results indi-
cate that the adhesion between Sertoli cells and spermatids is
androgen-dependent since androgen action is required to prevent
the retention and phagocytosis of mature, elongated spermatids
and the premature release of round spermatids [50,72,73,76,77].
The effects that androgen have on spermatogonial development
are also complex. Hypophysectomy will reduce spermatogonial
cell numbers [78,79] which is reversed by testosterone. It has also
been shown that androgen (DHT) will induce an increase in sper-
matogonial numbers in hpg mice [74,80] but not in hpg.SCARKO
or hpg.ARKO mice [74] (Fig. 2). A similar effect of FSH is also
seen in both of these models, however [36,78], suggesting that
both hormones can stimulate spermatogonial development (dis-
cussed further below). Currently, it remains entirely uncertain how
androgen regulation occurs and there is no evidence at present of
androgenic effects at the germ cell niche.

While it is clear that there is an essential role for andro-
gens in stimulating spermatogenesis it has also been shown in
an interesting series of studies that suppression of testicular
testosterone levels stimulates recovery of spermatogenesis after
irradiation/chemotherapy damage and germ cell transplantation
[81,82]. Suppression of testosterone will also induce spermato-
gonial development in juvenile spermatogonial (jsd) mutant mice
[83,84]. This effect of testosterone suppression on the jsd mice has
been shown to be due to increased testicular temperature in these
animals [85] while the effect on germ cell transplantation may
be due to disruption of the blood-testis barrier allowing the stem
cells to reach the Sertoli cell niche [86]. The mechanism underly-
ing the effect of androgen suppression on the spermatogonial block
induced by irradiation is, however, not clear at present and remains
an important area for study in order to prevent sterility caused by
cancer chemotherapy.

Androgen receptors are expressed in most cell types in the testis,
the major exception being the germ cells themselves and it is
clear that androgen action in the testis is only mediated through
the somatic cell populations [87,88]. The Sertoli cells express AR
l of germ cell development and spermatogenesis. Semin Cell Dev

soon after birth in rodents [89] and study of the SCARKO mouse
shows that androgens act through the Sertoli cells to regulate
spermatocyte number and progress of these cells through meio-
sis [30,35]. More surprisingly, ablation of AR on the PTMC also

dx.doi.org/10.1016/j.semcdb.2014.02.010
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Fig. 2. Effect of androgen treatment on the number of total germ cells (A), spermatogonia (B), spermatocyte (C), and spermatids (D) in hpg, hpg.SCARKO, and hpg.ARKO mice.
Adult mice were treated with T or DHT for 7d. Testosterone increased germ cell numbers in all three mouse groups but DHT (which cannot be aromatised to an estrogen) was
only effective in the hpg group. This shows that androgens must act through AR on the Sertoli cells to stimulate spermatogenesis. The effects of T are largely due to increased
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SH secretion in all three animal groups [74]. Results show the mean ± SEM. With
P < 0.05) different. ND, not detected.

eproduced from [74].

as a major effect on spermatogenesis with a marked reduction
n numbers of both spermatocytes and spermatids and a progres-
ive loss of spermatogonia [6]. This demonstrates that androgens
ust also act through the PTMC to support spermatogenesis. A sim-

lar effect can be seen when FSHRKO.SCARKO mice are compared
o FSHRKO.ARKO mice at 20 days of age, before normal testicu-
ar descent [4]. Total germ cell numbers in FSHRKO.ARKO mice are
bout 15% of those in FSHRKO.SCARKO mice, the main difference
etween the animals being that androgens can act through the
TMC in the FSHRKO.SCARKO animals but not the FSHRKO.ARKO
ice (although an effect on Leydig cells cannot be ruled out).
similar, though less marked difference is also seen comparing

he ARKO and SCARKO mice [4]. Comparison between hpg mice
nd hpg.SCARKO mice treated with androgen for 7 days shows,
owever, that androgen action through the PTMC alone does not
timulate spermatogenesis and that action through the Sertoli cells
s essential (Figs. 2 and 3) [74]. Comparing a number of models
FSHRKO, hpg + A, Ptm-ARKO, Scarko, hpg.SCARKO + A [4,6,74]) it is
lear that it is only when androgens are acting through both the
ertoli cells and the PTMC (i.e. normal, FSHRKO and hpg + A) that
ndrogenic stimulation of spermatogenesis (increased numbers of
permatogonia, spermatocytes and post-meiotic cells) is seen.

