
Neurocomputing 175 (2016) 121–131
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
E-m
journal homepage: www.elsevier.com/locate/neucom
A profit-driven Artificial Neural Network (ANN) with applications
to fraud detection and direct marketing

Ashkan Zakaryazad, Ekrem Duman n

Department of Industrial Engineering, Özyeğin University, Istanbul, Turkey
a r t i c l e i n f o

Article history:
Received 15 December 2014
Received in revised form
6 July 2015
Accepted 14 October 2015

Communicated by Dorothy Ndedi Monekosso

classification technique. In order to do this, we have first introduced an ANN model with a new penalty
Available online 23 October 2015

Keywords:
Neural network
Profit-driven neural network
Individual profit and cost
Sum of squared errors (SSE)
x.doi.org/10.1016/j.neucom.2015.10.042
12/& 2015 Elsevier B.V. All rights reserved.

esponding author.
ail address: Ekrem.Duman@ozyegin.edu.tr (E.
a b s t r a c t

The rapid growth in data capture and computational power has led to an increasing focus on data-driven
research. So far, most of the research is focused on predictive modeling using statistical optimization,
while profit maximization has been given less priority. It is exactly this gap that will be addressed in this
study by taking a profit-driven approach to develop a profit-driven Artificial Neural Network (ANN)

function which gives variable penalties to the misclassification of instances considering their individual
importance (profit of correctly classification and/or cost of misclassification) and then we have con-
sidered maximizing the total net profit. In order to generate individual penalties, we have modified the
sum of squared errors (SSE) function by changing its values with respect to profit of each instance. We
have implemented different versions of ANN of which five of them are new ones contributed in this
study and two benchmarks from relevant literature. We appraise the effectiveness of the proposed
models on two real-life data sets from fraud detection and a University of California Irvine (UCI) repo-
sitory data set about bank direct marketing. For the comparison, we have considered both statistical and
profit-driven performance metrics. Empirical results revealed that, although in most cases the statistical
performance of new models are not better than previous ones, they turn out to be better when profit is
the concern.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Classification algorithms label the observations of a data set
using their different attributes. In recent years, Artificial Neural
Network (ANN) classifier has become popular because of its broad
application areas. In most of these applications there is a focus on
cost-sensitive learning as there are different costs for different
types of misclassifications [1–6]. Cost of misclassification of an
instance is different from one context to another. In most of the
cost-sensitive binary classifications such as diagnosis problems,
there are two different misclassifications (false negatives and false
positives) and each of them has a particular cost. However, in
business problems such as credit card fraud detection and direct
marketing each misclassified observation can have a different cost
and moreover there may be a profit for correctly classified ones
(true positives and true negatives). Thus, in such cases, there is a
necessity to develop a classification model that considers indivi-
dual profits and costs.
Duman).
“Credit card (CC) fraud detection” is one of the well-known
classification problems. In this type of classification, a data set
which contains various information (attributes) about the credit
card transactions of a bank is used [7–10]. For each of the records,
there is a dependent attribute which takes the value of one if the
transaction is fraudulent and takes the value of zero if it is legit-
imate. In CC fraud detection if a classifier correctly detects a
fraudulent transaction, it will save the usable limit of the corre-
sponding card and if it mis-classifies the transaction, the usable
limit of the card will be lost. The other application of data mining
and classification used in this study is Bank direct marketing. In
order to target a specific segment of customers, banks use data
mining algorithms to classify the customers as buyers and non-
buyers [11–13]. In this context, if a model correctly detects a
potential customer for a campaign, there will be a particular profit
of gaining that customer and if a potential buyer is not identified,
the profits that could be gained from him/her might be lost. These
two applications of classification are discussed in this study, where
individual costs and profits of each instance is considered.

Although ANN has become a popular classification algorithm in
recent years, there are a few studies about variable individual costs
of misclassifications. Excluding this issue and using the simplistic
model, ANN will just minimize the number of misclassifications

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.10.042
http://dx.doi.org/10.1016/j.neucom.2015.10.042
http://dx.doi.org/10.1016/j.neucom.2015.10.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.042&domain=pdf
mailto:Ekrem.Duman@ozyegin.edu.tr
http://dx.doi.org/10.1016/j.neucom.2015.10.042


Table 1
Individual net profit matrix.

Predicted class

Case (i) Non-case (j)

Actual class Case (i) Pi
11 Ci

10

Non-case (j) Cj
01 Pj

00

Table 2
A general cost matrix, a two-class case.

Predicted class

Case Non-case

Actual class Case 0 C1
Non-case C2 0

A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131122
which will result in a suboptimal solution in terms of cost mini-
mization or profit maximization [14]. In real life problems, the
most important reason which motivates business administrations
to invest in data science is the amount of profit they gain from
implementing their models. In credit card frauds, a possible fraud
transaction with a high amount of available limit is more impor-
tant for bank to be detected than a transaction with a low usable
limit. Equivalently, in the direct marketing context (for a bank), a
customer with a high potential balance is more important to be
detected and receive an offer than a customer with a lower
balance.

For comparing cost-sensitive classifications, we had to choose a
performance metric which does not represent the statistical per-
formance of the models, but their actual ability to maximize the
profit gained from their implementation. This issue is addressed in
this study by introducing the net profit gained from classification
where the threshold is the number of positive instances in the test
set (i.e. top 10%) instead of the classical threshold of score 0.5.
While using this threshold we imply that only the number of
positives labeled by a classifier is not important because in this
case we may incorrectly choose a model which labels most of
the instances as positive to increase the profit of detecting
positive cases.

In this study, a new case-based (individual) net profit matrix is
considered to be compared with traditional class-based cost
matrix. Table 1 illustrates the profits and costs of two individual
instances from two different classes. One of them is case (positive)
and the other is non-case (negative).

In Table 1 the instance i is a case (positive) and instance j is
non-case (negative) and there are variable profits for correctly
classification of each instance and also variable costs for incor-
rectly classification of them. These profits and costs are different
from one context to another. For instance, in credit card fraud Pi

11

is the usable limit of the card used for transaction iminus the fixed
action cost, Ci

10 is the usable limit of the card of transaction i (cost),
Cj
01 is action cost and Pj

00 is zero. It means that correct classifica-
tion of non-case instances have no profit or cost.

