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a b s t r a c t

In this paper, we present an approach to evaluate end-to-end delays in packets switching networked

automation systems. Since Client-Server paradigm is considered for communication between the field

devices, the existing methods of network delays evaluation are hardly applicable to assess realistic upper

bounds of these delays. In an effort to enhance these delays evaluation, we propose an alternative method.

Two algorithms, usually used for optimization problems, exhaustive and genetic algorithms, are then

developed to achieve this purpose. While a formal proof about the capacity of the former one to ensure the

worst delay overestimation is given, the latter proves to provide faster and more accurate results at the

same time. This is shown on a practical case study while comparing the results of the two methods.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Fieldbus systems have been successfully introduced in indus-
trial automation, ensuring real time requirements on one hand and
devices safety on the other hand. Nowadays, the trend is also to use
the same communication technology at different levels in the
industrial organizations; management and automation. A solution
that supports such a vertical integration has to be able to provide
high throughputs in the upper level as well as small and accurate
response times in the field level. The Ethernet solutions, which
were initially developed to office networks, can be considered as
such a new generation of fieldbuses. Currently, many automation
producers and alliances developed their own industrial Ethernet
standard (Neumann, 2007). Each solution with a specific protocol is
best suited to a particular application. A Client/Server protocol like
Modbus over Ethernet, even not adequate for strict real time
applications like motion control, is a simple and a reasonable
solution for many purposes in industrial control systems. Indeed, it
is an application protocol (the 7th layer of the OSI model) that is
completely compliant with the standard Ethernet. Therefore,
vertical integration is easily achieved. Thus, high level functions
like diagnosis and device management are easily implemented.
Unfortunately, with such a protocol, no global medium access
scheduling is available and different delays due to waiting for
resources availability or synchronization are caused. So, the
evaluation of its time performances like the response time is
complex and the investigations that deal with this problem are
ll rights reserved.
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rare. The existing methods are often studies of particular systems
based on model checking (Greifeneder and Frey, 2007; Witsch et al.,
2006; Ruel et al., 2009) that suffers from the classical state
explosion problem. Another method is based on high level colored
Petri nets simulation (Marsal et al., 2006; Zaitsev, 2004). This
method is time driven and very onerous of time. Moreover, it does
not provide a formal analysis or proof about its capacity to sweep
the worst scenarios corresponding to the worst delays. Finally, an
experimental method using a logical network analyzer dedicated to
delays measuring is presented in Denis et al. (2007). Hence, the aim
of the current paper is to propose an adequate method to assess
upper bounds of end-to-end delays of switched packets in the
context of Client-Sever automation systems. While a proof about
the capacity of the method to assess the worst delays is provided, a
genetic algorithm is developed to achieve it much faster.

The remainder of this paper is organized as follows. Section 2
introduces the context of our investigation and the motivations to
develop a method for end-to-end delays evaluation. Thereafter,
two algorithms, to look for the worst delays, are developed in
Section 3: an exhaustive algorithm in Section 3.1 and a genetic
algorithm in Section 3.2. A case study is then considered to perform
a comparison between them in Section 4. Finally, Section 5
addresses some concluding remarks.
2. Client server automation systems over switched Ethernet

The studied automation architecture works according to Client/
Server protocol. It is constituted mainly of PLCs (programmable
logic controllers), RIOMs (remote input output modules) and a
switched Ethernet network that enables communication between
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Fig. 1. Client-Server automation system.
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all the components (Fig. 1). The PLCs (clients) send periodically
requests to the RIOMs (servers) and wait for answers. When a RIOM
receives a request, it puts it in a queue so as to process all the
waiting requests according to a FIFO policy. A request is mainly
to get information from the plant (e.g. is the maximal level of
water reached?) or to provide orders (e.g. close the valve) or a
combination of both. A major criterion of time performance of such
a system is the response time Dr (Fig. 1). It is defined as the delay
between the occurrence of an event in the plant (e.g. the maximum
level is reached) and the arrival of the consequence, issued from
a controller, on the controlled plant (closure of the valve). The
response time can be defined intuitively as the reactivity delay of
the automation system.

As a matter of fact, the evaluation of the response time of these
systems is tricky. Indeed, different delays due to non synchroniza-
tion of the components, resources sharing and of course the
intrinsic delays (processing) are to be considered.