Androgens probably act in diverse ways to stimulate spermato-
enesis and a number of androgenic effects on the Sertoli cell are
ecoming clear although we currently have little idea what effect
ndrogens have on the PTMC. Early studies using the AR-deficient
fm mouse reported that androgens are essential for formation of
he blood-testis (Sertoli cell) barrier [90] and this has been shown,

ore recently, to be linked to altered expression of junctional pro-
eins [91,92]. Interestingly, it has been reported that in SCARKO
Please cite this article in press as: O’Shaughnessy PJ. Hormonal contro
Biol (2014), http://dx.doi.org/10.1016/j.semcdb.2014.02.010

ice a barrier does form but formation is delayed and the barrier
s defective [93]. The disruption caused to barrier formation would,
owever, be expected to alter the specific tubular environment
equired for spermatogenesis [93] and is a likely contributory factor
articular animal type, groups with different letter superscripts were significantly

to the loss of germ cell development in androgen-deficient ani-
mals. Androgens also act on the Sertoli cell to stimulate expression
of the homeobox gene Rhox5 [94] which may act as an interme-
diate transcription factor directing some of the actions of the AR
[95]. Inactivating mutations in Rhox5 have only a limited effect on
spermatogenesis, however, leading to an increase in germ cell apo-
ptosis and reduced sperm number and motility [96]. It is unlikely,
therefore, that Rhox5 is a major factor in androgen regulation of
spermatogenesis. This gene is part of a large family of homeobox
genes, however, and several are expressed in the Sertoli cell so
there may be functional redundancy which reduces the effects of
inactivating Rhox5. Androgens have also been linked to retinoic
acid metabolism/action in the testis [97,98] and since retinoic acid
has been linked to control of meiosis [99] this may be another
route by which androgens control spermatogenesis. Most recently,
a comprehensive list of androgen-regulated transcripts in mouse
Sertoli cells has been identified using RNAseq and the RiboTag
mouse [100]. In total, 938 mRNA transcripts were identified which
are androgen-dependent and predominantly expressed in the Ser-
toli cells and this valuable new resource will undoubtedly help
in identifying the mechanisms by which androgens regulate sper-
matogenesis. Interestingly, it has also been shown that, in addition
to the normal pathway, testosterone can act through a non-classical
pathway which involves AR recruitment of Src kinase and activa-
tion of the epidermal growth factor receptor [101,102]. Co-culture
studies show that androgens act through this pathway to increase
adhesion of spermatocytes and spermatids to Sertoli cells followed
by release of elongated spermatids and mature spermatozoa [103].
For more information on this pathway see xxxxxxxx. Overall, since
androgens have to act on both PTMC and Sertoli cells to regu-
l of germ cell development and spermatogenesis. Semin Cell Dev

late spermatogenesis, and given the variety of genes shown to
be androgen-dependent, it is likely that a number of different
pathways are involved in androgen regulation of spermatogenesis.
Finally, androgens are also essential for Sertoli cell proliferation

dx.doi.org/10.1016/j.semcdb.2014.02.010
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Fig. 3. Semithin sections showing the effect of androgen on testicular morphology in hpg, hpg.SCARKO, and hpg.ARKO mice. In untreated animals, spermatogenesis was
severely disrupted with only spermatogonia and some spermatocytes present. Treatment with T increased germ cell numbers in all mice, although the effect was most
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eproduced from [74].

uring fetal and neonatal development [4,18,104] and, as Sertoli
ell number regulates germ cell number [7], androgen stimulation
uring pre-pubertal development will also determine final germ
ell numbers in the adult.