In their previous study on credit card fraud detection, Sahin
and Duman [36] analyzed the performance of variations of Deci-
sion tree and SVM models on fraud data set and the result
represented the out-performance of decision tree. Accordingly we
just brought the best classifier in their previous study to compare
with ANN. Another well-known and common used classifier, Naïve
Bayes classifier, is used in order to benchmark the proposed
models and original ANN. These two algorithms have been studied
in lots of applications such as fraud detection and direct marketing
[9,15–18]. Also we have used traditional class-based cost-sensitive
ANN (mentioned as CNN) to compare its performance with the
newly presented models.

We introduced seven versions of ANN classifier where each of
them is a modification of the original ANN classifier. We changed
the error function and made it sensitive to individual cost and
profit of each instance. While five of these versions are originally
proposed in this study, one of them is adapted from literature [8]
and one is inspired from literature [21] and modified here to fit to
our setting. We performed experiments on three bank data sets
with the objective of maximizing the net profit gained from
implementing the classification model. Two of them are credit
card fraud data and the other one is bank direct marketing. The
experimental results revealed that there is no champion model for
all of the data sets but the different versions of proposed model
have statistically significant improvement in the total net profit as
compared to standard ANN, Decision tree, Naive Bayesian classifier
and class-based cost-sensitive ANN.
The remainder of the paper is organized as follows: the next
section (Section 2) presents a literature survey on cost-benefit
wise learning. Then, Section 3 outlines neural network and its
original error function based on sum of squared error. After that,
modified error functions are introduced which take the individual
net profits into consideration. Section 4 introduces the three data
sets used in our empirical study and the experimental results
obtained. Finally Section 5 briefly compares all of the models in
terms of both statistical performance and total profit.
2. Related works

A considerable amount of literature has been published on
cost-sensitive learning, however, there has been relatively little
literature published on maximization of the total net profit using
individual profits and costs. Numerous studies have the tendency
to focus on cost-sensitive learning algorithms such as over-sam-
pling, under-sampling, meta-cost, cost-sensitive boosting, and
meta heuristics [1,9,14,19–25] while some of them have worked
on cost-sensitive ANN [2–4,14,21,23,26–29]. In most of these
researches the authors have aimed to address the imbalance
between classes and the different types of misclassification. By
considering these issues resulting models are cost-sensitive clas-
sifiers which work well in imbalanced data and minimize total
cost instead of minimizing total number of misclassifications
[30,35]. However the central issue in these model is the class-
based costs.

Salchenberger et al. [31] developed a neural network model
with variable thresholds considering statistical type I and type II
errors and they used this model in thrift failure prediction. They
showed the high performance of neural network in discriminating
between healthy and failed institutions in comparison to other
traditional models. Berardi and Zhang [30] studied the effect of
different misclassification costs on neural network and their
results represented that this scenario can be used to reach the
optimal decision making based on cost of misclassification. Also
they implied that most of the statistical performance metrics are
not suitable to show the better performance of cost-sensitive
classifiers.

In the literature, some of the cost-sensitive models have been
developed using different costs in cost matrix. Here, a cost matrix
has been considered which contains different costs for different
types of misclassifications. Table 2 illustrates a general cost matrix
for these types of cost-sensitive models where there is a specific



Fig. 1. Sigmoid function.

A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131 123
cost for misclassifying a case (positive) as non-case (negative)
which is shown as C1 and another cost for misclassification of a
non-case as case (C2).

In threshold varying cost-sensitive models, different algorithms
have been used to find the optimal threshold, such as bisection
method [3] or evaluating number of correct classifications using
variable thresholds and finding the threshold which maximizes it
[2]. Also it can be done by minimizing the cost function with
respect to threshold point and finding the optimum value for it
[27]. In sampling-based methods for developing cost-sensitive
ANN, different costs have been conveyed by appearance of
instances. Instances with high costs are over-sampled and/or
instances with low costs are under-sampled and the problem of
imbalanced data set is solved. Then the model becomes sensitive
to the instances with high frequencies and minimizes the total
misclassification cost [23].

One of the approaches is to develop a model or modify the
original ANN to minimize the root mean square error (RMS) [32].
Adapting the learning rate of the error function with respect to
different types of misclassification is a continued study which
started by Breiman's altered priors approach [33]. It has been used
to make the neural network more sensitive to variable amounts of
cost and it increases the learning rate for more costly instances by
giving them more weight. This approach has been used in neural
network learning in some researches such as Kukar's [21]. Besides,
Kukar and Kononenko used a new approach called minimization of
misclassification cost which was correction of the error function
by multiplying it a cost factor. By this change in error function they
make it a cost function using different class-based costs (not
uniform) and in back propagation of neural network, in fact,
instead of squared errors, the cost of misclassification is minimized
and their results showed the superior performance of the network
using this approach.

Zheng [27] made use of three cost-sensitive boosting algo-
rithms to classify defect-prone modules and not-defect-prone
ones in software defect prediction context where most of the
problems have different costs of misclassification, i.e. mis-
classification of defect-prone are much more expensive than not-
defect-prone ones. The first boosting algorithm is based on
threshold-moving and the two others are weight-updating based
algorithms. This study represents that threshold moving in most of
the software defect prediction problems can be the best choice to
develop a cost sensitive ANN.

Ma et al. [28] developed some scenarios for multiple-cost
extension of back-propagation with different class-based costs
and compare them in terms of both accuracy-based and cost-
based performance measures. Their findings imply that there is a
significant relation between accuracy and misclassification cost.
Also they represent that, to reach a high accuracy and conse-
quently a lower misclassification cost, in the case of non-constant
cost matrix, the best way is to maintain separate matrices and not
to merge them on an overall cost matrix.