In Addad et al. (2010), we developed an analytic method to
evaluate this response time. A formula giving an upper bound of the
response time is obtained. Obviously, the delays we call the end-to-

end network delays (including only the delays experienced in the
switches) are involved in the formula. A typical end-to-end delay is
the time for a request to cross the switches from its generation by a
PLC until its arrival to a RIOM. Therefore, to assess an upper bound
of the response time, upper bounds of these end-to-end delays are
needed. It could be thought then that existing methods like the well
known network calculus (Cruz, 1991; Le Boudec and Thiran, 2004;
Georges et al., 2005) or worst case methods (Fan et al., 2008; Lee
and Lee, 2002) can be used for this purpose. Unfortunately, in the
context of switched packets, combined to Client-Server paradigm,
it is not so obvious. Indeed, the flows independency supposed by
the previous methods is not verified. For instance, a RIOM does only
answer a received request and therefore a request with its
corresponding answer cannot exist at the same time in the system.
Besides this impeding fact, the formula is very sensitive to the
upper bounds of the end-to-end delays. Indeed, a small over-
estimation of these delays may lead to a huge overestimation of the
response time upper bound. As a result, the quality of control in
these automation systems are dramatically degraded since the
control law synthesis is based mostly on the upper bound assess-
ment (Addad and Amari, 2008). Thereby, an adequate method to
evaluate the end-to-end delays in such systems is to be investi-
gated. This is the objective of the next section.
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Fig. 2. Scanning mechanism and bursts interference.
3. End-to-end delays evaluation

As aforementioned, the studied automation architecture works
according to Client-Server protocol. The PLCs, which are the
clients, send requests and the RIOMs (the servers) return answers
accordingly. To explain the proposed method of delays evaluation,
we use the system in Fig. 1.
K
 PLC1 sends a burst of three requests (series of three frames sent
one after another) periodically with a period T1 to the modules
R12, R13 and R14 (Figs. 1 and 2).
K
 PLC2 sends a burst of three requests periodically with a period
T2 to the modules R14, R15 and R16.
K
 PLC3 sends a burst of two requests periodically with a period T3

to the modules R16 and R17.

Actually, the PLCs which are the sources of frames (we use the
term of ‘‘senders’’) are neither synchronized nor scheduled and
therefore can start sending their bursts at any time. A scenario is
shown in Fig. 2 where lags t2 and t3 with respect to the start-
sending date of PLC1 (chosen as a reference) are represented.
Obviously, different lags (different scenarios) will lead to different
interferences between the bursts of the PLCs and consequently
different end-to-end delays within the system. Therefore, the main
issue is then to find the critical scenario (the lags ti) that causes
the maximum delay of a given frame. This is the purpose of the
following algorithms.
3.1. Exhaustive exploration algorithm

As explained above, the interference between the bursts is
entirely up to the lags ti between the senders. Intuitively, a sender
will influence another if it starts sending frames at more or less the
same time. A given frame experiences a delay depending on the set

of frames that preceded it in a switch and are waiting to be
forwarded first. In the context of our study where the pattern of
generation of the frames from PLCs is known beforehand (periodi-
cally), all the possibilities of this set of frames can be identified
exhaustively. In Fig. 3 for example, the number of possibilities of the
set E of the frames of parallel bursts that enter before a frame f * is
equal to 4�3¼12 (4 frames in the first burst and 3 in the second
one). It is a simple combinatorial operation. As we notice in Fig. 3,
there are infinite situations that correspond to the same set E, but
obviously not the same delays. Therefore, the issue is to handle the
variation of the delays from a scenario to another. The next lemma
and theorem will show that the discrepancy from a scenario to
another, corresponding to the same set E, is at worst equal to a well
determined length.

Lemma. Suppose fn a frame that enters a switch at time tn and

experiences a delay D in it. Let fi be a frame (of a parallel burst i) that

comes immediately before fn and enters the switch at time t*�di.
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If the delayD is maximal, then the arrival time of f i is necessarily
the date yi¼t*�e* with e*¼0+ i.e. f *enters a bit after f i. It follows
that: di¼e*¼0+. One can equivalently write