.3. Estrogen

There is no doubt that estrogens can affect spermatogenesis but
he effects are complex and the normal physiological role in the
dult remains unclear. There is, however, good evidence to suggest
hat estrogen action is required in the neonate to ensure normal
dult spermatogenesis. The complexity of estrogen action comes
argely from the multiple indirect effects that the hormone has on
he testis through endocrine regulation and through other tissues.
strogens will stimulate spermatogenesis, for example, in the adult
pg mouse [105] but this effect is due to stimulation of FSH release
Please cite this article in press as: O’Shaughnessy PJ. Hormonal contro
Biol (2014), http://dx.doi.org/10.1016/j.semcdb.2014.02.010

rom the pituitary [40]. On the other hand, exogenous estrogens will
nhibit spermatogenesis in normal adult animals through inhibition
f LH secretion and intratesticular testosterone levels [106]. Never-
heless, the testis has aromatase activity which converts androgens
ice. In the hpg.ARKO group the black arrow indicates the presence of a microlith

to estrogens and the testes of some species such as the horse
produce large amounts of estrogens [107,108]. Several cell types
in the testis, including germ cells, also express nuclear estrogen
receptors (ER� and ER�) as well as the membrane receptor GPR30
[109,110]. More pertinently, a physiological role for estrogens is
suggested by the developing infertility in mice lacking aromatase
(ArKO mice). Young ArKO mice are initially fertile but spermatoge-
nesis degenerates with time with an arrest at early spermiogenesis
and the appearance of multinucleated cells in the tubular lumen
[111]. �ERKO mice are also infertile and this appears to be through
both estrogen-dependent and estrogen-independent mechanisms
[112]. Estrogen-independent ER� signalling is required for concen-
trating epididymal sperm through regulation of fluid absorption
by the epididymis [112,113]. Interestingly, estrogen-dependent
ER� signalling is also required during the neonatal period to
ensure normal adult spermatogenesis and fertility [112]. This
l of germ cell development and spermatogenesis. Semin Cell Dev

effect is probably related to Sertoli cell maturation during this
period although estrogens can increase spermatogonial numbers in
neonatal rats [114]. ER�KO male mice are sterile but this does not
appear to be due to defects in spermatogenesis [115] and GPR30KO

dx.doi.org/10.1016/j.semcdb.2014.02.010
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Fig. 4. Morphometric analysis of germ cell types in 8-wk-old testes from control,
FSHRKO, SCARKO, and FSHRKO.SCARKO mice. The results show that in the absence
of FSH or androgen action through the Sertoli cells (FSHRKO.SCARKO mice) tubules
contain largely spermatogonia (see also Fig. 5). In the presence of FSH (SCARKO mice)
there is a significant increase in spermatogonia and spermatocytes while in the pres-
ence of androgen (FSHRKO mice) there is an increase in spermatocytes and round
spermatids. It is only in the presence of both hormones (control), however, that
full spermatogenesis is seen. The mean ± SEM of four animals per group is shown.
Groups with different letter superscripts are significantly different. Where there
ARTICLESCDB 1512 1–11
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ice are reported to be normally fertile [116]. With respect to
strogen action on spermatogenesis, the clearest effects are seen
n spermiogenesis and it has been suggested that acrosome bio-
enesis may be an estrogen-dependent process [117] which would
e consistent with the developing spermatogenic failure seen in
rKO mice. Interestingly, estrogens will also stimulate spermato-
onial differentiation following irradiation damage to the testis
118], an effect that is not related to testosterone suppression [119].
hus, there is compelling evidence that estrogen plays a role in the
arly development of spermatogenesis (probably through the Ser-
oli cells) and it is clear that estrogens will affect spermatogenesis
ut the normal role that estrogens play in this process in the adult
nd the mechanisms of action remain to be determined.

.4. Activin

Activins and activin-related proteins are produced by most tes-
icular cell types [120] and probably should be described as local
rowth factors rather than hormones with respect to spermato-
enesis. They do also act as hormones, however, and as such are
ncluded in this review (the same arguments could of course be

ade concerning androgens). Activin receptors have been identi-
ed in Sertoli cells and in germ cells with some receptors showing
stage-dependent pattern of expression [120]. Activin has been

hown to have effects on SSC, spermatogonia and spermatocytes in
ulture [121–123] but the best evidence for a normal role in sper-
atogenesis comes from transgenic models. These can be complex

o analyse since changes in activin/inhibin levels will also affect cir-
ulating FSH levels but in double knockout mice lacking FSH and the
ctivin recptor type 2A (ACVR2A) there is a greater loss of epididy-
al sperm numbers and spermatogonia than in animals lacking