The most relevant approach to this study is proposed by Kukar
and Kononenko [21] which is based on an earlier study of Breiman
et al. [33]. They studied a modification on the learning rate of cost
function in neural networks which assigns variable penalties to
different misclassifications of instances with respect to their type
of misclassification as follows:

ηðpÞ ¼ η � CostVector½classðpÞ�
max

i
CostVectorðiÞ ð1Þ

Here, p is the training example and as demonstrated above, the
learning rate for each instance is modified considering its type of
misclassification. We used this approach as a benchmark to our
instance-based weights which are discussed in the next section.
3. The original and profit-based Artificial Neural Networks

3.1. Original ANN

Artificial Neural Network is the mathematical representation of
biological neural network in human's body [34]. Neural networks
have two types: single-layer perceptron and multi-layer percep-
tron (MLP). Multi-layer perceptron which has been used in this
paper has three kinds of layers where information is transferred
between them with weighted connections: input layer, hidden
layers and output layer. Input layer has some neurons which get
the inputs from data set multiplied by their weights and transfer
them to the hidden layer with some other set of weights. Hidden
layers also have neurons which get the information from input
layer and map them between zero and one by using sigmoid
function in this study. Then the hidden layers transfer their out-
puts to the output layer with weighted connections. In each layer,
there is some bias for each neuron to make the model easier to
predict the exact target. If the output neurons have linear function,
the target will be a real number and it is an appropriate function
for regression. Nonetheless, as the problem proposed in this paper
is the prediction of two classes, cases (positives) and non-cases
(negatives), the model has to be a classification model and here
the sigmoid function which is represented below, is used instead
of simple linear function:

y¼ 1
1þe� z ð2Þ

Here y is between zero and one and z comes from the following
formula:

z¼ bþ
X
i

xiwi ð3Þ

Where b is bias, xi is the input vector for instance i and wi is its
corresponding weight.

Typically sigmoid function is used in neural network because it
has nice derivatives which simplify learning procedure. The fol-
lowing figure (Fig. 1) shows the behavior of sigmoid function as a
transferring and learning function:

In neural network representations, the bias is often given the
value of 1 to be able to write it in vector representation as follows:

z¼
X
i

wixi ¼wTx ð4Þ

Here x is the input vector and w represents the weight vector
which the network is going to learn and predict the target as the
error of the prediction is in its minimum amount.

The network uses the chain rule to get the derivatives needed
for learning the weights of a logistic unit. To learn the weights
which minimize the error function, we need the derivative of the
output with respect to each weight.

EðwÞ ¼ 1
2

XN
n ¼ 1

ðtn�ynÞ2 ð5Þ

∂y
∂wi

¼ ∂z
∂wi

∂y
∂z

¼ xiyð1�yÞ ð6Þ



Fig. 2. ANN with one hidden layer [34].

Table 3
Individual cost matrix (net profit matrix).

Predicted class

Case Non-case

Actual class Case Ai Ci
Non-case C 0

j A0
j

A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131124
∂E
∂wi

¼
X
n

∂yn

∂wi

∂E
∂yn

¼ �
X
n
xni y

nð1�ynÞðtn�ynÞ ð7Þ

xn,yn,tn are respectively the nth input, its corresponding output and
its target value.

Network without hidden units are very limited in the input–
output mappings they can model hence, in complex data sets,
adding a hidden layer makes them much more powerful. A neural
network with just one hidden layer has been visualized in Fig. 2
which depicts some neurons in each of three layers. The hidden
layer and output units use sigmoid functions so the output of the
network will be a value between 0 and 1 (the probability of taking
one for the output).

The idea behind the back-propagation is using error derivatives
with respect to hidden activities instead of using only desired
activities to train the hidden units. Each hidden activity can affect
many output units and can therefore have many separate effects
on the error. These effects must be combined. Error derivatives can
be computed for all of the hidden units efficiently at the same
time. Once we have the error derivatives for the hidden activities,
it is easy to achieve the error derivatives for the weights going into
a hidden unit.

The following equation represents the general sum of squared
errors (SSE) and its derivative which has been used in many
research to back-propagate in the network using gradient descent.
Each weight is updated using the following equations:

EðwÞ ¼ 1
2

XN
n ¼ 1

ðtn�ynÞ2 ð8Þ

∂E
∂yi

¼ �ðti�yiÞ ð9Þ

wTþ1 ¼wT �?∇EðwT Þ ð10Þ
Where wT and ∇EðwT Þ indicate the vector of weights and vector of
derivatives of the weights in Tth iteration respectively and η
represents the learning rate.

This paper proposes a new error function which modifies the
original SSE function to increase the total net profit. In this study,
we defined different versions of modifying the error function.

3.2. Direct weights (DW)

In this version, error function has been directly multiplied by
instances' individual weights. In other words, each instance's error
is multiplied by its profit. Accordingly, as profitability of instances
increase, the penalties of their misclassification increase pro-
portionally. The main drawback for this model is its zero error for
non-profitable instances. If the profit for instance is zero and it has
been incorrectly classified, the model will not try to correct this
misclassification. The following expression is the error function for
this version of modification:

EðwÞ ¼ ðti�yðxi;θÞÞ2n Aj ð11Þ
Where Aj is the amount of individual profit for instance j.

3.3. Profit-based ANN (PNN)

Our main goal is to correctly classify the profitable instances as
much as possible with minimum decrease in the accuracy of
detecting other instances (i.e. less profitable ones). For this reason,
an indicator has been used in the error function to make the
algorithm more sensitive to high profitable instances. Accordingly,
we used a multiplier to intensify the individual penalty of profit-
able false negatives (in CC Fraud, fraudulent transactions whose
usable limit is more than the average).

Indicator should indicate the profitable (important) instances
which is the Usable Limit in the context of credit card fraud and
the customer revenue (balance) in direct marketing. Thus, indi-
cator has been defined as

IðAjÞ ¼
1 if AjZA

0 otherwise

(

Here Aj is the individual profit of instance j and A is the total
average of instances' individual profits. In this version, multiplier
in the error function (penalty) can be defined as profitability of ith

instance which is sensitive to its individual profit. Consequently,
the error function can be defined as

EðwÞ ¼
X

jA train

ðtj�yðxj;θÞÞ2n
Aj

A

� �IðAjÞ
ð12Þ

As low profitable instances are not going to be multiplied by a
value, we can assume that they will be multiplied by one. We aim
to make a connection between instances and their individual
penalties to ensure that profitable ones will be classified correctly
as much as possible.

We can consider this modification from another point of view.
A learning rate is a user-defined value to determine how much the
weights of examples can be modified at each iteration. We can
assume that the learning rate has been modified to assign an
appropriate individual penalty for each example and penalize the
misclassified important examples considering their individual
importance. Moreover, a cost matrix (net profit matrix) can be
represented to show the individual costs and profits (Table 3).
Where Ai and A0

j are profits of true positive and true negative and
Ci and C0

j are costs of false negative and false positive, respectively.

3.4. PNN using logarithm (LOG-PNN)

Neural network is very sensitive to any multiplier in error
function and if it is a large value the error function will be unstable



A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131 125
and if it is a small value, the rate of learning will be decreased
considerably.