D is maximal) y¼ t��e�

Proof (by contradiction). Let yi¼t*�di be the date of arrival of the
frame f i with di4e*. To remain under the assumption—f i the

immediate frame entering before f*—an enough condition on di is to
verify: diodwhere d is the minimal inter-arrival time of the frames
(see Fig. 3(a)). Suppose that f i enters at date yi and this scenario
leads to the critical situation i.e. the delay D is maximal. Now,
suppose that f i enters at date yui ¼ t��e� (see Fig. 3(b)) and this
second scenario leads to a delay D0. Since the set E remains the
same, from case (a) to case (b), and the arrivals of frames of this set
are delayed, then the end of their processing will be delayed too.
Finally, the frame f *will experience necessarily a delay D0 greater
than D. This is of course absurd since from the beginning D is
supposed to be the maximal delay. &

Actually, looking for the set E is equivalent to look for the
adequate start-sending dates from PLCs or the lags ti (Fig. 2).
Therefore, instead of tackling the problem by searching this set, we
rather look for a combination of the lags corresponding to this
worst scenario. The following theorem will provide an enough
condition to achieve an exhaustive exploration while searching this
worst scenario.

Theorem. Suppose we look for the worst scenario by searching the

lags ti in an enough large domain.

If a step deod is used to vary the lags of the start-sending dates ti in a

combinatorial scheme, then an exhaustive exploration is achieved and

the accuracy of the result is worth de. In other words, the gap between

the assessed delay and the effective worst one is smaller than de.

Proof. From the lemma, the maximal delay is reached if f * enters
the switch a bit after f i. Since the step de is smaller than the inter-
arrival time, then we are sure to obtain the set E and the best case is
when f i enters de before f *. Hence, if every frame f i arrives de before
t*, then the processing of the set E will be finished, in the best case,
de earlier. Thus, the assessed delay added up to de is at worst de

greater than the real delay. &

Remark 3.1. With Ethernet d¼minkðð72þ12Þ=CkÞwhere 72 bytes
is the minimal frame length (preamble included), 12 bytes is the
inter-frames gap (96 bits or 12 bytes) and Ck the physical capacity of
the port k of a switch.
Thereby, we can use a step de, respecting the previous theorem
condition, to vary the lags ti in a domain noted [�TDomain, +TDomain]
where TDomain is taken large enough to include the worst scenario
(assessed for instance using a pessimistic method).

Hence, for each combination of the lags, we simulate the
behaviour of the system and assess the corresponding delay
Dend2end (see Fig. 4). This is represented by the block Simulator

(t1,t2,y,tn) in Fig. 4 with the lags ti being introduced as entries. For
a system with n senders (PLCs), the diagram of the exhaustive
exploration method is drawn in Fig. 4. The maximum of all the
obtained delays is then chosen as an upper bound. The simulation
can be achieved using any suitable simulation method. In the case
of the current study, a virtual queuing based simulator, already
applied in Addad and Amari (2009), has been used for this purpose.
It has the advantage of being an event driven simulator and
therefore much faster than the usual time driven simulators.
Despite this advantage, the simulation may last a long time when
dealing with very large systems. Indeed, the number of times to run
the block Simulator (t1,t2,y,tn) is exactly equal to ð2U TDomain=de

� �
Þ
n

where n is the number of senders and TDomain=de

� �
the integer part

of TDomain/de. Thus, this number grows exponentially when the
number of senders grows linearly. While this exhaustive method is
quite satisfactory in some cases, it can be very onerous of time in
others, so other more efficient methods are to be investigated.
Genetic algorithms are then considered as an alternative in our
study.

3.2. Genetic algorithms

Genetic algorithms (GAs) were first introduced by Holland
(1975) and have been extensively explored later in other
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investigations for optimization problems resolution in almost all
domains. With regard to fieldbus systems, GAs were used in
Georges et al. (2006), Zhang and Zhang (2007) and Carro-Calvo
et al. (2010) to optimize the partition of switched Ethernet
networks into sub-networks where the intra sub-network com-
munication traffic is maximized whereas the inter sub-networks
communication is minimized. They were used in Lee et al. (2004) to
help the designer to select the optimal timers in a Profibus Token
Passing Protocol fieldbus so as to satisfy the maximum allowable
delays of the real time data on one hand and maximize the non real
time data transfer on the other hand. They were also used in Cheng
and Yang (2010) and Garcı́a-Nieto et al. (2010) to investigate the
problem of dynamic quality of service in mobile ad hoc networks.
We can also quote (Saniee Abadeh et al., 2007) where GAs were
used to improve the security of networked computers while
reducing the false alarms in determining intrusive activities. In
the current study, we obviously use GAs to evaluate the maximum
end-to-end delays of switched packets in Client-Server networked
automation systems.