SH or ACVR2A alone [124]. There also appears to be a require-
ent for a normal expression pattern of activin secretion since

nimals with overexpression of the �A-subunit show progressive
ailure of spermatogenesis [125]. The activin-related proteins follis-
atin (FST) and follistatin-like 3 (FSTL3) are activin-binding proteins
hich act as antagonists to activin activity. Over-expression of FST,
hich would be expected to reduce local activin levels, causes

nfertility without clear effects on FSH levels [126]. Conversely, in
ice lacking FSTL3 there is a clear increase in germ cell numbers

lthough this is probably related mostly to a significant increase in
ertoli cell numbers [127]. Overall, available evidence suggests that
ctivins may play a regulatory role in maintaining spermatogenesis
nd ensuring normal Sertoli cell development and activity.

.5. Combined hormone action

While both androgen and FSH will act alone to stimulate sper-
atogenesis, it is clear that both hormones acting together are

ssential for full spermatogenesis. The combined effects of both
ormones can be seen clearly in FSHRKO, SCARKO and combined
SHRKO.SCARKO mice [30] (Figs. 4 and 5). The FSHRKO.SCARKO
ouse provides a baseline model with no direct endocrine stim-

lation of the Sertoli cells and in these animals there is a marked
ailure of spermatocyte development and absence of any cells com-
leting meiosis [30]. The SCARKO mouse shows the effect of FSH
n this model which is to stimulate spermatogonial and spermato-
yte numbers while the FSHRKO mouse shows that androgens act
o stimulate completion of meiosis [30]. It is only, however, when
oth hormones are present in the control animal that full, normal
permatogenesis occurs (Figs. 4 and 5). While it is clear that andro-
ens are the main stimulatory factor regulating spermatogenesis,
Please cite this article in press as: O’Shaughnessy PJ. Hormonal contro
Biol (2014), http://dx.doi.org/10.1016/j.semcdb.2014.02.010

he two hormones act additively to stimulate entry of the germ
ells into meiosis and synergistic to enhance completion of meio-
is and entry into spermiogenesis [30]. Similar synergistic effects
f FSH and testosterone are also seen in hpg mice with a marked
was a significant interaction between the effects of the two gene knockouts, this is
indicated on the figure.

Adapted from [30].

increase in spermatid numbers in the presence of both hormones
[39]. It has also been reported that in a rat model of suppressed
androgen and/or FSH both hormones act synergistically to support
spermiation [49] with a similar effect seen in the human [128].

Some of the additive effects of FSH and androgen are likely to
be through the action of each hormone on different parts of the
spermatogenic cycle but the mechanisms by which they act syn-
ergistically to increase completion of meiosis are not known. A
number of potential synergistic mechanisms have, however, been
l of germ cell development and spermatogenesis. Semin Cell Dev

previously described. For example, FSH has been shown to aug-
ment the action of testosterone and help induce tight junction
formation at the Sertoli cell barrier [129]. Similarly, it has been
reported that androgen may act to regulate FSH action on the Sertoli

dx.doi.org/10.1016/j.semcdb.2014.02.010
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Fig. 5. Semithin sections from testes of 8-wk-old normal, FSHRKO, SCARKO, and FSHRKO-SCARKO mice. The FSHRKO mice contained all stages of spermatogenesis, although
germ cell number was reduced. In SCARKOmice, spermatogenesis progressed through meiosis, but there was progressive loss of pachytene spermatocytes, and few secondary
spermatocytes or round spermatids were observed. In FSHRKO.SCARKOmice, the tubules were of a smaller diameter with large numbers of Sertoli cells (black arrowheads)
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rom Reference [30].

ell through the chromatin modifier metastasis-associated protein
(MTA2) [130]. In contrast, FSH has been shown to antagonise

he effects of testosterone on germ cell attachment through the
on-classical pathway [103]. Understanding the synergistic mech-
nisms underlying the action of these two hormones is not likely
o occur, however, until we know how hormones act to regulate
ompletion of meiosis.