As the ratio Aj=A in the previous version can give out large
values it may cause instability in the model, so for the sake of
limiting the values it can take, we can use logarithm function in an
alternative version of error function. Hence, the penalty for each
instance can be defined as

Pj ¼ log
Aj

A
þ1

� �
ð13Þ

The value of one inside the logarithm guarantees that the
output will always be positive. The penalty function and weight
updating equations can be expressed as

EðwÞ ¼
X

jA train

ðtj�yðxj;θÞÞ2n log
Aj

A

� �
þ1

� �IðAjÞ
ð14Þ

wTþ1
j ¼wT

j �η∇EnðwT
j Þn log

Aj

A

� �
þ1

� �IðAjÞ
ð15Þ

This version of error function can make the network more stable
when the profitability ratio has a large spread, for example, in the
first data set used in this study, the usable limit attribute is con-
sidered as profit based metric. The range of this attribute is ½0;99
;714� with average of 1816. Accordingly the profit ratio Aj=A has a
range which contains very large values as a multiplier to the error
function. If we use logarithm function, the penalty will have the
range ½0; log ð54:9Þ� ¼ ½0;1:7474�.

3.5. LOG-PNN without using indicator (LPWI)

In this version of error function we use the modified version
of LOG-PNN without the indicator. Therefore, not only mis-
classified profitable instances but also all misclassified ones are
penalized proportional to their profitability. The error function
is as follows:

EðwÞ ¼
X

jA train

ðtj�yðxj;θÞÞ2n log
Aj

A

� �
þ1

� �
ð16Þ

3.6. LOG-PNN without average (LPWA)

This version of ANN uses the logarithm of each instance's profit
as its multiplier in the error function:

EðwÞ ¼
X

jA train

ðtj�yðxj;θÞÞ2n ðlogAjÞIðAjÞ ð17Þ
Fig. 3. System model for the propose
3.7. Weights of modified Fisher (MF) [8]

This version of ANN has been benchmarked from a recent
profit-based study in fraud detection context which was the best
choice to generate weights for Fisher Discriminant classifier. In
this model, there is no indicator for profitable instances where all
of the instances are given a weight related to their potential
profit. We use this approach as a benchmark to compare its
performance with other weight generation methods. The error
function for this approach is as follows:

EðwÞ ¼
X

jA train

ðtj�yðxj;θÞÞ2n
Aj

A

� �
þ1

� �1=2

ð18Þ

3.8. MAX-PNN

This version of error function uses the Kukar's way of weight
generation [21] and it gives different weights for different
instances considering their profit of correct classification (origin-
ally cost of misclassification). The only difference between this
approach and Kukar's approach is that here all of the instances
have individual cost of misclassification where in the original
paper they studied class-based costs:

EðwÞ ¼
X

jA train

ðtj�yðxj;θÞÞ2n 1þ Aj

maxjðAjÞ

� �� �
ð19Þ

3.9. Class-based cost-sensitive ANN (CNN)

In this case we take into account the imbalance of data and
importance of classes and assign different costs of misclassification
to each of the classes. The ratio of misclassification cost of each
class is inversely proportional to the number of instances from
that class in the test set. For example if the ratio of positive
instances to negative ones is 1/10, then the cost of misclassified
positive (FN) is 10 times of cost of a misclassified negative (FP).

Note that as expressed previously, accuracy and other perfor-
mance metrics based on accuracy are not suitable for cost-
sensitive or profit-based classification models. We have used
four different measures to compare the models, where two of
them are accuracy-based measures which are: Accuracy and True
Positive (TP) rate. Next two measures are cost/profit based mea-
sures. “Saving” measures the amount of profit in each model with
threshold 0.5. The “Net profit in top 10%” (10% is the proportion of
actual positives in the test set) evaluates net profit when the cutoff
point is the score of top 10%th instance. This measure has an
advantage that does not care about the number of total positives in
d decision support system (DSS).



A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131126
each classifier, but it gives more importance to the actual number
of positives detected in the first top positives in each model and
sums their net profits.

The proposed decision support system is given in Fig. 3.
4. Research design and experimental results

In this paper, three data sets have been used to investigate how
the proposed models work. All of our ANN versions have benefited
from the Levenberg–Marquardt algorithm to train the neural
networks. Note that we used one hidden layer ANN with three
hidden units and there is just one output unit in the output layer.
Also we used default value of 30 for the number of epochs. Two of
data sets are new real-life bank credit card data sets which have
been acquired from two well-known Turkish banks and the third
one is a bank direct marketing data set obtained from UCI repo-
sitory [11]. The description of each data set is as follows:

The first data set includes 9388 transactions' information made
by customers of a bank with a balance of 9 to 1 (legitimate
transactions to fraudulent transactions); 939 of them are fraudu-
lent cases and the rest are legitimate ones. The number of attri-
butes is 102. The second data set has 5960 examples which include
1019 fraud cases and 4941 legitimate ones and it has 46 attributes.
The third data set is related to direct marketing campaigns of a
Portuguese banking institution which contains 3463 customers'
information, 460 of them are subscribed (positive) and 3003 are
not subscribed (negative) examples and it has 16 attributes. In the
empirical study of each data, the data set has been divided in a
way that 2/3 proportion is used to train the model and 1/3 is used
to test the trained model. In all of the data sets, we have a profit-
based attribute which individualize the penalties in each case
where they are usable limit for credit card data sets and balance of
customers in direct marketing data set. The ANN model auto-
matically extracts a validation data set (15%) from training data set
in order to avoid over-fitting. Table 4 represents all of the infor-
mation about data sets and ANNs used.

Empirical results of testing the seven presented models, class-
based cost-sensitive ANN and also the original neural network has
been analyzed thoroughly. In all of the models the train sets and
test sets are the same, however, as the initial weights are gener-
ated randomly in neural network, each of the models has been run
ten times and the average of runs plus their standard deviations
are considered as classifiers' final performance. Moreover, note
that we applied decision tree (C4.5) first and then trained ANN
models with those variables used in DT. As such, 27, 20 and 14
variables are used for the training of data set one, two and three,
respectively. The expression below demonstrates how to calculate
the amount of net profit for each model:

NP ¼
XNTP

i ¼ 1

ðAj�cÞþ
XNFP

k ¼ 1

ð�cÞ ð20Þ

Where c is the fixed cost of action (cost of contacting the custo-
mer) and NTP and NFP indicate the number of true positives and
Table 4
Data sets and ANNs used in this study.