A GA is a structured stochastic optimum search method that
mimics the process of biological evolution. At the beginning, a GA is
initialized with a collection of sets of parameters. Each set is called a
chromosome whereas a parameter a gene. Then, the chromosomes
are evaluated according to their fitness of solving an optimization
problem (maximization of Dend2end in our case). At every generation
(algorithm execution time), the fittest chromosomes (parents) are
allowed to mate (crossover) and bear offspring (children). Then, the
best children become the parents of the next generation. The
previous steps are repeated until finding a satisfactory solution of
the problem. To avoid falling in a local optimum as is often the case
with the traditional hill-climbing search methods, a mutation
mechanism is added. Depending on the optimization problem,
many ways exist to accomplish every step of the GA: codification of
the chromosomes, initialization of the population, selection of the
parents, crossover and mutation. Here are the features of the
applied GA in our problem:
�
 Chromosomes encoding: The parameters handled in our problem
are the start-sending dates or the lags tk which are real numbers.
Therefore, we apply a continuous GA and the genes are simply real
numbers. The kth gene noted gi

k of each chromosome i represents
the lag tk. The ith chromosome is notedYi

¼ ðgi
2,gi

3, � � � ,gi
nÞ and its

fitness J(Yi) where J(Yi)¼Dend2end.

�
 Initialization of the population: In some automation systems, we

may have an idea about the worst scenario and therefore
initialize the GA with the corresponding parameters. In complex
systems, it is rarely the case. Therefore, a random initialization
of the parameters in the domain [�TDomain,+TDomain] is con-
sidered in the current study.

�
 Selection of the parents: According to natural selection theory,

the fittest members with the greatest fitness survive and the
others die. One way to represent this strategy is to use the so-
called roulette-wheel-spinning. A unit circumference is cut into
slices, each slice being dedicated to one member according to its
relative fitness. The ith member is then associated to the portion
Pi ¼ JðYi

Þ=
P

k JðYk
Þ. Thereafter, we spin the wheel and if the

pointer stops at the jth portion, the chromosome j is selected
and placed into a mating pool. Obviously, the fittest members
with the biggest portions are more likely to be chosen than the
others.

�
 Crossover (mating): Pairs are chosen from the mating pool and

mate with a given probability PCss to form the offspring. Many
approaches exist to deal with the crossover in continuous GA
(Passino, 2005). One of the most efficient and simplest methods
is combining two genes gi

k and gj
k of the parents Yi and Yj to
form the children Chi and Chiu (with genes noted Chgi
k and Chgiu

k)
as follows:

Chgi
k ¼ agi

kþð1�aÞg
j
k

Chgiu
k ¼ agj

kþð1�aÞg
i
k

8<
:

a being a random real number in the domain [0,1].

�
 Mutation: To avoid a quick convergence of the GA and the risk of

being trapped in a local optimum, we force it to explore other
regions of the space by introducing random changes or muta-
tions in the genes. The process of mutation on a gene gi

k of a
member Yi can be performed with a probability PMt as follows:

gi
k ¼ TDomainð2b�1Þ

b being a random real number in the domain [0,1]. The mutation
is applied on all the members of the population except for the
best member of the generation if elitism option is chosen. With
elitism option, the best member of a generation is conserved for
the next generation without any change. As a consequence, the
fitness function is monotonic along the generations (non-
decreasing function as in Fig. 7).

The process described previously is repeated until a satisfactory
solution is found or the best fitness does not change during a
minimum number of generations. The GA applied for our problem
resolution is implemented using Matlab software and the main
steps are shown in Fig. 5. The following notations are adopted:
�
 PopNum is the total number of members of the population.

�
 MaxGen is the maximal number of generations.

�
 PCss is the probability of crossover.

�
 PMt is the probability of mutation.

�
 rand is a random number from the domain �0, 1½.