. Hormonal regulation of spermatogenesis in primates

Consistent with rodent models, spermatogenesis in primates is
ependent upon FSH and androgen. Indeed, the effects of hypophy-
ectomy on primates, including man, is more marked than in
odents with only Sertoli cells and spermatogonia left in the invo-
uted tubules [131–133]. The phenotype is also more marked than
hat seen in the FSHRKO.SCARKO mouse [30] and suggests that
oth spermatogonial proliferation and onset of meiosis are more
ormonally sensitive in primates. As with rodents, hypophysec-
omy and replacement studies show that androgens are essential
or fertility in primates [131,134,135]. This is also demonstrated
y the arrested spermatogenesis seen in individuals with muta-
ions in LH� which prevent secretion or receptor binding of the
ormone despite normal testis descent [136,137]. In monkeys,
ndrogens appear to be required, particularly, for conversion of
ype A pale (Ap) spermatogonia to type B, completion of meiosis,
permiogenesis and for spermiation [138]. The role of FSH in nor-
al spermatogenesis in primates may be greater than in rodents

ut there remains some uncertainty. It has been shown in primates
hat unilateral orchiectomy will increase testis size and spermato-
enesis in the remaining testis and this effect is associated with
Please cite this article in press as: O’Shaughnessy PJ. Hormonal contro
Biol (2014), http://dx.doi.org/10.1016/j.semcdb.2014.02.010

long-term increase in circulating FSH levels [139,140]. Similarly,
SH will increase germ cell production in normal adult monkeys
nd humans [52,141], mainly through an increase in Ap spermato-
onia entering the spermatogenic cycle. Finally, it has also been
is, but development stopped at early pachytene in most cells (yellow arrowhead).

reported that FSH is as effective as LH in maintaining spermato-
genesis in normal men with gonadotrophin suppression although
it is not clear whether residual androgen levels in these men may
have contributed to a synergistic effect with FSH [128]. While FSH
will clearly stimulate spermatogenesis in primates, studies on the
effects of inactivating mutations in the human are equivocal about
the pivotal importance of this hormone during maintenance of nor-
mal spermatogenesis. Three separate studies have reported that
inactivating mutations in FSH� will cause azoospermia [142–144]
suggesting FSH is critical for germ cell development but a reported
inactivating mutation in FSHR was associated with oligozoosper-
mia [145]. Results from a detailed stereological analysis of the
effects of gonadotrophins in men suggest that FSH acts primarily
to maintain spermatocyte numbers while both FSH and androgen
maintain spermatid numbers [128].

6. Conclusions and future directions

The fundamental roles played by FSH and androgen in control
of spermatogenesis were described over 70 years ago and further
study in the intervening period has served to re-enforce the results
of these early studies and to refine our knowledge of the action of
these hormones. Overall, the primary effects of FSH and androgen
appear to be similar in rodents, primates and other mammals (FSH
acts to stimulate spermatogonial proliferation and entry into meio-
sis and T acts to ensure completion of meiosis and spermiogenesis).
Androgens appear to be critical for spermatogenesis in all species
and, while the relative importance of FSH may vary, it is clear that
optimal spermatogenesis requires the action of both hormones. We
are beginning to understand how FSH and androgen act to regulate
l of germ cell development and spermatogenesis. Semin Cell Dev

germ cell development at the cellular and molecular level but this
remains an area in which substantial advances are required. Current
transgenic models are excellent for study of early germ cell devel-
opment and the first wave of spermatogenesis but further work

dx.doi.org/10.1016/j.semcdb.2014.02.010
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n the role of FSH and androgen in the adult will require develop-
ent of inducible cell-specific knockouts, preferably not requiring

se of tamoxifen. The critical role that the Sertoli cell plays in sper-
atogenesis has been, and remains, central to our understanding

f spermatogenesis and hormone action. The breakthrough stud-
es showing that androgens must also act through the PTMCs [6]
llustrates, however, that the cellular regulation of spermatogen-
sis is more complex than previously anticipated and this must
e a priority area for future study. Finally, the role that FSH plays

n human spermatogenesis remains an interesting and important
opic of study and further advances, probably through identifica-
ion of more individuals with inactivating mutations, are awaited
ith interest.
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