Name No. of
features

Size of
samples

Training ratio Testing
ratio

Valid

Credit card fraud 1 27 9388 2/3 1/3 15% o
set

Credit card fraud 2 20 5960 2/3 1/3 15% o
set

Direct marketing 14 3463 2/3 1/3 15% o
set
false positives, respectively. As mentioned above, Ai is the amount
of profit gained when the instance i is classified correctly. In
context of credit card fraud prediction it is the usable limit of the
corresponding card used to make the transaction i. Furthermore,
there is a fixed cost of applying the decision support system, but
since it is fixed and has to be added for all models, this is not taken
into consideration in the comparison procedure. The threshold has
been changed from 0.5 to the number of cases (positives) in test
set to show that in the top most probable instances (top 10%),
which of the classifiers is successful. For the threshold of 0.5 case,
we presented the net profit under the column titled “saving” to
make difference between these two concepts.

For the first data set the results are presented in Table 5. In the
test set of this data set we have overall 3130 instances, where 313
of them are fraudulent transactions and 2817 are legitimate. As the
number of positive instances is 313 in the test set, the threshold
here has been chosen the 313th instance's output to analyze
classifiers' performance. In the context of credit card fraud, the
most important profit-based attribute is the usable limit of each
card. If we correctly detect fraudulent cases, we save their usable
limit subject to a cost of contact. Let us consider the base scenario
as the case where all transactions are supposed to be legitimate. It
is a common approach for evaluating the profit of applying data
mining algorithms. Then, the total saving that can be obtained
from the implementation of a model will be

NP ¼
XNTP

i ¼ 1

ðULi�cÞþ
XNFP

k ¼ 1

ð�cÞ ð21Þ

Where, ULi indicates the usable limit of the card of the ith trans-
action and c is the contact cost which is fixed for all cases.

Table 5 illustrates the performance of seven models on the first
data set. There are two types of measures here. Six of them
(Threshold¼0.5) are accuracy based and show the number or
percentage of correct classifications . Original ANN has the greatest
accuracy as it tries to classify instances as correct as possible
where instances' profitability is not important. Naïve Bayes clas-
sifier has the best performance in saving when threshold is 0.5.
But as the amount of saving depends on the number of the frauds
detected, if a classifier like Naïve Bayes labels most of the instances
as positive (fraudulent) the saving amount will be very high
accompanied by a decrease in accuracy which is what happened in
this case. True positive rate and false positive rate have their best
amount in original ANN and this demonstrates that Original ANN
has the best performance in statistical measures. Amount of net
profit when threshold is top 10%, has its highest amount in LPWA
(a version of PNN which makes use of logarithms of usable limit as
weights), however its accuracy based measures are not very less
than original ANN. As shown in Fig. 4, most of the usable limits are
distributed between 0 and 5000 with some large limits as well. In
Fig. 5 the distribution of weights generated by the LPWA has been
shown which have been distributed between 3 and 5 and most of
them are around three. These weights are more efficient than
other models' weights as they have maximized the net profit
amount in this data set. Note that in Fig. 4, there are considerable
ation ratio No. of hidden
layers

No. of hidden
units

No. of
Epochs

Training method

f training 1 3 30 Levenberg–
Marquardt

f training 1 3 30 Levenberg–
Marquardt

f training 1 3 30 Levenberg–
Marquardt



A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131 127
amount of usable limits around zero which have not been con-
sidered in Fig. 5 because the model LPWA just assign weights for
profitable instances, i.e. the instances which have usable limits
more than average. The superiority of LPWA to original ANN is
statistically significant based on a t-test at α¼ 0:1 level.

Table 5 illustrates performance of proposed methods for the
second credit card fraud data set. For this data set, test set includes
1986 instances of 339 frauds and 1647 legitimates. Therefore, the
threshold here is the 339th instances score (top 17%).

As Table 6 demonstrates, proposed PNN has the best perfor-
mance in terms of net profit when the threshold is top 17%.
However, considering statistical measures, original ANN and Naïve
Bayes outperform others. As can be seen in the table, in terms of
saving when the cutoff point is 0.5, Naïve Bayes has the best
performance, however its accuracy is low and this shows that
most of the instances are classified as positive (Fraud) and there is
a high false positive rate. As shown in Fig. 6, most of the usable
limits of instances are near to each other and around 3500 and
there are some large usable limits near 100,000. These large limits
make the average a bit skewed. Fig. 7 shows the weights generated
by PNN for profitable instances. We confirmed that the superiority
of PNN over ANN is statistically significant based on a t-test with
α¼ 0:1.

For the third data set which is about the prediction of the
success of telemarketing calls for selling bank long-term deposits,
the results are presented in Table 7. In the test set we have 1154
Table 5
The results of all models for the first fraud data set.

Version of ANN Threshold¼0.5

Accuracy (%) Saving (%) TN (#) FN (#)

ANN 94.7370.43 81.6979.46 2476.577816.74 99.70718.35
DW 92.5174.55 76.56714.19 2718.407111.63 136.20736.23
PNN 94.6370.34 77.52710.38 2758.00712.63 110.10714.02
LOG-PNN 94.5670.43 80.9878.19 2748.20714.55 102.5079.77
LPWI 45.76734.49 47.55735.22 1311.4071175.64 192.607111.50
LPWA 94.6870.37 84.5675.12 2759.10711.38 109.10716.48
MF 94.3171.11 78.38717.33 2754.70716.88 107.80753.10
MAX-PNN 94.5571.01 81.3178.48 2750.80711.65 105.40733.09
CNN 92.9072.70 75.99716.76 2685.80790.65 92.30746.71
DT 94.25 84.11 2728 92
NB 82.01 90 2290 37

Fig. 4. Distribution of usable l
instances overall, which contains 153 cases (customers who accept
to subscribe) and 1001 non-cases (who reject to subscribe).
Threshold has been chosen the 153rd instance's score as the
number of positives is 153 (top 10%). Here the base scenario which
can be used to find the profit and cost of implementing the model
is making no contacts with customers. Hence, the expression to
calculate the saving amount is shown as follows:

NP ¼
XNTP

i ¼ 1

ðBi�cÞþ
XNFP

k ¼ 1

ð�cÞ ð22Þ

Where Bi demonstrates the amount of balance gained from sub-
scription of customer i, c is the fixed cost of contacting to each
customer. This expression means that if the model is imple-
mented, there will be such benefits and costs gained from all
instances compared to the case of not implementing the model.