Remark 3.2. As can be seen in Fig. 5, the same block representing
the simulator used with the exhaustive method is used with GA.
Indeed, this block is only used to simulate the behaviour of the
system for a given scenario so as to assess the corresponding delay.
Note that using a simulator and introducing manually the entries
(the lags ti) of each scenario would not be viable given the number
of times the block is to be run. In this study, both the simulation
block and optimization methods (either exhaustive or GA) are
implemented using the same programming language (Matlab) and
the whole process is therefore automated.
4. Case study

The system of the case study is shown in Fig. 6. It works as
follows: three controllers, PLC1, PLC2 and PLC3 scan, respectively,
the ordered sets of RIOMs: {R12,R13,R14}, {R14,R15,R16} and {R16,R17}
with 72 bytes requests. This is the automation part we used for
explanation in Section 2, but as stated previously, the studied
system presents the advantage of ease of high level functions
integration since standard Ethernet is considered for communica-
tion. Therefore, a second part PART II is added for this purpose; PC1
exchanges long frames of 1008 bytes length with PC3 and PC4
whereas PC2 has the role of a supervisor of the first part PART I. It
scans all the RIOMs every 300 ms with 72 bytes requests so as to
check the good functioning of the modules. The aim is to evaluate
an upper bound of the delay Dend2end that a request, sent from PLC2
to R14, experiences in the network (Fig. 6). Any request would be
chosen, but we selected this one since R14 is shared by PC2, PLC1
and PLC2. Thus, particular and not trivial scenarios lead to the worst
delay. Therefore, we should find them using different methods. To
evaluate the delay in question, we applied the two previously
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exposed methods, exhaustive exploration and GA. We also con-
sidered two cases using the exhaustive method: Exhaustive I with
step de being set up to 20 ms at the beginning and to 1 ms
subsequently whereas in Exhaustive II this step is progressively
narrowed from 50 to 1 ms. The results of assessment using the
different approaches are reported in Table 1.

As we can note, all the methods lead to nearly the same
assessment of the worst end-to-end delay. The duration of simula-
tion is however very different. First, the use of a small step in the
exhaustive exploration may lead to long simulation durations
(Exhaustive I). Indeed, the smaller the step de is, the greater the
number of situations to check is (recall that this number is equal to
ð2U TDomain=de

� �
Þ
n). A more interesting method is to begin with a

relatively large step de (50 instead of 20) if possible (it must check
the condition given by the theorem) and narrow it progressively.
This is made in Exhaustive II and we notice that the simulation
duration is dramatically reduced from �2 h to about 4 min. We can
also note that the gap of underestimation in all the cases is smaller
than the step de. Indeed, the sum of the used step and the assessed
delay is always greater than the final assessed delay. In Exhaustive
II for instance, we have an assessed delay of 283.52 ms with a step de

equal to 50 ms. The sum of both is greater than the final delay, which
is equal to 319.96 ms. This feature can be checked in all the results of
Table 1. Naturally, this corroborates the statements of the theorem
of Section 3.1.

On the other hand, the genetic algorithm not only provides an
accurate upper bound of the delay (see Fig. 7), but also achieves it in
relatively negligible simulation duration of about 29 s. Moreover, a
gap of 1% from the final maximal delay is reached in almost 100
Table 1
Results of evaluation.

Method Step de (ms) Assessed

worst delay (ms)

Simulation

duration

Exhaustive I Step 1 20 319.96 �2 h

Step 2 1 319.96

Exhaustive II Step 1 50 283.52 �4 min

Step 2 10 313.52

Step 3 1 319.96

GA / 320.50 �29 s

Fig. 7. The best fitness (maximal end-to-end delay) along the generations.
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generations (about 2 s simulation duration). Compared to duration
of 2 h or even 4 min using exhaustive search, GA achieved better
results much faster. Finally, we can point out that the gap between
the final assessed delays using Exhaustive (i.e. 319.96 ms) and GA
(i.e. 320.50 ms) is smaller than 1 ms (the final step used in
Exhaustive). Again, this is in accordance with the theorem since
we can be confident about 320.50 ms of being the exact worst delay
given that it does not change from generation 200 to generation
1000 (Fig. 7).
5. Conclusion

In this paper, we proposed an approach to evaluate end-to-end
delays of switched packets in networked automation systems. The
Client-Server paradigm being used as the protocol of communica-
tion, the existing methods of delays evaluation are indeed hardly
applicable. So, an exhaustive exploration method and genetic
algorithms were developed to assess upper bounds of these delays.
On a case study, we showed that both methods give almost the
same results but a clear advantage of using GAs has been noticed
since the simulation durations are dramatically different. While the
exhaustive one may be preferred when dealing with simple
automation systems, given its simplicity of implementation, GAs
are more suitable for evaluation when large architectures are under
consideration.
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