In Table 7 again original ANN has the largest accuracy and
Naïve Bayes classifier reaches the largest saving when the
threshold is 0.5; however, it has the worst accuracy due to large
number of false positives. A version of proposed model which uses
the benchmark weights [8] has the greatest net profit when the
threshold is top 10%. These results represent that, although the
proposed model using benchmark weights, has less number of
true positives in the test set, it has detected the most profitable
cases and maximizes the total net profit. Fig. 8 shows the dis-
tribution of balance in the customer's account and it shows that
most of them are between zero and 5000 and there are some
Threshold¼10%

TP (#) FP (#) TP rate TN rate Net profit (%)

213.30718.35 65.30727.75 0.7370.01 0.9770.00 84.5477.17
159.40758.94 97.607111.63 0.6470.17 0.9770.00 78.73718.02
202.90714.02 58.00712.63 0.7470.01 0.9070.01 81.3379.81
210.5079.77 67.80714.55 0.7270.03 0.9770.00 82.7178.45
84.00760.92 1504.6071175.64 0.0970.05 0.9770.00 20.27710.34
203.90716.48 56.90711.38 0.7270.02 0.9770.01 87.7474.67
196.80742.37 61.30716.88 0.7170.07 0.9770.01 83.37712.31
207.60733.09 65.20711.65 0.7170.10 0.9670.02 83.4078.83
220.70746.71 130.20790.65 0.6770.11 0.9670.01 79.6679.97
221 88 0.7 0.97 84.4
276 526 0.67 0.96 84.55

imits in the first data set.



Fig. 5. Distribution of weights generated by LOG-PNN in the first data set.

Table 6
The results of all models for the second fraud data set.

Version of ANN Threshold¼0.5 Threshold¼17%

Accuracy (%) Saving (%) TN (#) FN (#) TP (#) FP (#) TP rate TN rate Net profit (%)

ANN 80.9171.03 50.2974.26 1430.60733.86 182.80715.50 156.20715.50 215.40733.86 0.4670.03 0.9170.01 46.4973.22
DW 80.2670.93 44.2673.45 1444.60725.68 190.80711.48 148.20711.48 201.40725.68 0.4370.02 0.9070.01 43.1572.34
PNN 82.3070.27 49.9579.91 1460.8073.92 156.40713.95 182.60713.95 185.2073.92 0.4870.04 0.8970.01 49.2674.70
LOG-PNN 80.3471.39 48.12710.00 1440.80729.74 166.00730.40 173.00730.40 205.20729.74 0.4470.04 0.9170.01 44.4674.36
LPWI 78.7071.09 38.9879.20 1430.60730.08 207.20732.34 131.80732.34 215.40730.08 0.3670.08 0.8970.01 35.7677.19
LPWA 76.1875.47 34.7977.15 1394.807120.79 221.80724.47 117.20724.47 251.207120.79 0.3370.07 0.9070.01 33.1777.89
MF 81.4671.14 41.03716.26 1479.20747.27 201.40753.27 137.60753.27 166.80747.27 0.4370.06 0.9070.01 43.9976.74
MAX-PNN 80.0271.51 47.97712.88 1427.00764.71 177.80743.08 161.20743.08 219.00764.71 0.4470.04 0.9070.00 44.2574.33
CNN 70.4279.44 46.57714.54 1233.837220.64 174.67750.04 164.33750.04 227.17790.72 0.3470.06 0.8670.01 35.1876.00
DT 78.34 50.33 1383 170.00 169.00 263.00 0.43 0.90 43.88
NB 39.95 71.22 548 94.00 245.00 1098.00 0.32 0.88 32.45

A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131128
negative balances in the data set. Fig. 9 shows the weights gen-
erated by the proposed model using benchmark weights. Most of
the generated weights are between 1 and 2 so it may result in a
stable neural network. We confirmed that the superiority of MF
over ANN is statistically significant based on a t-test with α¼ 0:1.

Note that in all of the data sets, Naïve Bayes classifier has the
best amount of saving while the threshold is 0.5. However, in all of
the data sets it has low “accuracy” and “true positive rate in top
10%” (i.e. highest false positive rate) and this shows that in all of
the cases it has labeled more instances as positives. When the
threshold is the top 10%, all of the classifiers have the same
opportunity to detect true positives among these instances. Other
important issue is the low performance of the Classifier “LOG-PNN
without indicator” which comes up from the fact that in this
model the generated weights are less than one for the less prof-
itable instances and this makes the error less than its regular value
which consequently has bad effects on ANN learning process.

There is no single champion model for all of the data sets in
these classification problems and the best model in terms of saving
is different from one case to another. The reason is that different
ways of weight generations have different distribution of weights
for each of the data sets. The best model is the one which gen-
erates the most appropriate penalties for instances with different
profits in each data set. Thus, we can recommend that one should
try all alternative error functions to determine which one will
perform best for his/her data set. Also in the traditional class-
based cost-sensitive ANN (CNN), The model is not reasonably
consistent in terms of saving (profit) and the proposed models
significantly outperform it in terms of total profit.
5. Summary and conclusion

In this study, a novel profit-based neural network has been
proposed which makes the classification considering all individual
costs and profits of each of the instances and consequently max-
imizes the total net profit captured from applying the classification
model. For this purpose, we modified the neural network error
function which is sensitive to each instance's misclassification
considering its profitability. Different models have been proposed
to generate weights (penalties) for modification of error function.
All of the models, class-based cost-sensitive ANN (CNN) and two
well-known classifiers, Decision tree and Naïve Bayes, have been
tested on two real-life fraud data sets and a UCI direct marketing
data set. In order to evaluate the classifiers, both accuracy-based
and profit-based performance metrics have been used.

Results represent that, original ANN has the best performance
in terms of statistical measures (accuracy and true positive rate).
However, in terms of net profit, different versions of the proposed
model outperform others and the way of generating weights are
different from a data set to another. Moreover, Naïve Bayes clas-
sifier has the highest performance in saving when threshold is
0.5 but its true positive rate is lower than others and when
threshold is changed from 0.5 to top nth instance's score (n is the



Fig. 6. Distribution of usable limits in the second data set.

Fig. 7. Distribution of weights generated by PNN in the second data set.

Table 7
The results of all models for the direct marketing data set.

Version of ANN Threshold¼0.5 Threshold¼10%

Accuracy (%) Saving (%) TN (#) FN (#) TP (#) FP (#) TP rate TN rate Net profit (%)

ANN 88.3070.55 27.2478.36 982.0078.29 104.80743.66 42.60733.06 23.80714.99 0.5570.01 0.9370.00 61.1573.19
DW 87.1270.70 8.50710.29 993.2077.63 141.60715.24 11.40715.24 6.8077.63 0.4470.17 0.9170.03 49.80719.23
PNN 87.9070.46 21.7375.68 983.6077.58 123.0077.46 30.0077.46 16.4077.58 0.5370.02 0.9370.00 59.2973.21
LOG-PNN 88.3870.81 28.97710.92 982.2075.84 112.80711.05 40.20711.05 17.8075.84 0.5370.02 0.9370.00 58.3774.26
LPWI 87.8270.91 17.26713.07 988.8379.42 129.17718.87 23.83718.87 11.1779.42 0.4070.11 0.9170.02 44.82712.22
LPWA 87.8071.04 24.41710.50 978.8074.92 119.20715.47 33.80715.47 21.2074.92 0.5070.07 0.9270.01 57.0679.78
MF 87.7670.42 20.8078.04 987.2079.28 125.40711.48 27.60711.48 12.8079.28 0.5470.03 0.9370.00 63.1374.64
MAX-PNN 87.7370.86 20.73713.80 981.67716.18 123.00719.71 30.00719.71 18.33716.18 0.4670.17 0.8370.03 51.56720.50
CNN 82.6276.35 38.87719.04 900.40797.81 101.00727.88 52.00727.88 99.60797.81 0.3870.09 0.9070.01 42.7879.71
DT 85.86 9.81 975 141 12 22 0.24 0.88 24.4
NB 85.34 41.35 925 94 59 75 0.42 0.91 43.79

A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131 129
number of actual positives in the test set) to ignore the total
number of positives labeled by classifiers, Naïve Bayes has lower
performance in terms of both accuracy and net profit when
compared to proposed models.
As for the future research, we are working on a profit-based ANN
which does not work based on minimizing an error function but
maximizing a net profit function and finds the appropriate weights
based on it.



Fig. 8. Distribution of weights in the third data set.

Fig. 9. Distribution of weights generated by MF in the third data set.

A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131130
Acknowledgments

With a deep sense of gratitude the authors would like to thank
The Scientific and Technological Research Council of Turkey
(TÜBİTAK) under Project no. 113M063.
References

[1] N. Chen, B. Ribeiro, A.S. Vieira, J. Duarte, J.C. Neves, A genetic algorithm-based
approach to cost-sensitive bankruptcy prediction, Expert Syst. Appl. 38 (Sep-
tember (10)) (2011) 12939–12945.

[2] P.C. Pendharkar, A threshold-varying artificial neural network approach for
classification and its application to bankruptcy prediction problem, Comput.
Oper. Res. 32 (October (10)) (2005) 2561–2582.

[3] P. Pendharkar, A threshold varying bisection method for cost sensitive learn-
ing in neural networks, Expert Syst. Appl. 34 (February (22)) (2008)
1456–1464.

[4] A. Ghazikhani, R. Monsefi, H. Sadoghi Yazdi, Ensemble of online neural net-
works for non-stationary and imbalanced data streams, Neurocomputing 122
(December) (2013) 535–544.

[5] H.K. Lam, U. Ekong, H. Liu, B. Xiao, H. Araujo, S.H. Ling, K.Y. Chan, A study of
neural-network-based classifiers for material classification, Neurocomputing
144 (November) (2014) 367–377.

[6] G. Sateesh Babu, S. Suresh, Meta-cognitive neural network for classification
problems in a sequential learning framework, Neurocomputing 81 (April)
(2012) 86–96.
[7] E. Duman, M.H. Ozcelik, Detecting credit card fraud by genetic algorithm and
scatter search, Expert Syst. Appl. 38 (September (10)) (2011) 13057–13063.

[8] N. Mahmoudi, E. Duman, Detecting credit card fraud by modified Fisher dis-
criminant analysis, Expert Syst. Appl. 42 (April (5)) (2015) 2510–2516.

[9] Y. Sahin, S. Bulkan, E. Duman, A cost-sensitive decision tree approach for fraud
detection, Expert Syst. Appl. 40 (November (15)) (2013) 5916–5923.

[10] R.J. Bolton, D.J. Hand, F. Provost, L. Breiman, Statistical fraud detection: a
review, Stat. Sci. 17 (3) (2002) 235–255.

[11] S. Moro, P. Cortez, P. Rita, A data-driven approach to predict the success of
bank telemarketing, Decis. Support Syst. 62 (Jun.) (2014) 22–31.

[12] Kevin Lane Keller Philip Kotler, Framework for Marketing Management, 5th
edition, Prentice Hall, Upper Saddle River, New Jersy, 2012.

[13] F. Talla Nobibon, R. Leus, F.C.R. Spieksma, Optimization models for targeted
offers in direct marketing: exact and heuristic algorithms, European Journal of
Operational Research 210 (May (3)) (2011) 670–683.

[14] J. Lan, M.Y. Hu, E. Patuwo, G.P. Zhang, An investigation of neural network
classifiers with unequal misclassification costs and group sizes, Decis. Support
Syst. 48 (March (4)) (2010) 582–591.

[15] R. Bhowmik, Data mining techniques in fraud detection, in: Proceedings of the
Conference on Digital Forensics, Security and Law, vol. 3, no. 2, April 2008,
pp. 57–72.

[16] G.M. Di Nunzio, A new decision to take for cost-sensitive Naïve Bayes classi-
fiers, Inf. Process. Manag. 50 (September (5)) (2014) 653–674.

[17] C.X. Ling, Test-cost sensitive Naïve Bayes classification, in: Fourth IEEE Inter-
national Conference on Data Mining (ICDM04), 2004, pp. 51–58.

[18] Q. Deng, Detection of fraudulent financial statements based on Naïve Bayes
classifier, in: 2010 5th International Conference on Computer Science & Edu-
cation, 2010, pp. 1032–1035.

[19] J. Kim, K. Choi, G. Kim, Y. Suh, Classification cost: an empirical comparison
among traditional classifier, Cost-Sensitive Classifier, and MetaCost, Expert
Syst. Appl. 39 (March (4)) (2012) 4013–4019.

http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref1
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref1
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref1
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref1
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref2
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref2
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref2
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref2
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref3
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref3
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref3
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref3
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref5
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref5
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref5
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref5
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref6
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref6
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref6
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref6
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref7
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref7
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref7
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref8
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref8
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref8
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref9
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref9
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref9
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref10
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref10
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref10
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref11
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref11
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref11
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref12
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref12
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref13
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref13
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref13
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref13
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref14
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref14
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref14
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref14
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref16
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref16
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref16
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref19
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref19
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref19
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref19


A. Zakaryazad, E. Duman / Neurocomputing 175 (2016) 121–131 131
[20] C. Elkan, The foundations of cost-sensitive learning, in: International Joint
Conference on Artificial Intelligence, 2001.

[21] M. Kukar, I. Kononenko, Cost-sensitive learning with neural networks, in:
European Conference on Artificial Intelligence (ECAI), 1998.

[22] E. Zheng, C. Zou, J. Sun, L. Chen, P. Li, SVM-based cost-sensitive classification
algorithm with error cost and class-dependent reject cost, in: 2010 Second
International Conference on Machine Learning and Computing, 2010, pp. 233–
236.

[23] Zhi-Hua Zhou, Xu-Ying Liu, Training cost-sensitive neural networks with
methods addressing the class imbalance problem, IEEE Trans. Knowl. Data
Eng. 18 (January (1)) (2006) 63–77.

[24] Wei Fan, Salvatore J. Stolfo, Junxin Zhang, Philip K. Chan. AdaCost: mis-
classification cost-sensitive boosting, in: International Conference on Machine
Learning (ICML), 1999, pp. 97–105.

[25] V. Lpez, A. Fernndez, J.G. Moreno-Torres, F. Herrera, Analysis of preprocessing
vs. cost-sensitive learning for imbalanced classification. Open problems on
intrinsic data characteristics, Expert Syst. Appl. 39 (June (7)) (2012)
6585–6608.

[26] C.-H. Tsai, L.-C. Chang, H.-C. Chiang, Forecasting of ozone episode days by cost-
sensitive neural network methods, Sci. Total Environ. 407 (March (6)) (2009)
2124–2135.

[27] J. Zheng, Cost-sensitive boosting neural networks for software defect predic-
tion, Expert Syst. Appl. 37 (June (6)) (2010) 4537–4543.

[28] G.-Z. Ma, E. Song, C.-C. Hung, L. Su, D.-S. Huang, Multiple costs based decision
making with back-propagation neural networks, Decis. Support Syst. 52
(February (3)) (2012) 657–663.

[29] P.C. Pendharkar, A computational study on the performance of artificial neural
networks under changing structural design and data distribution, Eur. J. Oper.
Res. 138 (April (1)) (2002) 155–177.

[30] V.L. Berardi, G.P. Zhang, The effect of misclassification costs on neural network
classifiers, Decis. Sci. 30 (June (3)) (1999) 659–682.

[31] L.M. Salchenberger, E.M. Cinar, N.A. Lash, Neural Networks: A New Tool for
Predicting Thrift Failures, Decis. Sci. 23 (July (4)) (1992) 899–916.

[32] Emad W. Saad, Danil V. Prokhorov, Donald C. Wunsch, Comparative study of
stock trend prediction using time delay, recurrent and probabilistic neural
networks, IEEE Trans. Neural Netw. 9 (6) (1998) 1456–1470.

[33] L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, Classification and Regression
Trees, Taylor & Francis, 1984.

[34] C. Bishop, Pattern Recognition and Machine Learning, 2006.
[35] E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng. 21

(September (9)) (2009) 1263–1284.
[36] Y. Sahin, E. Duman, Detecting credit card fraud by decision trees and support
vector machines, in: International MultiConference of Engineers and Com-
puter Scientists, vol. I, 2011.
Ashkan Zakaryazad received the BSc degree in indus-
trial engineering from Iran University of Science and
Technology (IUST), Tehran, Iran in 2012. Since 2013, he
has been working toward the MSc degree at the
department of industrial engineering at the Ozyegin
University, Istanbul, Turkey. Being a member of the
Scientific and Technological Research Council of Turkey
(TUBTAK), his main research focuses on data mining in
business settings, such as credit card fraud detection,
churn prediction, direct marketing and credit scoring.
Ekrem Duman is an associate professor at Ozyegin
University, Istanbul, Turkey. He obtained his BSc degree
from Bogazici University Electrical-Electronics Engi-
neering Department in 1990. Then, he got the MSc and
PhD degrees from the Industrial Engineering Depart-
ment of the same university in years 1994 and 1998,
respectively. After a couple of years of industrial
experience he worked as a professor in the Industrial
Engineering Department of Dogus University between
2001 and 2011 and after that he joined to Ozyegin
University. He has done extensive research on pre-
dictive analytics, data mining, fraud detection and

credit risk management and his findings have been

published in well-known international journals (e.g., Computers & Operations
Research, System Dynamics Review, International Journal of Production Research,
Information Sciences and Expert Systems with Applications). Besides theoretical
studies, he has been involved in many industrial (mostly banking) projects as a
coordinator or consultant.

http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref23
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref23
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref23
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref23
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref25
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref25
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref25
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref25
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref25
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref26
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref26
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref26
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref26
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref27
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref27
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref27
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref29
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref29
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref29
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref29
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref30
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref30
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref30
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref33
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref33
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref33
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref35
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref35
http://refhub.elsevier.com/S0925-2312(15)01501-5/sbref35

	A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing
	Introduction
	Related works
	The original and profit-based Artificial Neural Networks
	Original ANN
	Direct weights (DW)
	Profit-based ANN (PNN)
	PNN using logarithm (LOG-PNN)
	LOG-PNN without using indicator (LPWI)
	LOG-PNN without average (LPWA)
	Weights of modified Fisher (MF) [8]
	MAX-PNN
	Class-based cost-sensitive ANN (CNN)

	Research design and experimental results
	Summary and conclusion
	Acknowledgments
	References




